Valerie Miller Mechanical Option Advisor: Dr. Freihaut NASA Langley Research Center – Administration Office Building One (AOB1); Langley, VA March 30, 2015

Presentation Outline

- I. Introduction (1 slide)
- II. Building background (2 slides)
 - a. Building statistics
 - b. Site/floor plans
 - c. Mechanical systems overview
- III. Thesis proposal (1 slide)
 - a. Depth option chosen; justification
 - b. Components of my analysis
 - c. Breadth options and relations
- IV. Mechanical depth
 - a. Glass types, properties (1 slide)
 - b. Location of PV glass (1 slide)
 - c. Trace 700 results (2 slides)
 - i. Equipment schedule
 - ii. Geothermal load
 - iii. Yearly energy consumption
 - d. Cost analysis (2 slides)
 - i. Construction cost
 - ii. Operating cost
 - iii. 20 year life-cycle and payback
- V. Environmental breadth: life-cycle emissions of PV glass (2 slides)
 - a. Electricity generated on-site
 - b. Research methods to calculate energy of manufacturing
 - c. CO₂ emissions over life-cycle; payback
- VI. Conclusions/recommendation (1 slide)
 - a. Reiterate payback results of depth and breadth
 - b. Recommendation statement
- VII. Acknowledgements (1 slide)
- VIII. Appendices (as needed; not part of presentation)
 - a. Lighting breadth
 - b. Trace 700 result charts for all glass types analyzed
 - c. Breakdown of costs: glass, equipment, utility rate
 - d. Energy comparison chart of real building energy usage and Trace 700 model
 - e. Environmental calculation equations
 - f. Floor plans
 - g. Pictures

Valerie Miller, BAE Mechanical Option Advisor: Dr. Freihaut

NASA LANGLEY RESEARCH CENTER Administration Office Building One (AOB1)

Langley, VA

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

> 79,000 ft²

Geothermal Transfer Field

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

Penthouse:

AHU-5: Conference 205 and 305 DOAS unit: AHU-1, 2, 3, 5

AHU-1, 2, 3

UFAD floors 1, 2, 3

AHU-4

Conference 105A, B

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Low-E Photovoltaic Transparent Glass

- > Manufactured in Spain
- \succ Thin film amorphous silicon (a-Si)
- \succ Etched for desired Visible Light Transmittance (VLT)
- > 3,575 ft² total glass area, 2,500 ft² PV area
- > Peak power: 2.972 W/ft² = 7,440 W
- > 1,450 kWh/year generated
- > \$111.65/year saved

BREADTH TOPIC: LIFE-CYCLE EMISSIONS OF PV GLASS

Research Method 1

E. Alsema, 1998

Area method ➤ 11.15 kWh/ft² ➢ 39,861 kWh

Research Method 2 Environmental Science and Technology, 2013

Power output method

- ➢ 4.5 kWh/W
- ➢ 33,480 kWh

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Onyx Solar: Low-E Photovoltaic Transparent Glass

Site CO₂ emiss Spain CO₂ em

kWh/year ger Pounds of CO Total power Pounds CO₂ e CO₂ payback

BREADTH TOPIC: LIFE-CYCLE EMISSIONS OF PV GLASS

sion factor:	1.6	54 lb,
nission factor:	0.7	56 lb
	Research method 1	
nerated on-site by glass:		1,45
₂ /year saved from on-site generation:		2,38
kWh) required for manufacturing:	39,861	
emitted in manufacturing:	30,131	
(years):	12.7	

/kWh o/kWh Research method 2 33,480 25,308 10.6