Letter of Transmittal

November 17, 2014

Ali Said Structural Thesis Advisor The Pennsylvania State University aus59@psu.edu

Dear Doctor Said,

The following technical report fulfills the fourth Technical Report assigned by the structural faculty for senior thesis.

Technical Report 4 includes a structural analysis of the lateral system in 11141 Georgia Ave in Wheaton, MD. Included is a list of codes and documents used to compile this report. A review of the lateral load calculations and values is included as well as typical member spot checks for lateral loads and lateral load modeling.

Thank you for your time in reviewing this report. I look forward to hearing your feedback and discussing it with you.

Sincerely, Samantha deVries

Enclosed: Technical Report 4

11141 Georgia Avenue

Located in Wheaton, MD

Technical Report 4 Samantha deVries

Structural Option Advisor: Ali Said November 17, 2014

Table of Contents

Executive Summary	4
Purpose	5
Building Abstract	6
Site Plan and Location of Building	7
Documents used during preparation of report.	8
Load Summary	9
Gravity Loads.	9
Wind Load Summary.	
Seismic Load Summary	12
Lateral Load Modeling	14
Hand Calculations	14
Calculation Process	15
Relative Stiffness	16
Story Shears	17
Summary of Distributed Loads	
Three-dimensional modeling	19
Story Drift Check	21
Member Forces	
Joint Reactions	24
Hand Methods and Computer Analysis Comparison	
Typical Member Spot Checks for Lateral Loads	27
Appendix	31
Lateral Framing Plans	
Hand Method Excel Calculations	

Executive Summary

11141 Georgia Avenue, located in Wheaton, MD, is a 1960's concrete office building on which a 7-story steel addition was completed in August 2014 for \$20 million. The building is a high rise apartment building with one and two bedroom studios, a rooftop terrace and penthouse, and is conveniently located next to the metro station.

The Foundations are spread footings with piers and a foundation retaining wall where the building steps from the lowest basement level to the next. Modifications were required to the foundations and slab on grade only where a new elevator pit was added and the old pit was removed.

The structure of the original building is reinforced concrete with typical two-way concrete slab bays that are approximately 22' by 21'. Again, the slabs in the original building only required modifications where new stairwells and elevators were added and the original ones were removed. The addition's structure is framed in structural steel with rolled W-shapes for the columns, girders, and beams, and composites joists for the bays in the floors and on the roof. Each floor has metal deck with a concrete topping.

The lateral system consists of concrete moment frames in the original structure, and steel moment frames in the new structure. Some columns were expanded for additional stiffness to resist an increase in lateral loads due to an increased building height.

There are many joints and connections that involved tying the new columns, beams, and other structural elements into the original building through drilling a hole to embed and grout rebar, anchors, or other connections.

The loads used in the structural design on the project all followed IBC 2009, which allows the use of ASCE 7-05. Due to a change in building use which allows a smaller reduced live load, the removal of the original penthouse, and the use of steel rather than concrete for the addition, the total loads reaching the foundations were close to the original 1960's design loads.

Purpose

The Purpose of this report is to analyze the lateral system in 11141 Georgia Avenue in Wheaton, MD. Both hand methods and a three-dimensional computer model analysis will be used to compare to each other. These results will be used for the purpose of understanding how lateral loads are distributed in the building as well as spot checking a lateral frame for strength and drift. The lateral system analysis will be further used to guide the upcoming proposal for redesign work during the upcoming spring semester.

11141 Georgia Avenue: High Rise Residential Apartments Located in: Wheaton, MD

Building Statistics

Full Height: 158 Feet Number of Stories: 14 Size: 179,760 GSF Square Feet Cost: \$44 Million (for the addition) Construction Dates: February 2013 - August 2014 Project Delivery Method: Contractor at Risk

Project Team

Owner: ML Wheaton, LLC c/o Lower Enterprises General Contractor and CM: Whiting-Turner Architect: Bonstra Haresign Architects, LLP Structure: Rathgeber/Goss Associates Mechanical: Brothers Ductwork HVAC, Inc. Plumbing: KNI Engineering, Inc. Lighting Design: Gilmore Lighting Design

Photo of building from nearby parking garage roof. Photo taken by Samantha deVries

Structural Systems

- Original Concrete Building Concrete moment frames Concrete floor slabs Spread footings and retaining walls
- New Addition
 Steel moment frames
 Lightweight composite floor joists with deck
- · Loads
 - Original loads for office building New live loads smaller for residential
- Renovation Work
 New stairwell and elevator locations
 New utility openings
 Façade modifications

Samantha deVries: Structural Option Advisor: Ali Said

Photo of typical apartment: Photo courtesy of The George (Apartment)

Architecture

- . 5 story 1960's office building
- 7 story addition
- High rise apartment building with one and two bedroom studios.

Construction

- Underpin Foundations
- · Renovations work in existing building
- · Construct addition directly above existing

Mechanical

- · Cooling by rooftop chiller condensing units
- · Units have occupant operable windows
- · Heating by electrical heaters and heat pumps.

Electrical/Lighting

- Recessed lighting in apartments
- · Pendant and wall mounted fixtures in lobbies
- · 2 Main Power Distributers fed from a transformer
- One 1400 KVA and one 1750 KVA

Photo of rooftop terrace: Photo courtesy of The George (Apartment)

Project Sponsor: Rathgeger/Goss Associates psu.edu/ae/thesis/portfolios/2015/sjd5225/deVries_AE_Thesis/Home.html

Site Plan and Location of Building

11141 Georgia Ave is Located in Wheaton Maryland near the Wheaton Metro Station. To the west of the site is a mainly commercial zone, while to the east is a residential zone. The site itself is combined commercial-residential. Figures 1 and 2 below illustrate the building's location.

Figure 1: Building Location on Site, Courtesy of Bonstra Haresign Architects

Figure 2: Map showing building location relative to State College and Harrisburg

Documents used during preparation of report

The following is a list of the structural codes used on the project. The codes used in the original 1962 drawings were not available. The codes used on the new addition to and renovation of the original building will be the referenced codes in this technical report.

International Code Council

International Building Code 2009

American Society of Civil Engineers

ASCE 7-05: Minimum Design Loads for Buildings and Other Structures

American Concrete Institute

ACI 318-11

American Institute of Steel Construction

AISC Steel Manual 14th Edition

Vulcraft Deck Catalog

Steel Joist Institute

Standard Specifications for Composite Steel Joists

Previous Course Notes

Concrete Design (AE 402) Advanced Concrete Design (AE 431) Advanced Steel Design (AE 403) Computer Modeling of Building Structures (AE 530)

Gravity Loads Summary

Below is a summary of the gravity loads calculated in Technical Report 2:

Roof Dead Load (Penthouse) = 27 psf Roof Dead Load (12th Level Terrace) = 98 psf Roof Live Load (Penthouse) = 30 psf Roof Live Load (12th Level Terrace) = 100 psf Snow Load = 20 psf with max drift of 65 psf Floor Dead Load (steel) = 75 psf Floor Dead Load (concrete) = 105 psf for 6.5" slab = 123 psf for 8" slabFloor Live Load = 40 psf (Residential, Parking, Corridors above 1st level) = 100 psf (Lobbies, Stairs, Exits)Exterior Wall (original) = 992 plf Exterior Wall (metal panels) = 443 plf Exterior Wall (new brick) = 487 plf At drop panels = 9 psf (additional to slab)

Wind Loads Summary

The following section includes a summary of the wind loads calculated in Technical Report 2. Below is the general wind design information.

$$\begin{split} &\mathsf{B}=60\ ft\\ \mathsf{L}=214\ ft\\ &\mathsf{Basic}\ \mathsf{Wind}\ \mathsf{Speed}=90\ \mathsf{mph}\\ &\mathsf{Mean}\ \mathsf{Height}=145\ ft\\ &\mathsf{Occupancy}\ \mathsf{Category}\ \mathsf{II}\\ &\mathsf{Exposure}\ \mathsf{Category}\ \mathsf{B}\\ &\mathsf{Topographic}\ \mathsf{Factor}=1\\ &\mathsf{Gust}\ \mathsf{Effect}\ \mathsf{Factor}=0.85\\ &\mathsf{Wind}\ \mathsf{Load}\ \mathsf{at}\ \mathsf{each}\ \mathsf{level}=q_z\mathsf{G}_f\mathsf{C}_p-\mathsf{q_i}\ (\texttt{+/-}\ \mathsf{GC}_{\mathsf{pi}})\\ &\mathsf{Base}\ \mathsf{Shear}=\sum\ (\mathsf{P}_{\mathsf{level}\ i}\ ^*\ \mathsf{B}\ \mathsf{or}\ \mathsf{L})\\ &\mathsf{Overturning}\ \mathsf{Moment}=\sum\ (\mathsf{P}_{\mathsf{level}\ i}\ ^*\ \mathsf{H}_{\mathsf{story}}\ ^*\ \mathsf{B}\ \mathsf{or}\ \mathsf{L}^*\ \mathsf{distance}\ \mathsf{from}\ \mathsf{base}\ \mathsf{at}\ \mathsf{level}) \end{split}$$

The Following Page includes a summary of the wind loads determined at each level and the Base Shear. Technical Report 2 determined that wind loads control over seismic loads for lateral.

Base Shear = 964 kips

Seismic Loads Summary

The following section includes a summary of the seismic loads calculated in Technical Report 2. Below is the general seismic design information.

Site Class C $S_S = 0.155g$ $S_1 = 0.050g$ $S_{DS} = 0.124g$ $S_{D1} = 0.057g$ Seismic Design Category A Total Seismic Weight = 20,864 kip Response Modification Factor = 3.0 Ta = 1.4s TL = 5.5S $C_S = 0.116$ Seismic Load at each level = V * ($w_x h_x^k / \sum w_i h_i^k$) Base Shear = $\sum (P_{level i})$ Overturning Moment = $\sum (P_{level i} * distance from base at level)$

The Following Page includes a summary of the seismic loads determined at each level and the Base Shear and overturning moment. Technical Report 2 determined that wind loads control over seismic loads for lateral.

ech Report 2	Deismic	Loads	Jamantha	devries
Jeismic Los	ad us. Hei	Int		
	9 94			
	0.0-)		TT a"	
98.7*	>		16 1	
90.7	,		11, 8,,	
23.45			10' 4"	
82.8-	>		in the second	
75.5*	>		1014	
68.22			10'4"	
	-		10'4'	
60.34			aman	
100 82			10 4	
84.3*			11, 2,,	
			10'4"	
70.5-	>		101.111	
56.6 ×			10.4	
41.4*			10,11,	
			11'5"	
26.22	> .			
11.12	->		10.4.	
			8,4.	
			1	
	++++		-18= 826	
			OTM = 15	070 4.4

Lateral Load Modeling

Lateral loads in 11141 Georgia Ave were analyzed using a combination of hand methods and software analysis.

Hand Methods Overview and Assumptions

Hand calculations were completed by determining the stiffness of the frames relative to each other and then distributing loads based on relative stiffness at each level. Since wind was the controlling case over seismic, only wind was considered in the hand methods. Seismic will be studied in addition to wind in the 3D computer model. The distributed load at each level is the shear force at that level, which was found by converting the wind pressures into a point force at each level and summing up the total force at a given level and all of the levels above it. The next few pages include the calculation process, a chart of relative stiffness of the frames and walls, the shear loads used for distribution, and the final loads in the frames and shear walls at each level. Additional calculation charts and plans with the lateral elements highlighted and labeled for reference in the calculations are available in the Appendix.

Tech Report	4 Samantha devries
20 Frame	Modeling & Load Distribution Process
Step 1:	Model 20 Lateral Frames in ETABS and apply equal whit force to each
Step 2:	Run program analysis and find drift for each frame. Compare drifts to obtain a relative stiffness for each frame:
	R for base traine = 1.0
	Rother traines = ax base
	OX trame
step 3.	Determine Center of Rigdity and Center of Mass
	$\overline{\chi_{e}} = \frac{2R_{Y}\chi}{\Sigma R_{e}}$ $\overline{\overline{\chi}_{e}} = \frac{\Sigma R_{x}\chi}{\Sigma R_{x}}$
	W = EWX - EWY
	EW SW SW
step 4:	Determine Torsional Rigidity
	J= ERidi" = ERXdy2 + ERydx"
step 5 .	Determine Direct Shear
	Vd = Ri V ZRi V
step 6:	Determine Ny due to torsional moment
	Mt = Torsional Moment = Ve
	Nt= Me (Ridi)
	e= eccontricity = (Fe-Fen) × 1.15
	where 1.15 multiplier gives 15% allowance. For accidental eccentricity
	di = disi, I from COR
Note . P	lever: = [Va(+2)+ Va(+2)] × 1000; where ve wind lood (pat
N	= Revers + EPreverse almon : Subscript = atory below leve

Steel Addition Frame Stiffness									
Frame	Drit	ft due to Unit Fo	orce	Relative Stiffness					
Frame	Typ. Level	Level 12	Penthouse	Typ. Level	Level 12	Penthouse			
Α	0.261	0.245	N/A	1.34	1.83	N/A			
В	0.261	0.245	N/A	1.34	1.83	N/A			
С	0.237	0.306	0.516	1.47	1.46	1.91			
D	0.349	0.448	0.733	1.00	1.00	1.35			
E	0.261	0.241	0.988	1.34	1.86	1.00			
F	0.261	0.241	0.988	1.34	1.86	1.00			
G	0.261	0.245	N/A	1.34	1.83	N/A			
н	0.261	0.245	N/A	1.34	1.83	N/A			

Concrete Portion Frame and Wall Stiffness								
Concr	ete	Туріс	al Level	Lev	vel 1	Le	vel B1	
Fram	es	Disp.	Rel. Stiffness	Disp.	Rel. Stiffness	Disp.	Rel. Stiffness	
1		5.01	2.3	2.58	1.3	N/A	N/A	
2		1.14	10.1	0.74	4.4	0.32	4.1	
3		5.01	2.3	3.29	1.0	1.30	1.0	
4		1.14	10.1	0.74	4.4	0.32	4.1	
				Shear Walls				
	а	0.310	37.2	0.074	44.4	0.024	54.2	
	q	0.751	15.4	0.297	11.1	0.094	13.8	
	С	1.463	7.9	0.340	9.7	0.172	7.6	
East to	d	11.538	1.0	2.654	1.2	1.260	1.0	
West	е	0.435	26.5	0.175	18.8	0.058	22.4	
	Ι	N/A	N/A	0.161	20.4	0.026	50.0	
	m	N/A	N/A	N/A	N/A	0.172	7.6	
	0	N/A	N/A	N/A	N/A	0.172	7.6	
	f	1.029	11.2	0.404	8.1	0.125	10.4	
	g	1.029	11.2	0.404	8.1	0.125	10.4	
North	h	0.131	88.1	0.055	59.7	0.023	56.5	
to	i	1.029	11.2	0.404	8.1	0.125	10.4	
South	j	1.029	11.2	0.404	8.1	0.125	10.4	
	×	N/A	N/A	0.113	29.1	0.040	32.5	
	n	5.9	N/A	N/A	N/A	0.048	27.1	
	р	N/A	N/A	N/A	N/A	0.048	27.1	
Base	1	N/A	N/A	0.0015	2190.0	0.0015	866.7	
ment	2	N/A	N/A	0.0015	2190.0	0.0015	866.7	
Walls	3	N/A	N/A	0.0008	4106.3	0.0012	1083.3	
waiis	4	N/A	N/A	0.0015	2190.0	0.0015	866.7	

For both concrete and steel portions: Relative stiffness was found by designating the highest drift frame as having a relative stiffness of 1, and the relative stiffness of all other frames was found by dividing the base frame deflection by the deflection of each frame.

Story	Story Shear due to Wind Loads (Controlling Lateral Load)								
Level	X-dir	ection	Y-dire	ection					
Level	Load (psf)	Load (kips)	Load (psf)	Load (kips)					
PH		20.40		73.41					
	19.91		19.48						
12		49.42		182.87					
	19.27		18.85						
11		66.51		254.45					
	18.79		18.38						
10		83.28		324.98					
	18.29		17.89						
9	17.01	99.77	17.10	394.49					
	17.84		17.46						
8	47.04	115.96	46.07	462.98					
	17.34	121.02	16.97	520.22					
7	16.77	131.82	10.41	530.32					
	16.77	447.00	16.41	505.04					
6	16.1	147.30	45.75	596.31					
<u> </u>	16.1	462.24	15.75						
5		162.31		660.65					
	15.24		14.91						
4		176.83		723.30					
	14.53		14.21						
3		190.85		784.22					
	13.65		13.35						
2		204.25		842.95					
	12.49		12.22						
1		216.84		898.86					
	11.03		10.79						
B1		228.71		952.27					
	10.17		9.95						

Note: By Inspection, center of mass in steel addition is at the center of geometry because there are no shear walls and the structural elements are evenly and equally distributed in the floor plan.

	Steel Addtion										
Loval		Steel Moment Frame									
Lever	Α	В	С	D	E	F	G	Н			
PH	N/A	N/A	9.7	14.6	42.1	48.5	N/A	N/A			
12	36.3	37.0	29.8	20.5	32.2	33.8	34.9	36.4			
11	51.7	49.9	40.3	27.6	43.9	45.7	47.5	49.2			
10	65.9	63.6	50.5	34.6	56.1	58.3	60.6	62.8			
9	79.8	77.1	60.5	41.5	68.0	70.8	73.5	76.1			
8	93.6	90.4	70.4	48.2	79.8	83.0	86.2	89.2			
7	107.1	103.4	80.0	54.8	91.4	95.0	98.7	102.1			

Summary of Distributed Lateral Forces to Frames and Walls (kips)

Concrete Portion									
Lovol	Concre	ete Moi	ment F	rames					
Level	1	2	3	4					
6	29.1	73.4	31.7	107.0					
5	32.2	81.3	35.1	118.5					
4	35.2 89.0 38.4		129.7						
3	38.2	96.5	41.6	140.6					
2	41.0	103.7	44.7	151.1					
1	0.1	0.1 0.9 0.0 0.9							
B1	-	2.1	0.1	2.1					

Loval		CMU Shear Walls														
Lever	а	b	c	d	е	f	g	h	i	j	×	_	m	n	0	р
6	240.4	85.3	54.5	5.9	160.0	32.3	22.8	97.7	22.6	26.4	-	÷	-	ł.	1	-
5	266.3	94.5	60.4	6.5	177.3	35.7	25.1	107.7	25.0	29.2	-	-	-	-	-	
4	291.6	103.5	66.1	7.1	194.1	39.0	27.5	117.4	27.3	31.9	-	-		-	-	-
3	316.1	112.2	71.7	7.7	210.4	42.2	29.7	126.7	29.5	34.5	-	-	-	-	-	-
2	339.8	120.6	77.0	8.3	226.2	45.3	31.8	135.6	31.6	37.0	-	-	-	-	-	-
1	8.9	2.2	1.9	0.2	3.8	0.3	0.3	2.2	0.3	0.3	1.2	4.1	-	-	-	-
B1	27.3	7.0	3.8	0.5	11.2	1.3	1.2	6.6	1.2	1.2	4.4	25.1	3.8	2.9	3.8	3.1

Loval	Concrete Basement Walls								
Level	1 2		3	4					
1	78	442	189	442					
B1	108.6	439.0	134	439.5					

Computer Analysis Process and Assumptions

The building's full lateral system was modeled in ETABS with only lateral forces applied, with both wind loads and seismic loads included in the model. Gravity loads and members were neglected for the purpose of focusing the analysis on the lateral system. In addition to the wind and seismic loads, soil loads were applied to basement walls wherever applicable, using an at rest pressure of 60 psf per foot of depth per IBC 2009. Wind loads were applied to the center of pressure, seismic loads to the center of mass, and the soil loads were applied as a uniform area load to the applicable basement walls. A rigid diaphragm was modeled due to the rigid nature of the concrete slab in the original building and concrete on steel deck in the addition.

The elevator and stair core shear walls were modeled as concrete masonry unit walls, and the basement walls were modeled as poured concrete walls. Both wall types were modeled with a 0.35 lg cracking modifier. The walls were also meshed using an automatic mesh with a mesh size no larger than 4 feet. Beams and columns were modeled as poured concrete, with a 0.35 lg cracking modifier for the beams, and a 0.7 lg modifier for the columns. There was a large variety of different beam sizes, so for simplification purposes, the beams were all modeled as an average size of 12 inches wide by 24 inches deep.

Fixities at the base included fixed connections for the concrete columns and pins at the edges of each mesh element in the basement and shear walls. All frames have fixed moment connections in all members. Going from the original concrete building to the steel addition, the connection of the steel columns to the concrete columns was considered pinned.

The following pages include drift checks, wind and seismic forces, base reactions, and an equilibrium check.

Image of ETABS model for Reference

Wind									
Level	Level Height (ft)	Max Service Drift (ft)	Drift Ratio	Acceptable?					
Penthouse	16.75	0.0586	1/ 286	No					
12	11.67	0.0144	1/ 810	Yes					
11	10.33	0.0163	1/ 634	Yes					
10	10.33	0.0198	1/ 522	Yes					
9	10.33	0.0237	1/ 436	Yes					
8	10.33	0.0279	1/ 370	No					
7	10.33	0.0322	1/ 321	No					
Addition	80.07	0.1929	1/ 415	Yes					
6	11.67	0.0039	1/ 3000	Yes					
5	10.33	0.0042	1/ 2442	Yes					
4	10.33	0.0041	1/ 2538	Yes					
3	10.33	0.0039	1/ 2641	Yes					
2	11.67	0.0031	1/ 3814	Yes					
1	10.33	0.0001	1/ 178103	Yes					
B1	8.33	0.0001	1/ 166600	Yes					
Total	153.06	0.2122	1/ 721	Yes					

Story Drift Checks

	Seismic									
Level	Level Height (ft)	Max Service Drift (ft)	Drift Ratio	Acceptable?						
Penthouse	16.75	0.0146	1/ 1147	Yes						
12	11.67	0.0191	1/ 611	Yes						
11	10.33	0.0252	1/ 410	Yes						
10	10.33	0.0324	1/ 319	Yes						
9	10.33	0.0400	1/ 258	Yes						
8	10.33	0.0478	1/ 216	Yes						
7	10.33	0.0555	1/ 186	Yes						
Addition	80.07	0.2346	1/ 341	Yes						
6	11.67	0.0065	1/ 1804	Yes						
5	10.33	0.0069	1/ 1501	Yes						
4	10.33	0.0065	1/ 1584	Yes						
3	10.33	0.0061	1/ 1699	Yes						
2	11.67	0.0046	1/ 2521	Yes						
1	10.33	0.0001	1/ 101275	Yes						
B1	8.33	0.0001	1/ 166600	Yes						
Total	153.06	0.2653	1/ 577	Yes						

Drift is checked against $0.02h_{sx}$ for seismic, where h_{sx} = story height below level x, and for I/400 for wind. Some of the individual steel stories do not meet the drift requirements for wind, however, the steel addition and overall building do meet drift requirements for both wind and seismic. The steel addition was modeled to have pinned connections at the base where it attaches to the original concrete building, but in reality, the connection has four bolts and will most likely take some moment, thus reducing the drift in those stories in the addition.

Shear in Frame G first due to wind, followed by seismic: (Steel Moment Frame along Column Line 11)

Moment in Frame G first due to wind, followed by seismic:

(Steel Moment Frame along Column Line 11)

Joint Reactions

ETABS Results										
Loading		Fx (kips)	Fy (kips)	Mx (ft-kips)	My (ft-kips)	Mz (ft-kips)				
Colomia	x dir.	875.90	0	0	-75218	28851				
Seisinic	y dir.	0	875.90	75218	0	-108792				
Mind	x dir.	-228.71	0	0	-12036	4228				
winu	y dir.	0	-952.26	-41977	0	14739				

Hand Calculations Results									
Load	ing	Fx (kips)	Fy (kips)	Mx (ft-kips)	My (ft-kips)	Mz (ft-kips)			
Colomia	x dir.	876	0	0	75070	N/A			
Seisinic	y dir.	0	876	75070	0	N/A			
Mind	x dir.	227	0	0	-12036	N/A			
wina	y dir.	0	964	-41977	0	N/A			

The joint reactions shown in the table above include force in the x and y directions and moment in the x, y, and z directions due to seismic and wind loading for both computer analysis and hand methods. The values found using both methods are very close, therefore verifying both processes.

Comparisons between Hand Methods and Computer Analysis

The following section contains some comparisons between results of the hand methods and the computer analysis including center of mass and center of rigidity and frame loads. Some discussion is included where results are not consistent between the two methods used.

Center of Mass												
Building		:	Steel Ad	dition			Concrete Portion					
Level	Typical Level		vel Penthouse Level 12		Typica	l Level	Lev	el 1	Leve	l B1		
Direction	x	У	x	У	x	У	x	у	x	У	x	У
ETABS	106.6	29.6	109.3	35.3	106.6	29.6	105.9	30.3	105.9	31.2	137.2	31.6
Hand Calc	107.0	30.0	110.0	38.0	107.0	30.0	106.5	31.6	104.0	31.4	137.4	31.7
				Ce	nter of I	Rigidity	1					
Building		:	Steel Ad	dition				C	oncrete	Portic	n	
Level	Typica	l Level	Penth	nouse	Leve	el 12	Typica	l Level	Lev	el 1	Leve	l B1
Direction	x	У	x	У	x	У	x	У	x	У	x	У
ETABS	128.5	29.1	145.0	28.2	128.3	30.2	103.4	41.8	97.0	44.9	134.6	28.5
Hand Calc	133.3	27.8	161.2	31.3	133.5	27.9	102.0	44.6	138.5	30.4	146.3	31.1

COM and COR Comparison

All of the centers of mass for both the steel addition and the concrete portion are very close to each other when comparing the hand methods to the computer analysis, within a five percent difference, which shows that the results of the computer analysis verify the center of mass hand method calculations.

Most of the centers of rigidity are very similar between the hand methods and the computer analysis, again, mostly within five to ten percent. The center of rigidity of level 1 is very different between the 2 methods, which may be due to the simplifications made to the hand method calculations of the basement wall stiffness.

Steel Moment Frame G									
Level	Hand Method	Computer Method	Ratio (Hand:Comp)						
11	34.9	30.2	1.15						
10	47.5	27.5	1.73						
9	60.6	38.3	1.58						
8	73.5	45.2	1.63						
7	86.2	55.9	1.54						
6	98.7	57.8	1.71						

Frame Shear Comparison Checks (kips)

Steel Moment Frame C									
Level	Hand Method	Computer Method	Ratio (Hand:Comp)						
12	9.7	12.0	0.81						
11	29.8	30.7	0.97						
10	40.3	42.3	0.95						
9	50.5	51.3	0.99						
8	60.5	59.6	1.02						
7	70.4	76.0	0.93						
6	80.0	50.1	1.60						

Concrete Moment Frame 3									
Level	el Hand Method Computer Method Ratio (Hand:Co								
6	31.7	26.0	1.22						
5	35.1	26.3	1.33						
4	38.4	29.0	1.32						
3	41.6	28.0	1.48						
2	44.7	35.5	1.26						
1	0.0	8.7	0.00						
B1	0.1	4.7	0.03						

The shear in the frames was compared for a steel moment frame in both the x and y directions and for a concrete moment frame. The values of shear in frame C are fairly close among both methods, however the values for frames G and 3 are significantly larger using the hand method than the computer analysis. This could be due to difference in how the software analysis distributes the loads among the lateral frames relative to the simplified hand method of determining relative stiffness and distributing loads. Another reason behind the difference in values could be related to the effect of the pinned connection at the base of addition. Ultimately, all three frames followed similar loading patterns between the two methods.

Typical Member Spot Checks for Lateral Loads

Strength checks were completed for a critical column and a beam in the steel addition to the building. Both the column and the beam come from Frame C. This frame was chosen as a typical representative steel moment frame and because the shear forces in the frame closely matched the shear forces found using hand methods. The column strength check takes into account the combined interaction equations included flexure and compression, where the axial force was found by adding the axial force due to lateral loading to the force from gravity loads found in technical report 2. The beam strength check includes a check of shear forces due to lateral loads and moment due to load combinations including lateral load and gravity loads. Factored loads will be used in the strength checks.

The following page provides a plan showing Frame C for reference. The column studied is column C5 at level 6, and the beam being checked is the beam spanning between columns C7 and C8 on level 8.

Figure 3: Plan Showing Lateral Frame Studied in Typical Spot Checks

Tech Report 4	1	Samantha	dellaes
Strength Checks			
Column C5 of Level	6: 010	x49	
From ETABS :			
May = -0.15 H.1	ip line		
Pwind = 55.8 Kip			
Axial D due to gro	wity load		
Live Lood Reduc	Hom :		
A+ = (20')(20	75) = 413 3	H2 > 400 H2	
I I I I I I I I I I I I I I I I I I I	15	× - 41	
L= Co (0.23 -	VAT(K))	6-7	
Lo = 40 pot ,	100 pst at lev	er 12, 30 g	of all penthouse
L - 40 (0.25 +	Jus (4)	= 24.73 psf	
L= 100 (0.25 +	. 15	61.82 pst	
1: 30 /0.25-	15 - 1	8 54 pal -	house
	415 (4))	0	some unreded
Dead Load = 75	pst on floor	5	live load.
27	pet at peats	louse	
Snow Load = 20	PSI		
Controlling Load Comb	ination: 1.2	0+1.6W+L	+0.5Le
P.+ 1.2 (75×4+100+3	27) + 1.6 (55	.8) + (24.75 *	4+61.8)
+ 0.5 (30)] * 415 42	= 321.99	rips
Mu= 1.6(7.05) = 11	3 H.X		
$M_{0\gamma} = 1.6(0.15) = 0.$	24 H.E		
Interaction Equation			
Lb = 10.33, H.			
K= 1.75 (based or KL = 1.75 (10.53) =	6 = 3.0 usi 18.0 H	ng alignment	chorts
Table 6-1 in steel ma	nual:		
p= 2.62 × 10" bx =	-4.60×10+3	by = 8.38 x	10

Tech Report 4	Samantha deVries
pPr = 2.62×10-5 (321.0	19 kips) = 0.844 = 0.2
use pPr+hyMry+b	W Mer
0.894 + 4.60×10-*	$(0.24) = 0.08 \times 10$ (11.3) = 0.44 <1
: Column is	acceptable
Bearn Checks: W12 x.	30
Level 8 behveen,	columns CT and C8
From ETABO: Mino	.x = 128.6 H- Kip
From RISA 20: M Morad =- 8.79 Mar =- 7.69	at location Minimumax: H-K
Contallin Land Could	
$M_{U} = 1.2(-8.79) + 1.6(1)$	07.7) -7.69 = 154.1 H.L
+Mn=1624.x	> Mu= 154.14.4
: Beam is a	x for flexure
Qmax = 0.318 inches.	at 6.39 \$4.
Au simil = 1 360	= <u>20.75(12)</u> = 0.69"
0.69 - 0.318	: Deflection due to wind load is acceptable
	6 2 5 5 5 5 5 5 2 2 3 12 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Appendix

Steel Moment Frames

Perimeter Concrete Moment Frames

Note: Building Drawing sets and images pulled from those sets which appear in this report are courtesy of Rathgeber Goss Association and Bonstra Haresign Architects.

Steel Addition Frame Stiffness									
Frame	Dri	ft due to Unit Fo	orce	Relative Stiffness					
Frame	Typ. Level	Level 12	Penthouse	Typ. Level	Level 12	Penthouse			
Α	0.261	0.245	N/A	1.34	1.83	N/A			
В	0.261	0.245	N/A	1.34	1.83	N/A			
С	0.237	0.306	0.516	1.47	1.46	1.91			
D	0.349	0.448	0.733	1.00	1.00	1.35			
E	0.261	0.241	0.988	1.34	1.86	1.00			
F	0.261	0.241	0.988	1.34	1.86	1.00			
G	0.261	0.245	N/A	1.34	1.83	N/A			
н	0.261	0.245	N/A	1.34	1.83	N/A			

	Concrete Portion Frame and Wall Stiffness							
Concr	ete	Туріс	al Level	Lev	vel 1	Le	vel B1	
Fram	es	Disp.	Rel. Stiffness	Disp.	Rel. Stiffness	Disp.	Rel. Stiffness	
1		5.01	2.3	2.58	1.3	N/A	N/A	
2		1.14	10.1	0.74	4.4	0.32	4.1	
3		5.01	2.3	3.29	1.0	1.30	1.0	
4		1.14	10.1	0.74	4.4	0.32	4.1	
				Shear Walls				
	а	0.310	37.2	0.074	44.4	0.024	54.2	
	b	0.751	15.4	0.297	11.1	0.094	13.8	
	С	1.463	7.9	0.340	9.7	0.172	7.6	
East to	d	11.538	1.0	2.654	1.2	1.260	1.0	
West	e	0.435	26.5	0.175	18.8	0.058	22.4	
	-	N/A	N/A	0.161	20.4	0.026	50.0	
	m	N/A	N/A	N/A	N/A	0.172	7.6	
	0	N/A	N/A	N/A	N/A	0.172	7.6	
	f	1.029	11.2	0.404	8.1	0.125	10.4	
	g	1.029	11.2	0.404	8.1	0.125	10.4	
North	h	0.131	88.1	0.055	59.7	0.023	56.5	
to	i	1.029	11.2	0.404	8.1	0.125	10.4	
South	j	1.029	11.2	0.404	8.1	0.125	10.4	
	k	N/A	N/A	0.113	29.1	0.040	32.5	
	n	5.9	N/A	N/A	N/A	0.048	27.1	
	р	N/A	N/A	N/A	N/A	0.048	27.1	
Base	1	N/A	N/A	0.0015	2190.0	0.0015	866.7	
ment	2	N/A	N/A	0.0015	2190.0	0.0015	866.7	
Walls	3	N/A	N/A	0.0008	4106.3	0.0012	1083.3	
waiis	4	N/A	N/A	0.0015	2190.0	0.0015	866.7	

For both concrete and steel portions: Relative stiffness was found by designating the highest drift frame as having a relative stiffness of 1, and the relative stiffness of all other frames was found by dividing the base frame deflection by the deflection of each frame.

Story	Story Shear due to Wind Loads (Controlling Lateral Load)								
Laval	X-dir	ection	Y-dire	ection					
Level	Load (psf)	Load (kips)	Load (psf)	Load (kips)					
PH		20.40		73.41					
	19.91		19.48						
12		49.42		182.87					
	19.27		18.85						
11		66.51		254.45					
	18.79		18.38						
10		83.28		324.98					
	18.29		17.89						
9		99.77		394.49					
	17.84		17.46						
8	17.04	115.96		462.98					
	17.34	121.02	16.97	520.22					
/	10.77	131.82	10.11	530.32					
	16.77		16.41						
6		147.30	45.55	596.31					
	16.1		15.75						
5		162.31		660.65					
	15.24		14.91						
4		176.83		723.30					
	14.53		14.21						
3		190.85		784.22					
	13.65	200.00	13.35						
2		204.25		842.95					
_	12.49		12.22						
1		216.84		898.86					
	11.03		10.79						
B1		228.71		952.27					
	10.17		9.95						
	10.17		5.55						

Note: By Inspection, center of mass in steel addition is at the center of geometry because there are no shear walls and the structural elements are evenly and equally distributed in the floor plan.

Center of Rigidity of Steel Addition Typical Level										
Element	Element	Dist. From	n Ref Datum	B	р	R v	R v			
Label	Direction	x (ft)	y (ft)	r,x	ι γ	N _X y	Ny A			
Α	У	26.3	-	-	1.34	-	35.2			
В	У	47.1	-	-	1.34	-	63.0			
С	x	-	20.1	1.47	-	29.6	-			
D	x	-	39.2	1	-	39.2	-			
E	У	150.8	-	-	1.34	-	201.6			
F	У	171.5	-	-	1.34	-	229.3			
G	У	192.3	-	-	1.34	-	257.1			
н	У	212	-	-	1.34	-	283.5			
			Sums	2.47	8.02	68.8	1069.7			

x _R =	133.3	ft	
y _R =	27.8	ft	

	x _{cm} =	107	ft	
[у _{см} =	30	ft	

Eccentricity		
X 26.3		
Y	2.2	

Level	V _x	Vy	M _{tx}	M _{ty}
11	66.51	254.45	2014.0	636.5
10	83.28	324.98	2522.1	812.9
9	99.77	394.49	3021.4	986.8
8	115.96	462.98	3511.7	1158.2
7	131.82	530.32	3992.0	1326.6

Direct Shear			Tors	ional Shea	r
Element Label	% V _d (y dir.)	% V _d (x dir.)	R _i d _i	R _i d _i ²	R _i D _i / ΣR _i d _i ²
Α	0.17	-	143.1	15318.7	0.004
В	0.17	-	115.3	9943.4	0.003
с	-	0.6	11.3	87.3	0.000
D	-	0.4	11.3	127.7	0.000
E	0.17	-	23.4	407.9	0.001
F	0.17	-	51.0	1947.8	0.001
G	0.17	-	78.8	4649.4	0.002
н	0.17	-	105.2	8275.0	0.003

Note: V _{tot} equals sum of			
(% V_d in the i direction * V_i) and			
(R _i D _i /R _i d ² * the sum of the			
moments at that level) for each			
level			

```
Sum R_i d_i^2 = 40757
```

-									
V _{tot}	Α	В	C	D	E	F	G	H	
Level 11	51.7	49.9	40.3	27.6	43.9	45.7	47.5	49.2	(-11
Level 10	65.9	63.6	50.5	34.6	56.1	58.3	60.6	62.8	
Level 9	79.8	77.1	60.5	41.5	68.0	70.8	73.5	76.1	values
Level 8	93.6	90.4	70.4	48.2	79.8	83.0	86.2	89.2	in kips
Level 7	107.1	103.4	80.0	54.8	91.4	95.0	98.7	102.1]

Center of Rigidity of Steel Addition Level 12							
Element	Element	Dist. From	n Ref Datum		в	P.v.	D V
Label	Direction	x (ft)	y (ft)	n _x	r, y	n _x y	r _y x
Α	У	26.3	-	-	1.83	-	48.1
В	У	47.1	-	-	1.83	-	86.1
С	x	-	20.1	1.46	-	29.4	-
D	x	-	39.2	1	-	39.2	-
E	У	150.8	-	-	1.86	-	280.3
F	У	171.5	-	-	1.86	-	318.8
G	У	192.3	-	-	1.83	-	351.6
н	У	212	-	-	1.83	-	387.7
			Sums	2.46	11.03	68.6	1472.6

x _R =	133.5	ft
y _R =	27.9	ft

x _{cm} =	107	ft	
У см=	30	ft	

Eccentricity		
X 26.5		
Υ	2.1	

V _x =	49.42	kips	
------------------	-------	------	--

V_y= 182.87 kips

M_{tx}= 1505.4 ft-kips

M_{ty}= 451.8 ft-kips

Direct Shear				
Element	Vd	V _d		
Label	(y dir.)	(x dir.)		
Α	30.3	-		
В	30.3	-		
С	-	29.4		
D	-	20.1		
E	30.8	-		
F	30.8	-		
G	30.3	-		
Н	30.3	-		

Torsional Shear							
Element Label	R idi	R _i d _i ²	V _{ty}	V _{tx}	R _i D _i / ΣR _i d _i ²		
Α	143.12	15318.7	1.3929	4.641	0.003		
В	157.68	9943.41	1.5347	5.1132	0.003		
С	11.273	86.7979	0.1097	0.3655	2E-04		
D	11.3	127.696	0.11	0.3664	2E-04		
E	32.469	567.128	0.316	1.0529	7E-04		
F	70.949	2707.88	0.6905	2.3006	0.002		
G	107.82	6358.07	1.0494	3.4964	0.002	ΣR _i d ² :	
н	143.85	11316	1.4	4.6645	0.003	4642	

Frame	Α	В	С	D	E	F	G	н	
V _{tot}	36.3	37.0	29.8	20.5	32.2	33.8	34.9	36.4	(Kips)

	Center of Rigidity of Steel Addition Penthouse									
Element	Element	Dist. From	Ref Datum	D	R _y	Bv	B			
Label	Direction	x (ft)	y (ft)	n _x		n _x y	ny^			
С	x	-	20.1	0.52	-	10.4				
D	x	-	39.2	1	-	28.7	-			
E	У	150.8	-	-	0.99	-	149.0			
F	У	171.5	-	-	0.99	-	169.4			
			Sums	1.25	1.98	39.11	318.43			

						_	Eccer	ntricity
x _R = 161	.2 ft] [x _{cm} =	110	ft		x	51.2
y _R = 31.	3 ft] [у см=	38	ft		Y	6.7

V _x = 20.40	kips
------------------------	------

V _y =	73.41	kips
------------------	-------	------

M _{tx} =	1200.3	ft-kips

M _{ty} =	564.9	ft-kips
-------------------	-------	---------

Direct Shear						
Element	Vd	Vd				
Label	(y dir.)	(x dir.)				
C	-	8.4				
D	-	12.0				
E	36.7	-				
F	36.7	-				

Torsional Shear							
Element Label	R _i d _i	R _i d ²	V _{ty}	V_{tx}	R _i D _i / ΣR _i d _i ²		
С	4.0	30.6	1.2	0.0	0.002		
D	8.3	93.6	2.5	0.1	0.004		
E	17.3	301.4	5.2	0.2	0.009	$\Sigma R_i d_i^2 =$	
F	37.7	1439.2	11.4	0.4	0.02	1864.8	

Frame	С	D	E	F
V _{tot}	9.7	14.6	42.1	48.5

	Center of Mass of Concrete Portion Typical Level							
Element	Area	Hoight	Donsity	W/	Dist. Fr	Dist. From Ref.		Mbr
Label	Area	neight	Density	vv	x (ft)	y (ft)	VVX	vvy
1	3.5	10.3	0.115	4.1	0	30	0.0	124.4
2	19.25	10.3	0.115	22.8	107	60	2439.8	1368.1
3	3.5	10.3	0.115	4.1	214	30	887.2	124.4
4	19.25	10.3	0.115	22.8	107	0	2439.8	0.0
а	6.67	10.3	0.115	7.9	90	53	711.1	418.7
b	6.67	10.3	0.115	7.9	90	45	711.1	355.5
c	5.333	10.3	0.115	6.3	105	57	663.3	360.1
d	2.667	10.3	0.115	3.2	111.3	48	351.6	151.6
е	8	10.3	0.115	9.5	108.3	40	1026.3	379.0
f	6	10.3	0.115	7.1	86	50	611.2	355.4
g	6	10.3	0.115	7.1	93.5	50	664.5	355.4
h	12	10.3	0.115	14.2	102.3	50	1454.1	710.7
i	6	10.3	0.115	7.1	110.3	53	783.9	376.7
j	6	10.3	0.115	7.1	113.3	45	805.2	319.8
Floor Slab	12840	0.542	0.115	800.32	107	30	85633.9	24009.5
			sum	932			99183	29409

x_{CM}= 106

106 ft

у_{см}= 32

ft

	Center of Mass of Concrete Portion Level 1							
Element	Area	Height	Density	w	Dist. Fr	om Ref.	Wx	Wy
Label					x (ft)	y (ft)		
1	3.5	10.3	0.115	4.1	0	30	0.0	124.4
2	19.25	10.3	0.115	22.8	107	60	2439.8	1368.1
3	3.5	10.3	0.115	4.1	214	30	887.2	124.4
4	19.25	10.3	0.115	22.8	107	0	2439.8	0.0
а	11.33	10.3	0.115	13.4	90	53	1207.8	711.3
b	6.67	10.3	0.115	7.9	90	45	711.1	355.5
с	5.333	10.3	0.115	6.3	105	57	663.3	360.1
d	2.667	10.3	0.115	3.2	111.3	48	351.6	151.6
е	8	10.3	0.115	9.5	108.3	40	1026.3	379.0
f	6	10.3	0.115	7.1	86	50	611.2	355.4
g	6	10.3	0.115	7.1	93.5	50	664.5	355.4
h	12	10.3	0.115	14.2	102.3	50	1454.1	710.7
i	6	10.3	0.115	7.1	110.3	53	783.9	376.7
j	6	10.3	0.115	7.1	113.3	45	805.2	319.8
Floor Slab	12840	0.542	0.115	800.32	107	30	85633.9	24009.5
k	9.33	10.3	0.115	11.051	32.2	46	355.9	508.4
	11.33	10.3	0.115	13.42	87	39.2	1167.6	526.1
			sum	961.6			100035.5	30210.2

x_{cM}= 104 ft

У_{СМ}= 31 ft

Center of Mass of Concrete Portion Level B1								
Element	Area	Hoight	Donsity	w	Dist. Fr	om Ref.	Wv	Why
Label	Alea	Height	Density	~~	x (ft)	y (ft)	~~~	vvy
1	0	0	0	0.0	0	30	0.0	0.0
2	19.44	8.3	0.115	18.6	143	60	2653.4	1113.3
3	3.5	8.3	0.115	3.3	214	30	714.9	100.2
4	19.44	8.3	0.115	18.6	143	0	2653.4	0.0
а	11.33	8.3	0.115	10.8	90	53	973.3	573.2
b	6.67	8.3	0.115	6.4	90	45	573.0	286.5
c	5.333	8.3	0.115	5.1	105	57	534.5	290.1
d	2.667	8.3	0.115	2.5	111.3	48	283.3	122.2
е	8	8.3	0.115	7.6	108.3	40	827.0	305.4
f	6	8.3	0.115	5.7	86	50	492.5	286.4
g	6	8.3	0.115	5.7	93.5	50	535.5	286.4
h	12	8.3	0.115	11.5	102.3	50	1171.7	572.7
i	6	8.3	0.115	5.7	110.3	53	631.7	303.5
j	6	8.3	0.115	5.7	113.3	45	648.9	257.7
Floor Slab	8520	0.542	0.115	531.05	143	30	75940.4	15931.5
k	9.33	8.3	0.115	8.9055	32.2	46	286.8	409.7
I	11.33	8.3	0.115	10.814	87	39	940.9	421.8
m	8.67	8.3	0.115	8.2755	158	20	1307.5	165.5
n	5.33	8.3	0.115	5.0875	151	16	768.2	81.4
0	8.67	8.3	0.115	8.2755	158	12	1307.5	99.3
р	5.33	8.3	0.115	5.0875	172	16	875.0	81.4
			sum	684.8			94119.5	21688.2

x_{CM}= 137 ft

У_{СМ}= 32

ft

11141 GEORGIA AVENUE

	Center of Rigidity of Concrete Portion Typical Level						
Element	Element	Dist. From	n Ref Datum	р		P v	D v
Label	Direction	x (ft)	y (ft)	n _x	Ny	n _x y	n _y x
1	У	0	-	-	2.30	-	0.0
2	x	-	60	10.12	-	607.3	-
3	У	214	-	-	2.30	-	492.8
4	x	-	0	10.12	-	0.0	-
а	x	-	53	37.22	-	1972.6	-
b	x	-	45	15.36	-	691.4	-
с	x	-	57	7.89	-	449.5	-
d	x	-	48	1.00	-	48.0	-
е	x	-	40	26.52	-	1061.0	-
f	У	86	-	-	11.21	-	964.3
g	У	93.5	-	-	11.21	-	1048.4
h	У	102.3	-	-	88.08	-	9010.2
i	У	110.3	-	-	11.21	-	1236.8
j	У	113.3	-	-	11.21	-	1270.4
			Sums	108.24	137.53	4829.7	14023

x _R =	102.0	ft	
y _R =	44.6	ft	

x _{cm} =	106	ft
У см=	32	ft

Eccentricity				
×	4.5			
Y	13.1			

Level	V _x	Vy	M _{tx}	M _{ty}
6	147.30	596.31	763.0	8952.0
5	162.31	660.65	840.7	9918.0
4	176.83	723.30	915.9	10858.4
3	190.85	784.22	988.6	11773.0
2	204.25	842.95	1058.0	12654.7

Center of Rigidity of Concrete Portion Level 1							
Element	Element	Dist. From	Ref Datum			.	
Label	Direction	x (ft)	y (ft)	κ _x	к _у	ĸ _x y	КуХ
1	У	0	-	-	1.27	-	0.0
2	x	-	60	4.44	-	266.4	-
3	У	214	-	-	1.00	-	214.0
4	x	-	0	4.44	-	0.0	-
а	x	-	53	44.39	-	2352.8	-
Ð	x	-	45	11.06	-	497.7	-
c	x	-	57	9.66	-	550.7	-
ď	x	-	48	1.24	-	59.4	-
e	×	-	40	18.77	-	750.9	-
f	У	86	-	-	8.13	-	699.3
g	У	93.5	-	-	8.13	-	760.3
h	Y	102.3	-	-	59.73	-	6110
i	У	110.3	-	-	8.13	-	896.9
j	У	113.3	-	-	8.13	-	921.3
k	У	32.2	-	-	29.071	-	936.08
-	x	-	39.2	20.4037	-	799.826	-
BW1	У	0	-	-	2190.0	-	0
BW2	x	-	60	2190.0	-	131400	-
BW3	У	214	-	-	4106	-	878738
BW4	x	-	0	2190.0	-	0	-
			Sums	4494.41	6419.8	136678	889275

x _R =	138.52
y _R =	30.411

× _{CM} =	104
y _{cm} =	31

Eccentricity				
x	34.5			
Y	1.0			

V _x	216.84
٧ _v	898.86

Γ

Mtx	8601
M _{ty}	1040

Center of Rigidity of Concrete Portion Level B1									
Element	Element	Dist. From	Ref Datum						
Label	Direction	x (ft)	y (ft)	R _x	Ry	R _x y	R _y x		
2	x	-	60	4.13	-	247.6	-		
3	У	214	-	-	1.00	-	214.0		
4	x	-	0	4.13	-	0.0	-		
а	x	-	53	54.17	-	2870.8	-		
b	x	-	45	13.83	-	622.3	-		
с	x	-	57	7.56	-	430.8	-		
d	x	-	48	1.03	-	49.5	-		
е	x	-	40	22.41	-	896.6	-		
f	У	86	-	-	10.40	-	894.4		
g	У	93.5	-	-	10.40	-	972.4		
h	У	102.3	-	-	56.52	-	5782		
i	У	110.3	-	-	10.40	-	1147.1		
j	У	113.3	-	-	10.40	-	1178.3		
k	У	32.2	-	-	32.5	-	1046.5		
I	x	-	39.2	50	-	1960	-		
m	x	-	20	7.55814	-	151.163	-		
n	У	151	-	-	27.083	-	4089.6		
0	x	-	12	7.55814	-	90.6977	-		
р	У	172	-	-	27.083	-	4658.3		
BW1	У	70	-	-	866.7	-	60667		
BW2	x	-	60	866.7	-	52000	-		
BW3	У	214	-	-	1083.3	-	231833		
BW4	x	-	0	866.7	-	0	-		
			Sums	1905.70	2136	59320	312483		

x _R =	146.31
y _R =	31.127

F

x _{CM} =	137
у _{см} =	32

Eccentricity					
X 8.9					
Y	0.5				

Vx	228.71
Vy	952.27

M _{tx}	2330
M _{ty}	597

Lateral Load Distribution in Concrete Portion Typical Levels

[Direct Shear		1	Forsional Shea	r	
Element	% V _d	% V _d	Pd		R _i d _i /	
Label	(y dir.)	(x dir.)	R _i u _i	κ _i α _i	ΣR _i d _i ²	
1	-	0.02	234.8	23941.6	0.003	
2	0.09	-	155.6	2393.3	0.002	
3	-	0.02	258.0	28909.4	0.003	
4	0.09	-	451.6	20152.7	0.005	
а	0.34	-	311.8	2612.1	0.004	
b	0.14	-	5.8	2.2	0.000	
С	0.07	-	97.6	1208.2 0.00		
d	0.01	-	3.4	11.4	0.000	
е	0.25	-	122.6	566.8	0.001	
f	-	0.08	179.0	2856.2	0.002	
g	-	0.08	94.9	802.5	0.001	
h	-	0.64	29.9	10.2	0.000	
i	-	0.08	93.5	779.9	0.001	$\Sigma R_i d_i^2 =$
j	-	0.08	127.2	1441.9	0.001	85688

Concrete Moment Frames								
V _{tot} 1 2 3 4								
Level 6	29.1	73.4	31.7	107.0				
Level 5	32.2	81.3	35.1	118.5				
Level 4	35.2	89.0	38.4	129.7				
Level 3	38.2	96.5	41.6	140.6				
Level 2	41.0	103.7	44.7	151.1				

Concrete Shear Walls										
V _{tot}	V _{tot} a b c d e f g h i								j	
Level 6	240.4	85.3	54.5	5.9	160.0	32.3	22.8	97.7	22.6	26.4
Level 5	266.3	94.5	60.4	6.5	177.3	35.7	25.1	107.7	25.0	29.2
Level 4	291.6	103.5	66.1	7.1	194.1	39.0	27.5	117.4	27.3	31.9
Level 3	316.1	112.2	71.7	7.7	210.4	42.2	29.7	126.7	29.5	34.5
Level 2	339.8	120.6	77.0	8.3	226.2	45.3	31.8	135.6	31.6	37.0

Lateral Load Distribution in Concrete Portion Level 1								
[Direct Shear		T	Forsional Shea	r			
Element	% V _d	% V _d	R.d.	R.d. ²	R _i D _i /			
Label	(y dir.)	(x dir.)	N ₁ Ca ₁	N _i u _i	ΣR _i d ²			
1	-	0.00	176.4	24430.9	0.000			
2	0.00	-	131.4	3886.6	0.000			
3	•	0.00	75.5	5697.3	0.000			
4	0.00	-	135.0	4105.4	0.000			
а	0.01	-	1002.8	22652.3	0.000			
b	0.00	-	161.4	2354.2	0.000			
С	0.00	-	256.9	6830.8	0.000			
d	0.00	-	21.8	382.9	0.000			
е	0.00	-	180.0	1726.1	0.000			
f	-	0.00	427.0	22428.4	0.000			
g	-	0.00	366.1	16480.1	0.000			
h	-	0.01	2163.3	78354.4	0.000			
i	-	0.00	229.5	6475.3	0.000			
j	-	0.00	205.1	5171.7	0.000			
k	-	0.00	3090.8	328613	0.000			
I	0.00	-	179.3	1576.3	0.000			
BW1	-	0.34	66599.3	2025325	0.000			
BW2	0.49	-	64800.7	1917414	0.000			
BW3	-	0.64	753864	138401403	0.005	$\Sigma R_i d_i^2 =$		
BW4	0.49	-	66599.3	2025325	0.000	144900632		

Concrete Moment Frames										
V _{tot}	1 2 3 4									
Level 1	0.1	0.9	0.0	0.9						

Concrete Shear Walls											
V _{tot}	а	b	c	d	е	f	g	h	i	j	
Level 1	8.9	2.2	1.9	0.2	3.8	0.3	0.3	2.2	0.3	0.3	

Concrete Shear Walls									
V _{tot}	k	1							
Level 1	1.2	4.1							

Basement Walls									
V _{tot}	V _{tot} 1 2 3 4								
Level 1	78	442	189	442					

Г

	Lateral Load Distribution in Concrete Portion Level B1											
0	Direct Shear		I	orsional Shea	r							
Element	% V _d	% V _d	R.d.	Rd ²	R _i D _i /							
Label	(y dir.)	(x dir.)	Nich	N j U j	ΣR _i d ²							
2	0.00	-	119.2	3440.4	0.000							
3	-	0.00	67.7	4582.2	0.000							
4	0.00	-	128.5	3998.7	0.000							
а	0.03	-	1184.8	25914.0	0.000							
b	0.01	-	191.9	2661.5	0.000							
С	0.00	-	195.5	5059.4	0.000							
d	0.00	-	17.4	293.7	0.000							
е	0.01	-	198.9	1764.5	0.000							
f	-	0.00	627.2	37825.3	0.000							
g	-	0.00	549.2	29002.3	0.000							
h	-	0.03	2487.4	109466	0.000							
i	-	0.00	374.5	13484.4	0.000							
j	-	0.00	343.3	11331.1	0.000							
k	-	0.02	3708.5	423170	0.000							
I	0.03	-	403.6	3258.4	0.000							
m	0.00	-	84.1	935.8	0.000							
n	-	0.01	127.1	596.2	0.000							
0	0.00	-	144.6	2765.2	0.000							
р	-	0.01	695.8	17877	0.000							
BW1	-	0.41	66133.6	5046516.6	0.005							
BW2	0.45	-	25022.9	722478.3	0.002							
BW3	-	0.51	73333.1	4964064.3	0.006	$\Sigma R_i d_i^2 =$						
BW4	0.45	-	26977.1	839724.7	0.002	12270210						

Concrete Moment Frames										
V _{tot}	1 2 3 4									
Level B1	N/A	2.1	0.1	2.1						

Concrete Shear Walls										
V _{tot} a b c d e f							g	h	i	j
Level B1	27.3	7.0	3.8	0.5	11.2	1.3	1.2	6.6	1.2	1.2

Concrete Shear Walls											
V _{tot}	k	I	m	n	0	р					
Level B1	4.4	25.1	3.8	2.9	3.8 3.1						

Basement Walls										
V _{tot}	1	2	3	4						
Level B1	108.6	439.0	133.5	439.5						

Summary of Distributed Lateral Forces to Frames and Walls (kips)

			Stee	l Addti	on								
Lovel	Steel Moment Frame												
Level	Α	В	С	D	E	F	G	Н					
PH	N/A	N/A	9.7	14.6	42.1	48.5	N/A	N/A					
12	36.3	37.0	29.8	20.5	32.2	33.8	34.9	36.4					
11	51.7	49.9	40.3	27.6	43.9	45.7	47.5	49.2					
10	65.9	63.6	50.5	34.6	56.1	58.3	60.6	62.8					
9	79.8	77.1	60.5	41.5	68.0	70.8	73.5	76.1					
8	93.6	90.4	70.4	48.2	79.8	83.0	86.2	89.2					
7	107.1	103.4	80.0	54.8	91.4	95.0	98.7	102.1					

	Conc	rete Po	rtion							
امرما	Concrete Moment Frames									
Level	1	2	3	4						
6	29.1	73.4	31.7	107.0						
5	32.2	81.3	35.1	118.5						
4	35.2	89.0	38.4	129.7						
3	38.2	96.5	41.6	140.6						
2	41.0	103.7	44.7	151.1						
1	0.1	0.9	0.0	0.9						
B1	-	2.1	0.1	2.1						

Loval							СМ	U Shea	r Wall	s						
Lever	а	b	c	d	е	f	g	h	i	j	×	_	m	n	0	р
6	240.4	85.3	54.5	5.9	160.0	32.3	22.8	97.7	22.6	26.4	-	ł.	ł.	ł.	1	-
5	266.3	94.5	60.4	6.5	177.3	35.7	25.1	107.7	25.0	29.2	-	-	-	-	-	-
4	291.6	103.5	66.1	7.1	194.1	39.0	27.5	117.4	27.3	31.9	-	-	-	-	-	-
3	316.1	112.2	71.7	7.7	210.4	42.2	29.7	126.7	29.5	34.5	-	-	-	1	-	-
2	339.8	120.6	77.0	8.3	226.2	45.3	31.8	135.6	31.6	37.0	-		-	i.	-	-
1	8.9	2.2	1.9	0.2	3.8	0.3	0.3	2.2	0.3	0.3	1.2	4.1	-	-	-	-
B1	27.3	7.0	3.8	0.5	11.2	1.3	1.2	6.6	1.2	1.2	4.4	25.1	3.8	2.9	3.8	3.1

Level	Concrete Basement Walls			
	1	2	3	4
1	78	442	189	442
B1	108.6	439.0	134	439.5