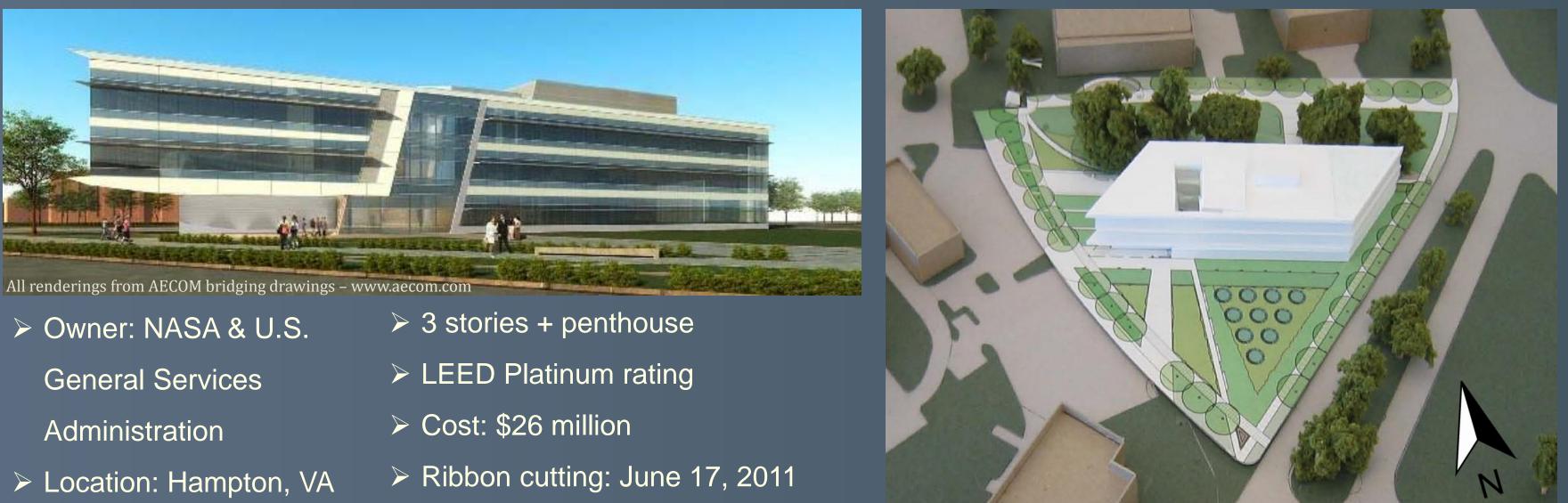
Valerie Miller, BAE Mechanical Option Advisor: Dr. Freihaut

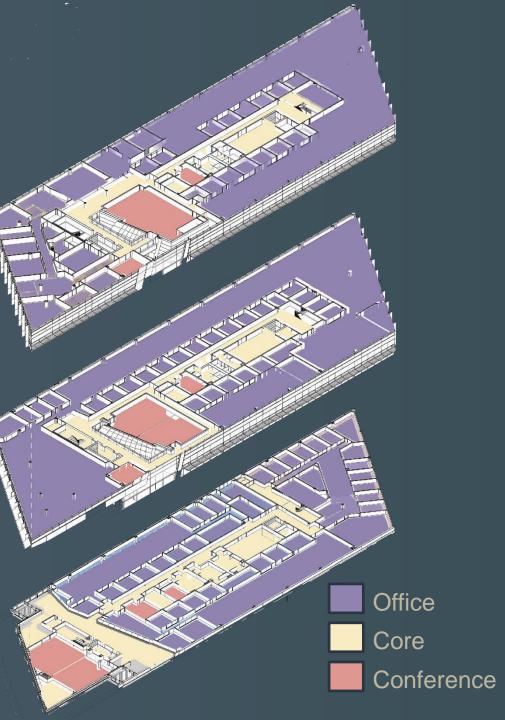
NASA LANGLEY RESEARCH CENTER ADMINISTRATION OFFICE BUILDING ONE (AOB1) HAMPTON, VA

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller



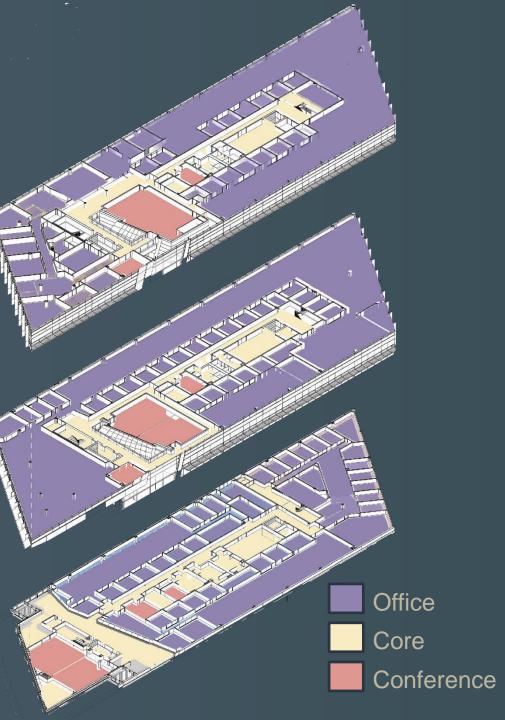
- > Owner: NASA & U.S.
- General Services
- Administration
- > Location: Hampton, VA
- > 79,000 ft²


- > 3 stories + penthouse
- LEED Platinum rating
- Cost: \$26 million
- Ribbon cutting: June 17, 2011

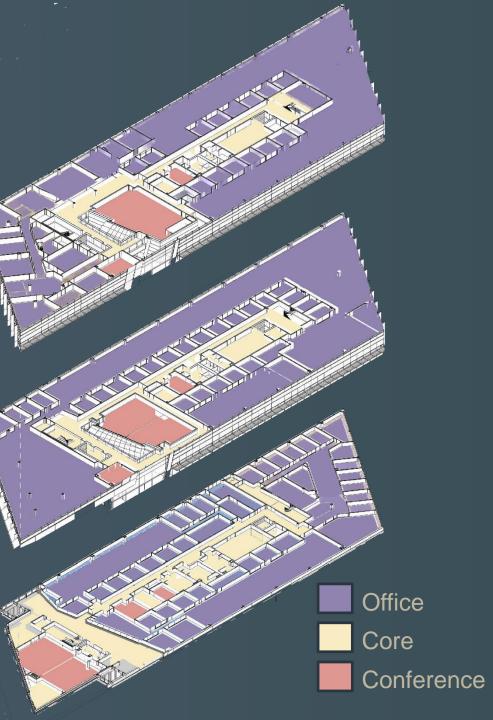
Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

- ➢ 79,000 ft²


Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

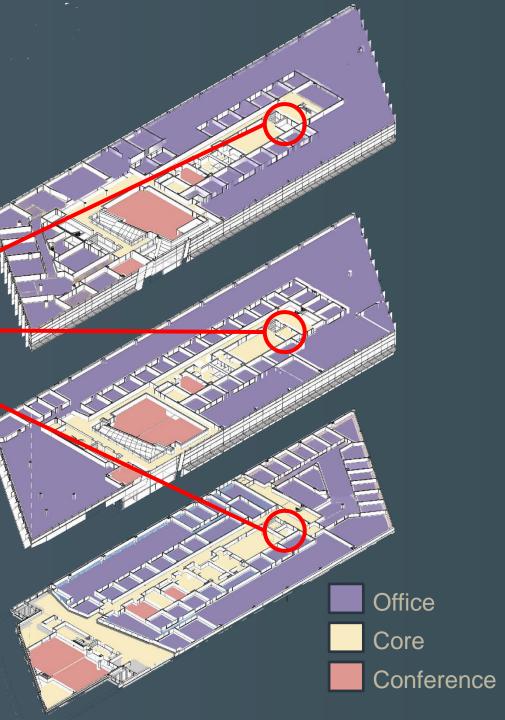
NASA AOB1 – Valerie Miller


- ➢ 79,000 ft²

Geothermal Transfer Field

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller



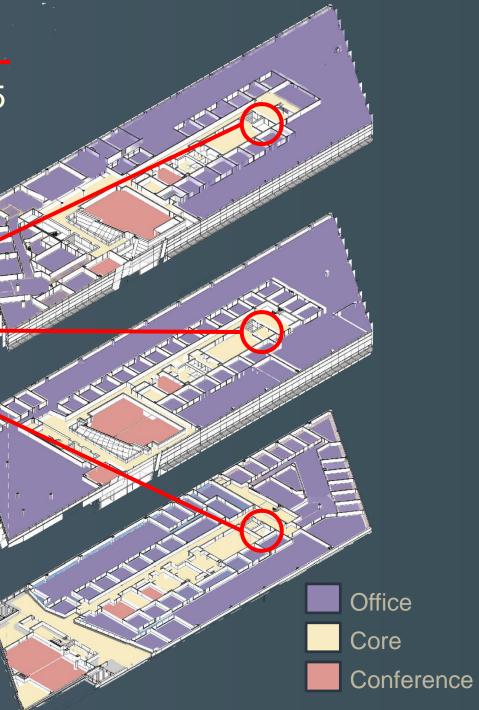
Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

AHU-1, 2, 3

UFAD floors 1, 2, 3

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement


NASA AOB1 – Valerie Miller

Penthouse:

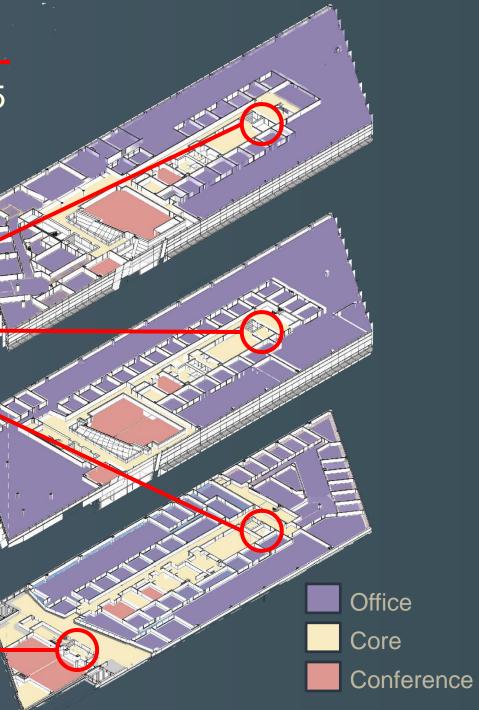
AHU-5: Conference 205 and 305 DOAS unit: AHU-1, 2, 3, 5

UFAD floors 1, 2, 3

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

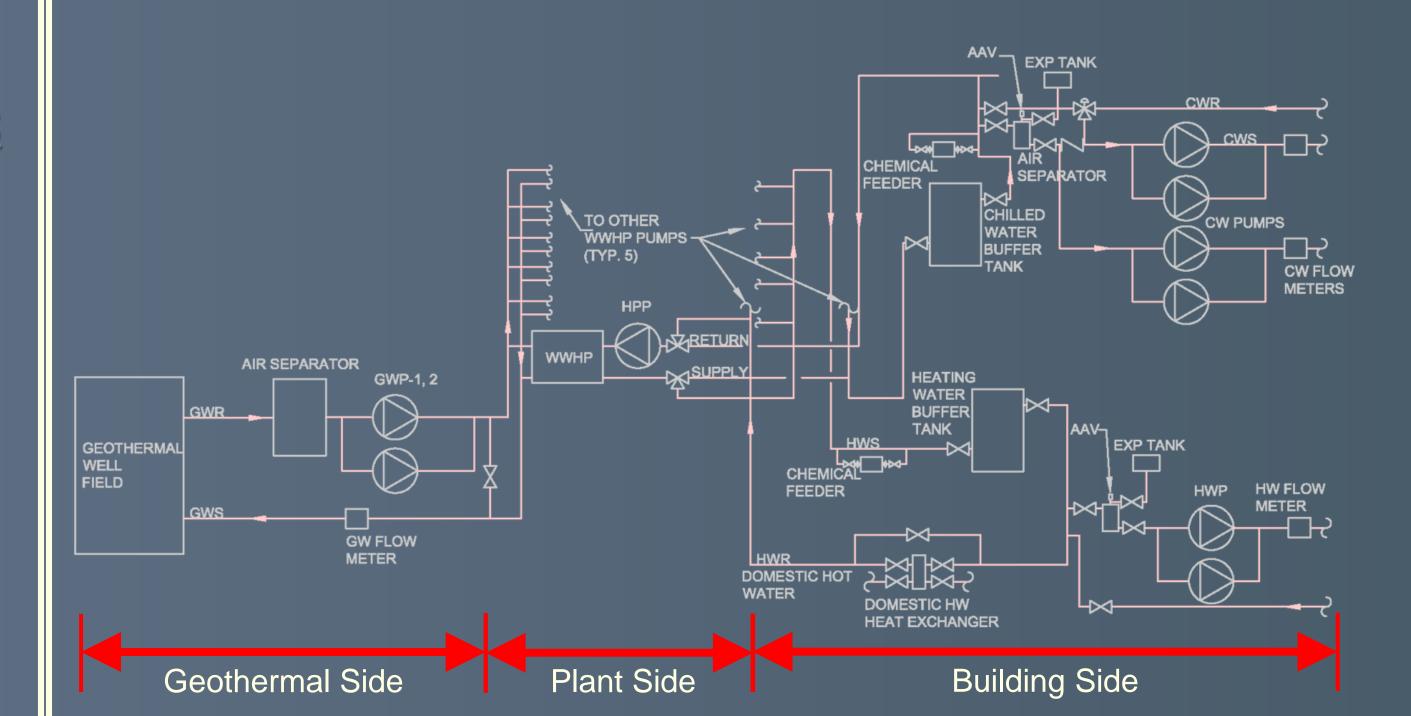
NASA AOB1 – Valerie Miller

Penthouse:


AHU-5: Conference 205 and 305 DOAS unit: AHU-1, 2, 3, 5

AHU-1, 2, 3

UFAD floors 1, 2, 3

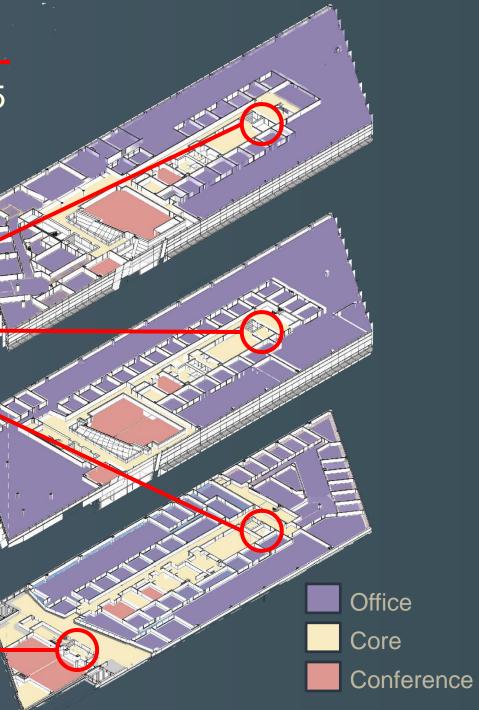

AHU-4

Conference 105A, B

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Penthouse:


AHU-5: Conference 205 and 305 DOAS unit: AHU-1, 2, 3, 5

AHU-1, 2, 3

UFAD floors 1, 2, 3

AHU-4

Conference 105A, B

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

THESIS GOALS AND PROPOSAL

Introduction Building background Thesis proposal Mechanical depth

Environmental breadth

Recommendation

Acknowledgement

NASA AOB1 – Valerie Miller

Goals: Decreased energy

consumption

- Decreased emissions
- > 20 year pay-back
- Naturally light space

THESIS GOALS AND PROPOSAL

Introduction Building background Thesis proposal Mechanical depth Environmental breadth

Recommendation

Acknowledgement

NASA AOB1 – Valerie Miller

Goals:

Decreased energy

consumption

- Decreased emissions
- 20 year pay-back
- Naturally light space

THESIS GOALS AND PROPOSAL

Depth study: Alternative Glazing Systems

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation

Acknowledgement

NASA AOB1 – Valerie Miller

Goals: Decreased energy consumption

- Decreased emissions
- 20 year pay-back \succ
- Naturally light space \succ

Depth study: Alternative Glazing Systems

Trace 700 load/energy model

THESIS GOALS AND PROPOSAL

Cost analysis: initial, operating, life-cycle

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation

Acknowledgement

NASA AOB1 – Valerie Miller

Goals: Decreased energy consumption

- Decreased emissions
- 20 year pay-back
- Naturally light space

Depth study: Alternative Glazing Systems

THESIS GOALS AND PROPOSAL

Breadth topic 1: Electric and Natural Lighting

- Lighting plan alterations
- Cost savings
- > Alternative glazing effects on daylighting

- Trace 700 load/energy model
- Cost analysis: initial, operating, life-cycle

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation

Acknowledgement

NASA AOB1 – Valerie Miller

Goals: Decreased energy consumption

- Decreased emissions
- 20 year pay-back
- Naturally light space

THESIS GOALS AND PROPOSAL

Depth study: Alternative Glazing Systems

- Trace 700 load/energy model
- Cost analysis: initial, operating, life-cycle

Breadth topic 1: Electric and Natural Lighting

- Lighting plan alterations
- Cost savings
- > Alternative glazing effects on daylighting

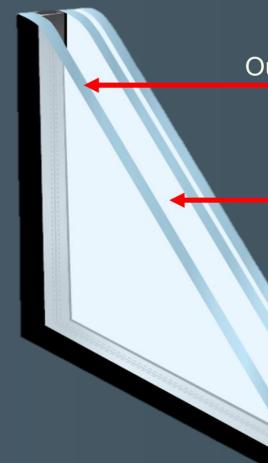
Breadth topic 2: Emissions Analysis of PV glass \succ Life-cycle emissions: manufacturing, generation

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

Viracon Conyx Solar Double pane,

<u>GLAZING DEFINITION'S</u>

- Low-E insulating laminated (original)
- Triple insulating, single low-E
- Triple insulating, double low-E
- Double pane, low-E photovoltaic glass


Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Viracon - Triple insulatin Triple insulatin Onyx Solar - Double pane,

<u>GLAZING DEFINITION'S</u>

- Low-E insulating laminated (original)
- Triple insulating, single low-E
- Triple insulating, double low-E
- Double pane, low-E photovoltaic glass

www.Viracon.com/pdf/ProductGuide.pdf

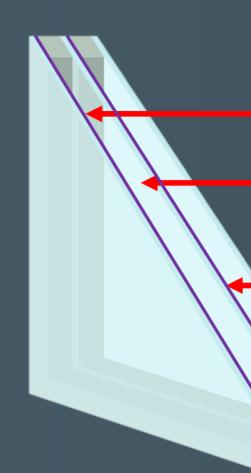
U-VALUE (ADJ)

0.37

Outer pane with low-E coating

Airspace

Middle and inner panes w/ clear PBV interlayer


Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Triple insulating, single low-E Viracon Onyx Solar ~

GLAZING DEFINITION'S

- Low-E insulating laminated (original)
- Triple insulating, double low-E
- Double pane, low-E photovoltaic glass

www.Viracon.com/pdf/ProductGuide.pdf

	U-VALUE (ADJ)	SHGC (ADJ)
SINGLE LOW-E	0.33	0.275
DOUBLE LOW-E	0.29	0.24

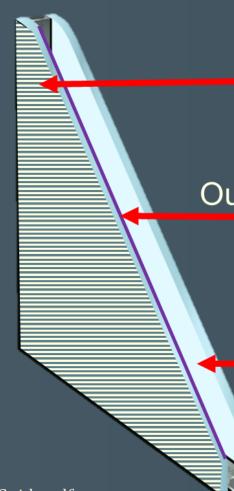
Outer pane w/ low-E coating

Airspace

Middle pane: possible low-E coating

Airspace

Clear inner pane


Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Viracon - Triple insulatin Triple insulatin Onyx Solar - Double pane,

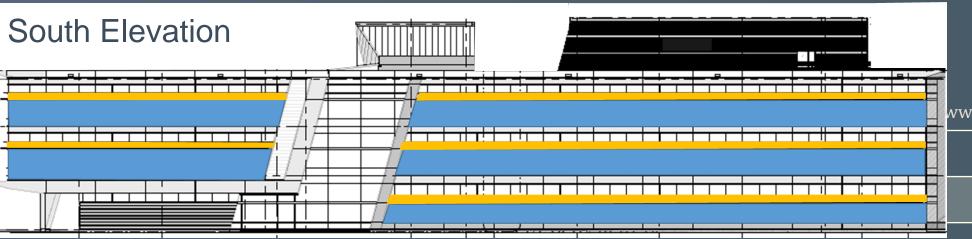
<u>GLAZING DEFINITION'S</u>

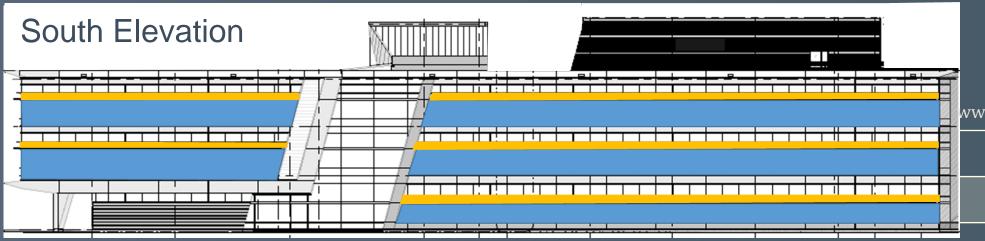
- Low-E insulating laminated (original)
- Triple insulating, single low-E
- Triple insulating, double low-E
- Double pane, low-E photovoltaic glass

www.Viracon.com/pdf/ProductGuide.pdf

U-VALUE (ADJ)

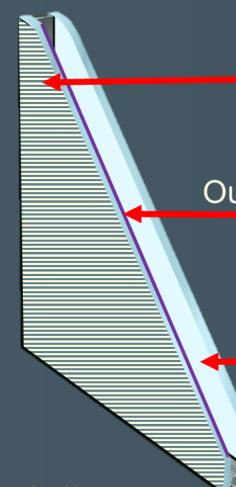
0.42


Outer pane: low-E coating


Airspace

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller



Construction docs provided by H.F. Lenz Co.

GLAZING DEFINITION'S

- Low-E insulating laminated (original)
- Triple insulating, single low-E
- Triple insulating, double low-E
- Double pane, low-E photovoltaic glass

www.Viracon.com/pdf/ProductGuide.pdf

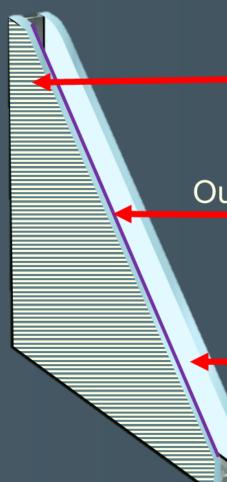
U-VALUE (ADJ)

0.42

Outer pane: low-E coating

Airspace

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement


NASA AOB1 – Valerie Miller

Viracon Onyx Solar

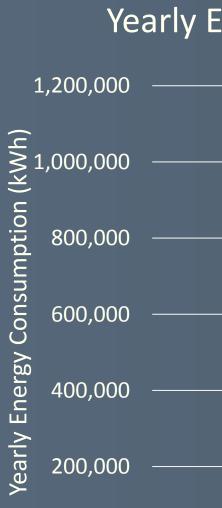
Saves \$111/year

GLAZING DEFINITION'S

- Low-E insulating laminated (original)
- Triple insulating, single low-E
- Triple insulating, double low-E
- Double pane, low-E photovoltaic glass
 - Produces 1,451 kWh/year

www.Viracon.com/pdf/ProductGuide.pdf

U-VALUE (ADJ)


0.42

Outer pane: low-E coating

Airspace

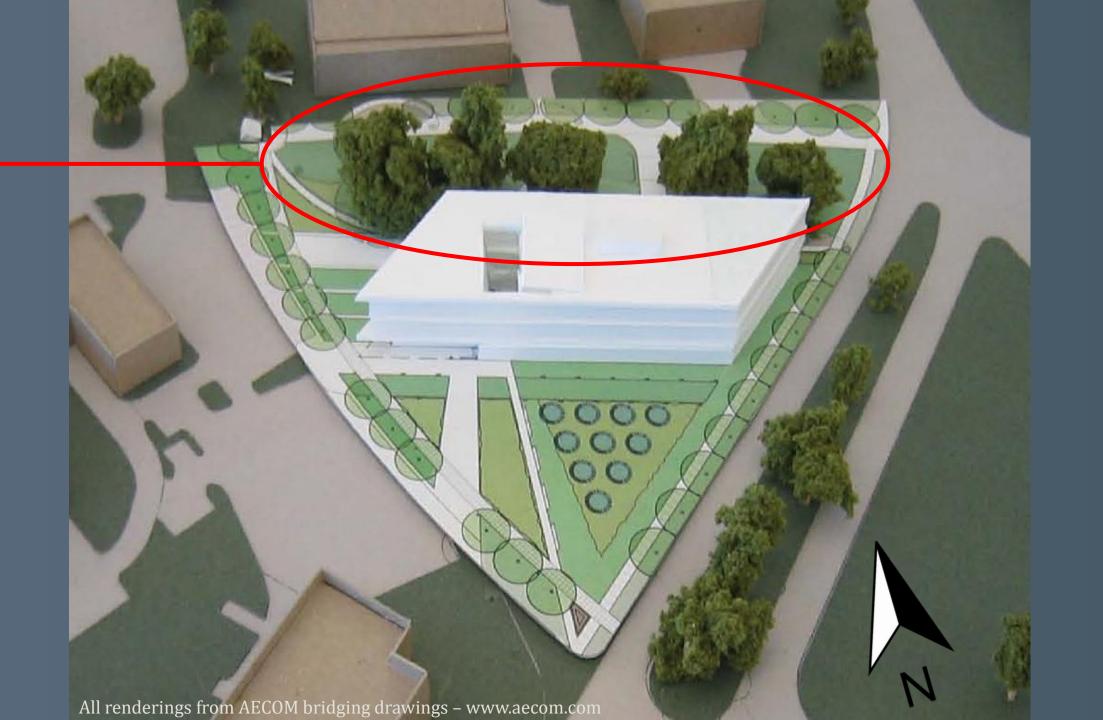
Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

MECHANICAL DEPTH

Yearly Energy Consumption: Real and Expected

Submeter: 1,037,990 kWh

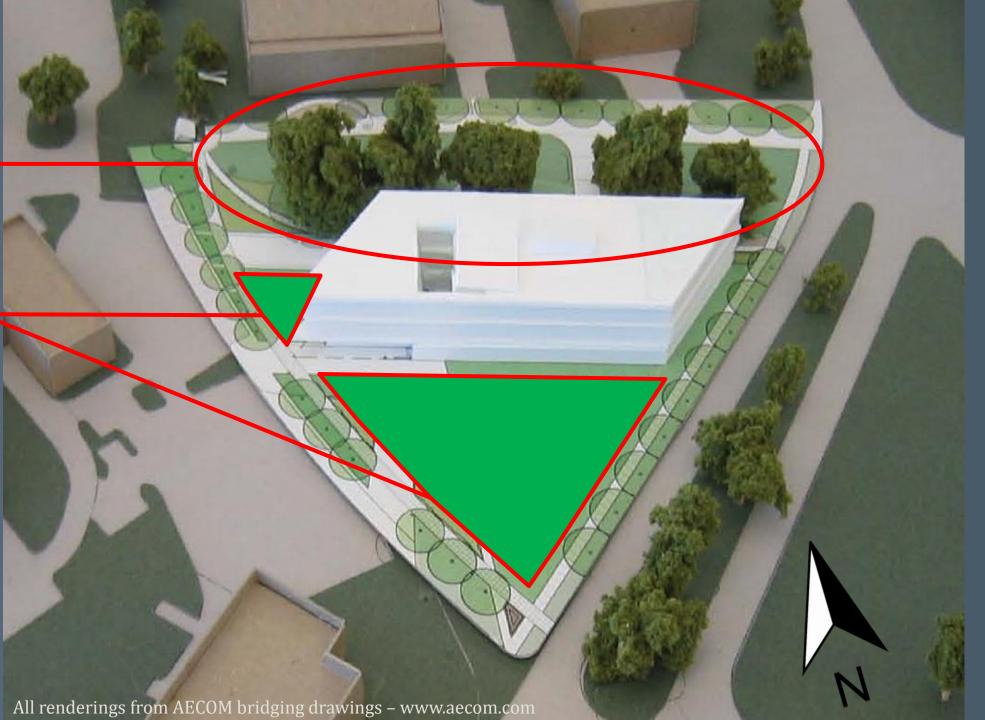
Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

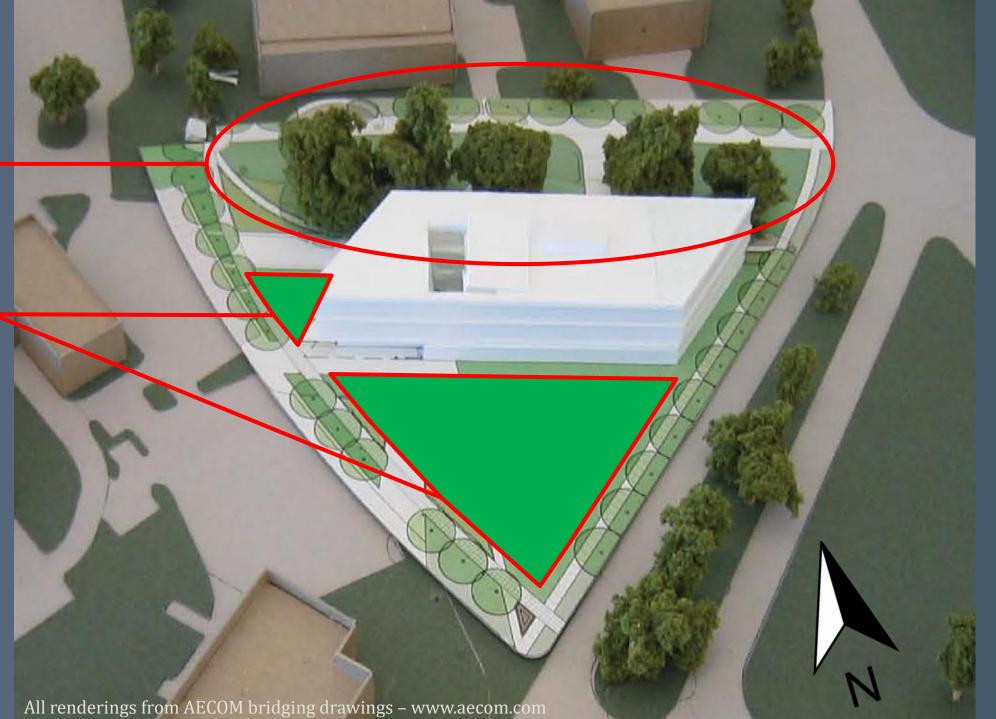

NASA AOB1 – Valerie Miller

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Tree preservation area

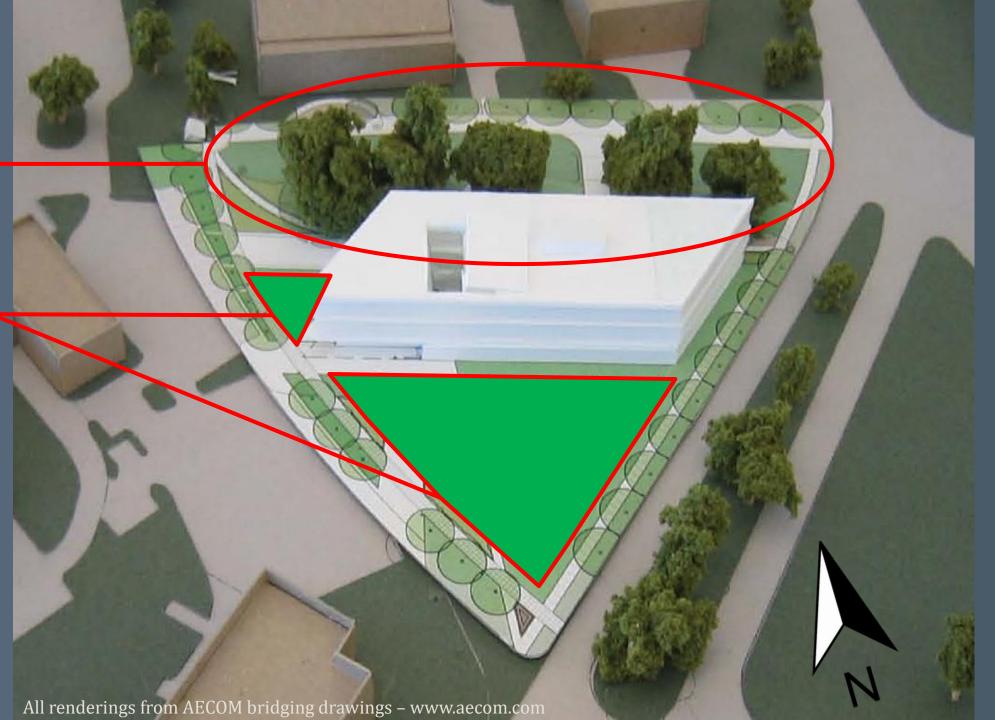


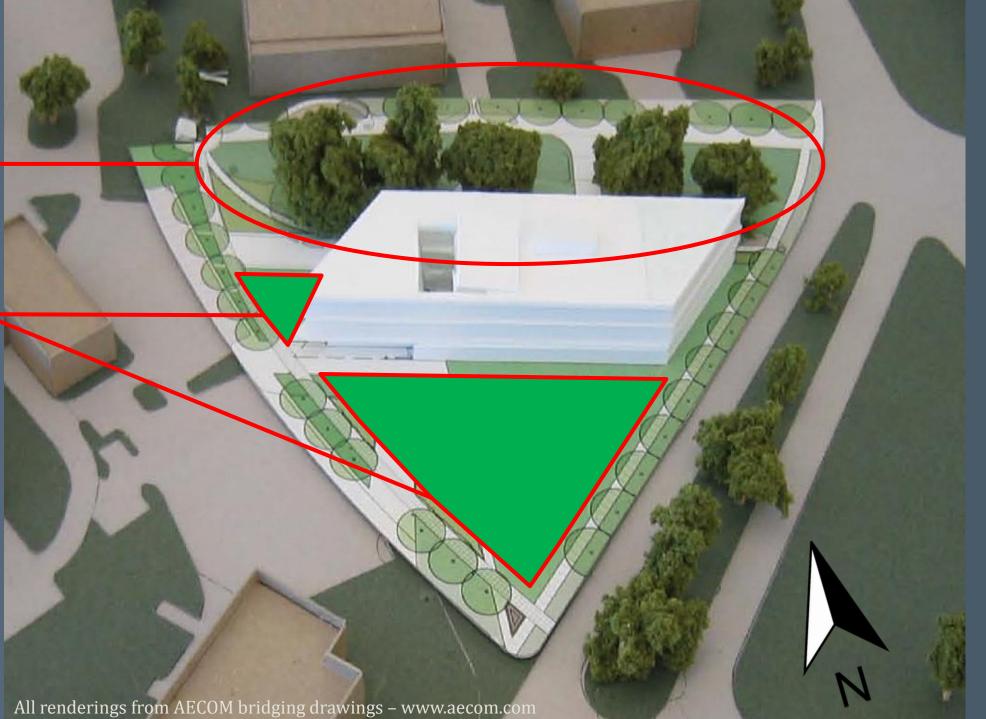

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Tree preservation area

Geothermal transfer field

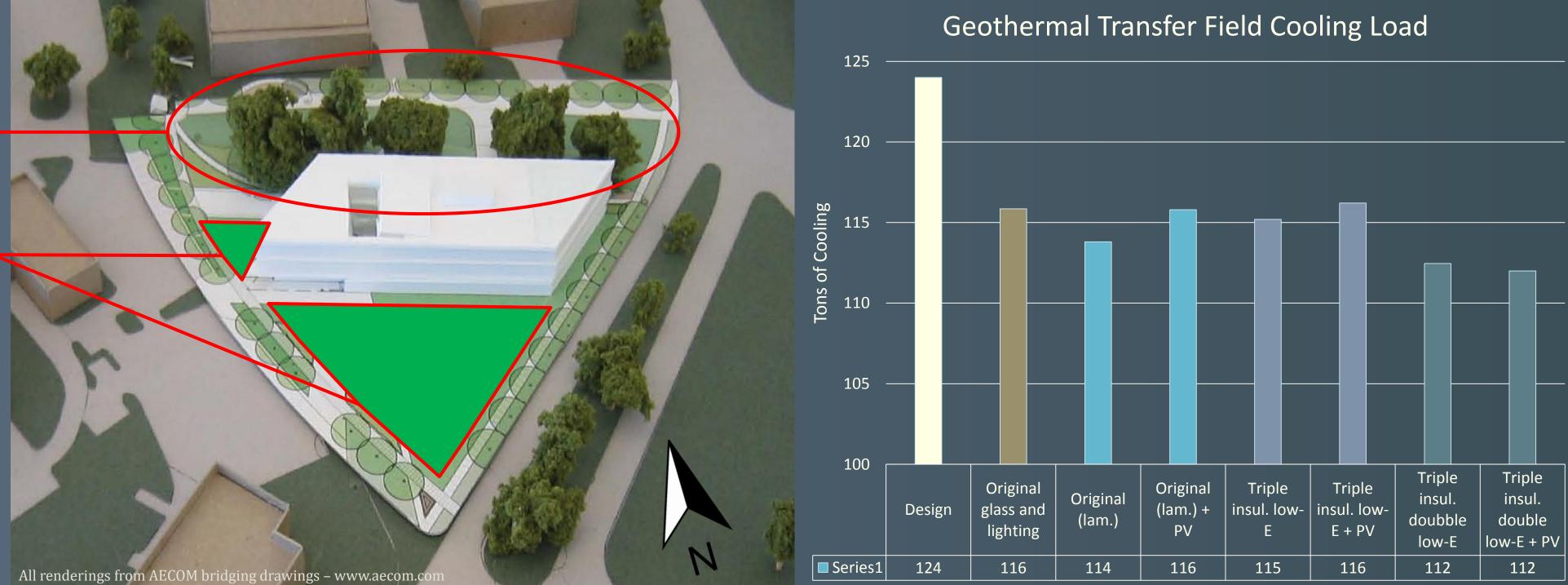

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

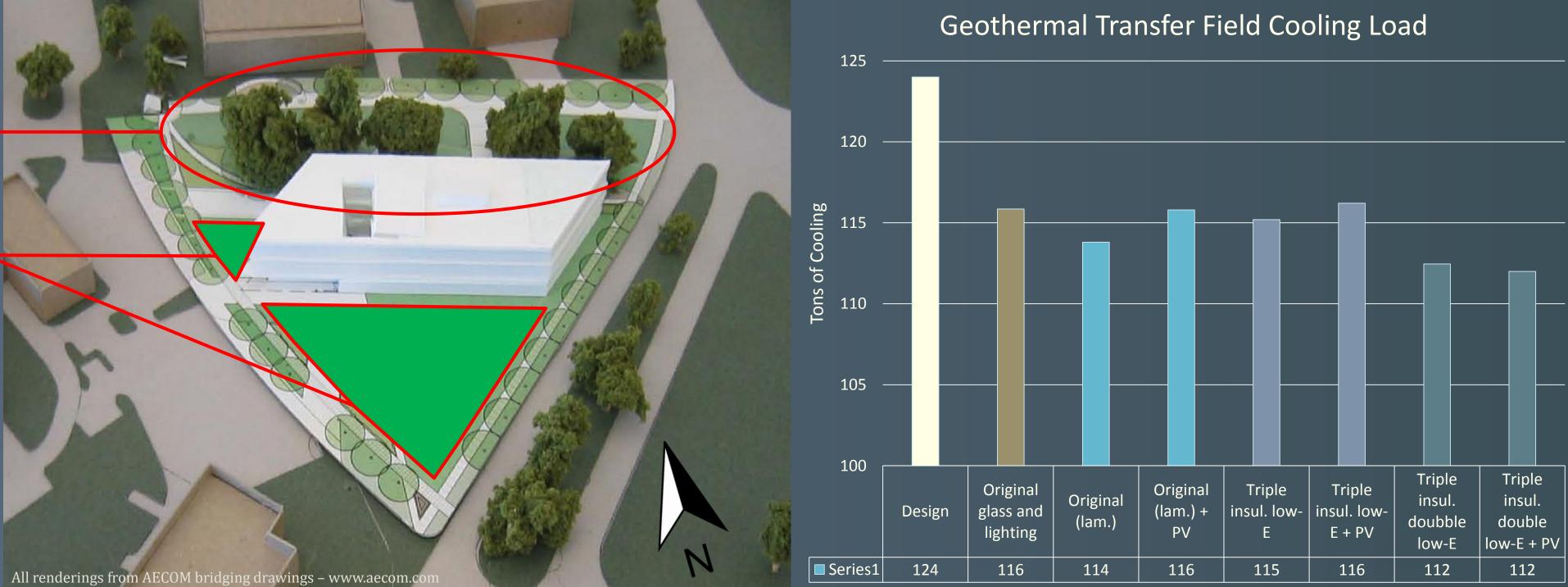

NASA AOB1 – Valerie Miller

Tree preservation area

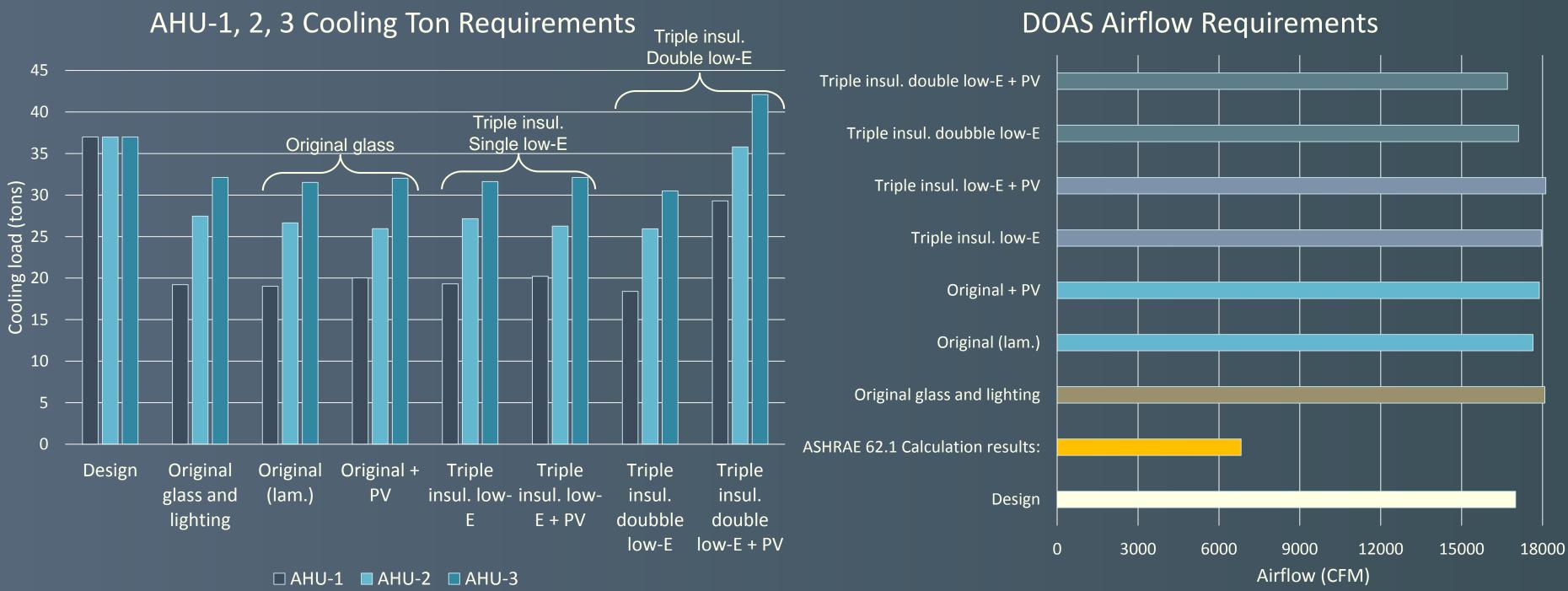
Geothermal transfer field

Building load capacity: 124 tons > CANNOT exceed


Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement


NASA AOB1 – Valerie Miller

Tree preservation area


Geothermal transfer field

Building load capacity: 124 tons > CANNOT exceed

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

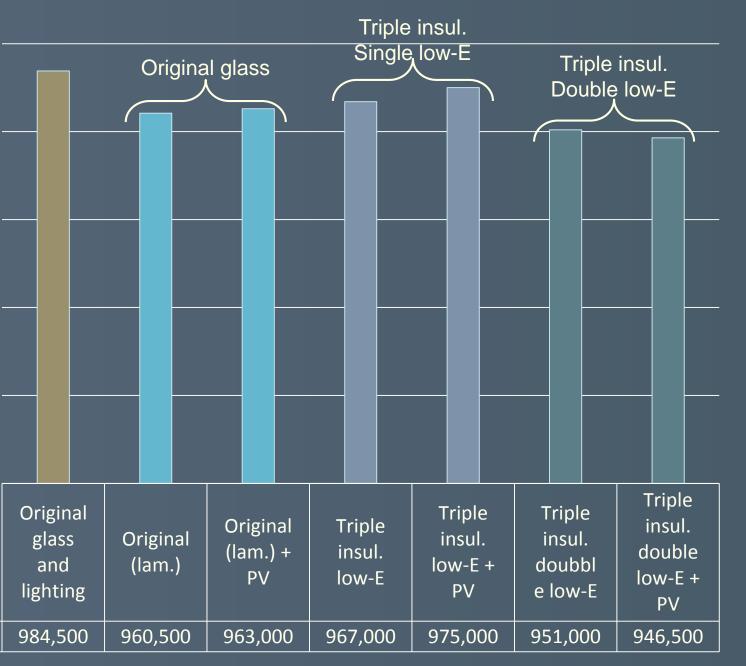
NASA AOB1 – Valerie Miller

1,000,000 ar) 950,000 900,000 850,000 800,000 750,000

Yearly Energy Consumption for Alternatives

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

Key points: Alternatives lower than original Triple low-E + PV high Triple double low-E options low


1,000,000

950,000 900,000 850,000 800,000

750,000

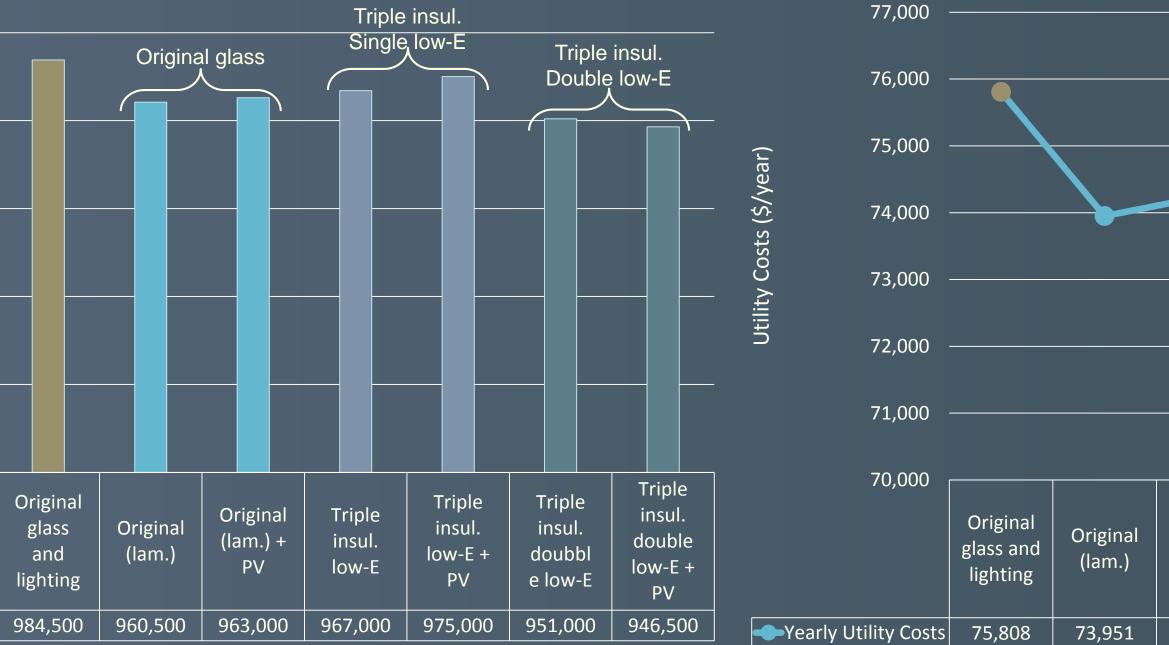
Energy consumption 984,500

Yearly Energy Consumption for Alternatives

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

Key points: Alternatives lower than original Triple low-E + PV high Triple double low-E options low Costs range \$73-76k

1,000,000 950,000 900,000


750,000

850,000

800,000

Energy consumption 984,500

Yearly Energy Consumption for Alternatives

Yearly Utility Costs

ginal n.) + ?V	Triple insul. low-E	Triple insul. low-E + PV	Triple insul. double low-E	Triple insul. double low-E + PV
,257	74,466	74,571	73,209	72,997

Introduction

- Building background
- Thesis proposal
- Mechanical depth
- Environmental breadth
- Recommendation
- Acknowledgement

NASA AOB1 – Valerie Miller

INITIAL COSTS:

Glass
 AHU Equipment

Introduction

Building background

Thesis proposal

Mechanical depth

Environmental breadth

Recommendation

Acknowledgement

NASA AOB1 – Valerie Miller

INITIAL COSTS:

Glass 2. AHU Equipment

> Insulating laminated w/ low-E: \$21.50/ft²

Photovoltaic glass:

> \$13.80/ft²

Viracon cost breakdown:

- > Triple IGU VRE1-54: \$27.80/ft²
- \succ Triple insulating VRE1-54: \$29.40/ft²
- +10% over two pane
 - > Two pane glass: \$11.10/ft²
- ➤ +\$1.60 for low-E
- > +Inverter: \$5,159

ALTERNATIVE

Original (lam.) glass

Original (lam.)+ PV

Triple insul. low-E

Triple insul. low-E + PV

Triple insul. double low-E

Triple insul. double low-E + PV

COST OF GLASS

\$320,762

\$295,927

\$422,616

\$373,828

\$446,939

\$392,431

Introduction

Building background

Thesis proposal

Mechanical depth

Environmental breadth

Recommendation

Acknowledgement

NASA AOB1 – Valerie Miller

INITIAL COSTS:

Glass AHU Equipment

Original glass and light Original (lam.) Original (lam.) + PV Triple insul. low-E Triple insul. low-E + PV Triple insul. double low Triple insul. double low

		AHU-1	AHU-2	AHU-3	AHU-4	AHU-5	DOAS (ton/MBh)	Energy Recovery	Total equip cost:
hting	Total SA CFM:	8728	12707	12842	2387	3812	130/1037	18085	
	Cost:	\$20,600	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$430,925
	Total SA CFM:	8583	12232	12533	2387	3812	129/1031	17644	
	Cost:	\$20,600	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$430,925
	Total SA CFM:	9166	11870	12813	2387	3812	130/1023	17882	
	Cost:	\$20,600	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$430,925
	Total SA CFM:	8831	12560	12617	2374	3812	130/1004	17958	
	Cost:	\$20,600	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$430,925
	Total SA CFM:	9404	12061	12892	2374	3812	132/1027	18123	
P∕V	Cost:	\$22,700	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$433,025
ow-E	Total SA CFM:	8317	11876	12037	2361	3812	127/962	17113	
	Cost:	\$20,600	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$430,925
ow-E + PV	Total SA CFM:	8317	11003	12037	2361	3812	125/942	16699	
	Cost:	\$20,600	\$22,700	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$427,625

Introduction

Building background

Thesis proposal

Mechanical depth

Environmental breadth

Recommendation

Acknowledgement

NASA AOB1 – Valerie Miller

INITIAL COSTS:

Glass AHU Equipment

Original glass and light Original (lam.) Original (lam.) + PV Triple insul. low-E Triple insul. low-E + PV Triple insul. double low Triple insul. double low

		AHU-1	AHU-2	AHU-3	AHU-4	AHU-5	DOAS (ton/MBh)	Energy Recovery	Total equip cost:
hting	Total SA CFM:	8728	12707	12842	2387	3812	130/1037	18085	
lllig	Cost	\$20,600	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$430,925
	Total SA CFM:	8583	12232	12533	2387	3812	129/1031	17644	
	Cost	\$20,600	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$430,925
	Total SA CFM:	9166	11870	12813	2387	3812	130/1023	17882	
	Cost:	\$20,600	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$430,925
	Total SA CFM:	8831	12560	12617	2374	. 3812	130/1004	17958	
	Cost	\$20,600	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$430,925
v	Total SA CFM:	9404	12061	12892	2374	. 3812	132/1027	18123	
V	Cost	\$22,700	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$433,025
	Total SA CFM:	8317	11876	12037	2361	. 3812	127/962	17113	
ow-E	Cost	\$20,600	\$26,000	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$430,925
ow-E + PV	Total SA CFM:	8317	11003	12037	2361	. 3812	125/942	16699	
	Cost	\$20,600	\$22,700	\$26,000	\$7,400	\$9,525	\$311,000	\$30,400	\$427,625

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Original glass and lighting Original (lam.) Original (lam.) + P

Triple insul. low-E

Triple insul. low-E

Triple insul. doubl low-E Triple insul. doubl low-E + PV

	TOTAL EQUIP COST:	GLASS SYSTEM COST:	1 YEAR OP COST:	20 YEAR LIFE-CY COST:
k	\$431,000	\$321,000	\$76,000	\$2,268,000
	\$431,000	\$321,000	\$74,000	\$2,231,000
PV	\$431,000	\$296,000	\$74,250	\$2,212,000
E	\$431,000	\$423,000	\$74,500	\$2,343,000
E + PV	\$433,000	\$374,000	\$74,500	\$2,298,000
ole	\$431,000	\$447,000	\$73,000	\$2,342,000
ole	\$428,000	\$392,500	\$73,000	\$2,280,000

YCLE

00

00

0

)()

0

)()

)()

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Payback periods:
Immediate for original lig glass options
45+ triple low-E options
24+ triple double low-E Tr options

Original glass and lighting Original (lam.) Original (lam.) + P **Triple insul. low-E** Triple insul. low-E Triple insul. doubl low-E Triple insul. doubl low-E + PV

	TOTAL EQUIP COST:	GLASS SYSTEM COST:	1 YEAR OP COST:	20 YEAR LIFE-CY COST:
k	\$431,000	\$321,000	\$76,000	\$2,268,000
	\$431,000	\$321,000	\$74,000	\$2,231,000
PV	\$431,000	\$296,000	\$74,250	\$2,212,000
E	\$431,000	\$423,000	\$74,500	\$2,343,000
E + PV	\$433,000	\$374,000	\$74,500	\$2,298,000
ole	\$431,000	\$447,000	\$73,000	\$2,342,000
ole	\$428,000	\$392,500	\$73,000	\$2,280,000

YCLE

0

0

0

0

00

)()

)()

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement


NASA AOB1 – Valerie Miller

Payback periods:
Immediate for original lig glass options
45+ triple low-E options
24+ triple double low-E Tr options

Original glass and lighting Original (lam.) Original (lam.) + P **Triple insul. low-E** Triple insul. low-E Triple insul. doubl low-E Triple insul. doubl low-E + PV

	TOTAL EQUIP COST:	GLASS SYSTEM COST:	1 YEAR OP COST:	20 YEAR LIFE-CY COST:
k	\$431,000	\$321,000	\$76,000	\$2,268,000
	\$431,000	\$321,000	\$74,000	\$2,231,000
PV	\$431,000	\$296,000	\$74,250	\$2,212,000
E	\$431,000	\$423,000	\$74,500	\$2,343,000
E + PV	\$433,000	\$374,000	\$74,500	\$2,298,000
ole	\$431,000	\$447,000	\$73,000	\$2,342,000
ole	\$428,000	\$392,500	\$73,000	\$2,280,000

YCLE

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement


NASA AOB1 – Valerie Miller

Payback periods:
Immediate for original lig glass options
45+ triple low-E options
24+ triple double low-E Tr options

Original glass and lighting Original (lam.) Original (lam.) + P **Triple insul. low-E** Triple insul. low-E Triple insul. doubl low-E Triple insul. doubl low-E + PV

	TOTAL EQUIP COST:	GLASS SYSTEM COST:	1 YEAR OP COST:	20 YEAR LIFE-CY COST:
k	\$431,000	\$321,000	\$76,000	\$2,268,000
	\$431,000	\$321,000	\$74,000	\$2,231,000
PV	\$431,000	\$296,000	\$74,250	\$2,212,000
E	\$431,000	\$423,000	\$74,500	\$2,343,000
E + PV	\$433,000	\$374,000	\$74,500	\$2,298,000
ole	\$431,000	\$447,000	\$73,000	\$2,342,000
ole	\$428,000	\$392,500	\$73,000	\$2,280,000

YCLE

-\$111/year generated =\$2,209,769 ∆\$: 20,932

)()

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

BREADTH TOPIC: LIFE-CYCLE EMISSIONS OF PV GLASS

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Onyx Solar: Low-E Photovoltaic Transparent Glass

Manufactured in Spain > 3,575 ft² glass, 2,500 ft² PV > 7,440 W peak power

BREADTH TOPIC: LIFE-CYCLE EMISSIONS OF PV GLASS

- \succ Thin film amorphous silicon (a-Si)
- Etched for desired Visible Light Transmittance (VLT)

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Onyx Solar: Low-E Photovoltaic Transparent Glass

Manufactured in Spain > 3,575 ft² glass, 2,500 ft² PV > 7,440 W peak power

BREADTH TOPIC: LIFE-CYCLE EMISSIONS OF PV GLASS

- \succ Thin film amorphous silicon (a-Si)
- Etched for desired Visible Light Transmittance (VLT)

Research Method 1

E. Alsema, 1998

Area method: 11.15 kWh/ft² \rightarrow 39,861 kWh

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

Onyx Solar: Low-E Photovoltaic Transparent Glass

> Manufactured in Spain > 3,575 ft² glass, 2,500 ft² PV > 7,440 W peak power

BREADTH TOPIC: LIFE-CYCLE EMISSIONS OF PV GLASS

- \succ Thin film amorphous silicon (a-Si)
- Etched for desired Visible Light Transmittance (VLT)

Research Method 1

E. Alsema, 1998

Research Method 2

Area method: 11.15 kWh/ft² \rightarrow 39,861 kWh

- Environmental Science and Technology, 2013
- Power output method: 4.5 kWh/W
 - \rightarrow 33,480 kWh

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

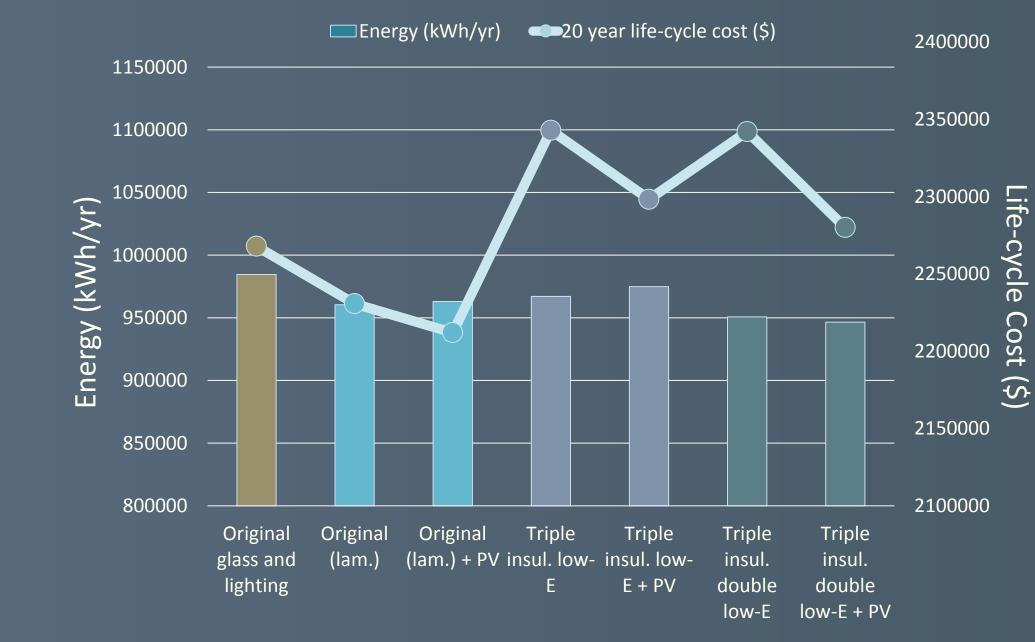
NASA AOB1 – Valerie Miller

Site CO₂ emis Spain CO₂ em

Total power CO₂ emitted kWh/year ger CO₂/year save CO₂ payback

BREADTH TOPIC: LIFE-CYCLE EMISSIONS OF PV GLASS

ssion factor:	1.64	l lb/
nission factor:	0.75	6 lb,
	Research method 1	
required for manufacturing:	39,861 kWh	
in manufacturing:	30,131 lb	
enerated on-site by glass:	1,4	51 k
ved from on-site generation:	2,	380
(years):	12.7	

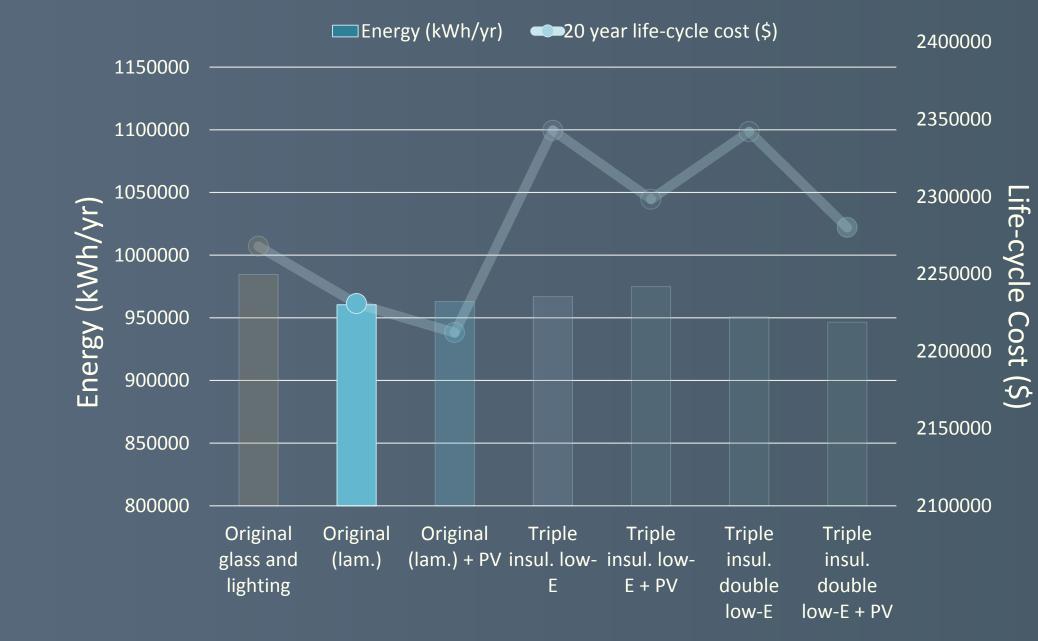

/kWh o/kWh Research method 2 33,480 kWh 25,308 lb kWh

lb

10.6

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller


CONCLUSION

Key points:

- Yearly energy consumption/emissions
- Initial costs
- > 20 year life-cycle

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

CONCLUSION

Key points:

- Yearly energy consumption/emissions
- Initial costs
- 20 year life-cycle

Recommendations:

- New lighting plan
- Alternative glass types

Introduction Building background Thesis proposal Mechanical depth Environmental breadth Recommendation Acknowledgement

NASA AOB1 – Valerie Miller

➢ H.F. Lenz Company

Viracon's Jennifer Highfield

Dr. Freihaut

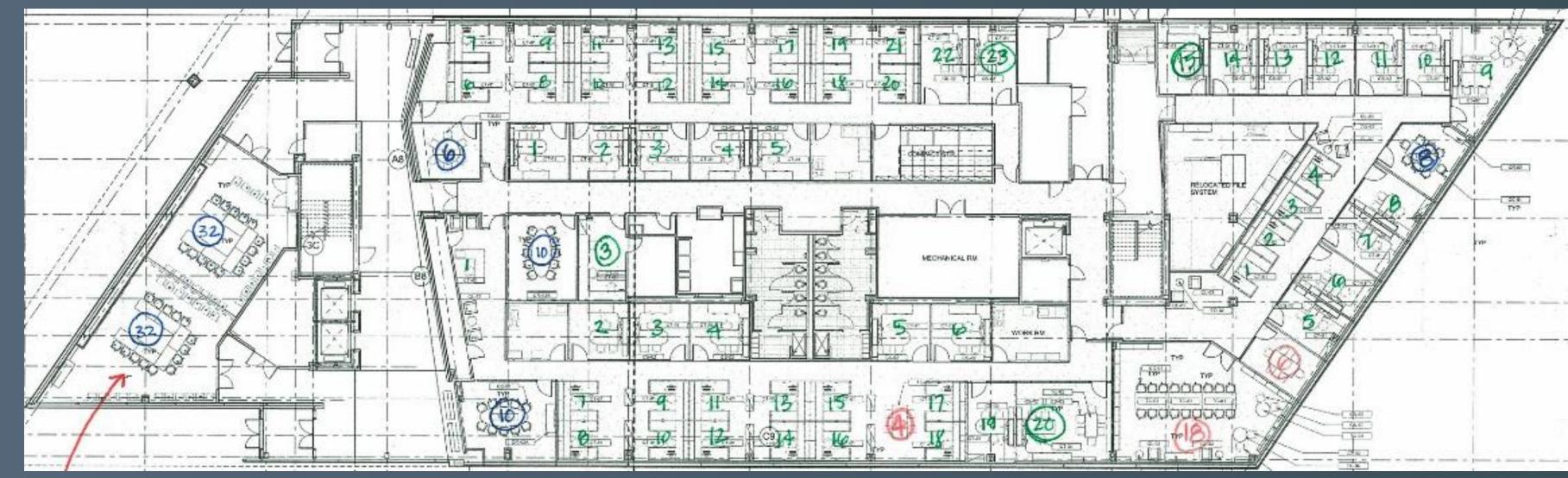
> Dr. Mistrick

> Jackie Eury

> Architectural Engineering Department

ACKNOWLEDGEMENTS

- Special thank you to the following:
- NASA Langley Research Center employees


 \succ My friends, family, and the AE Class of 2015

NASA LANGLEY RESEARCH CENTER ADMINISTRATION OFFICE BUILDING ONE (AOB1) HAMPTON, VA

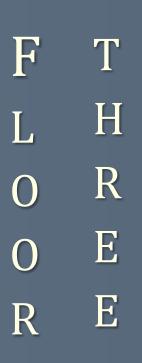
Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

F L 0 0 N E \mathbf{O} R

Floor plans from CD's provided by H.F. Lenz Co.

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller


LT W 0 0 0 R

F

Floor plans from CD's provided by H.F. Lenz Co.

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

Floor plans from CD's provided by H.F. Lenz Co.

APPENDICES

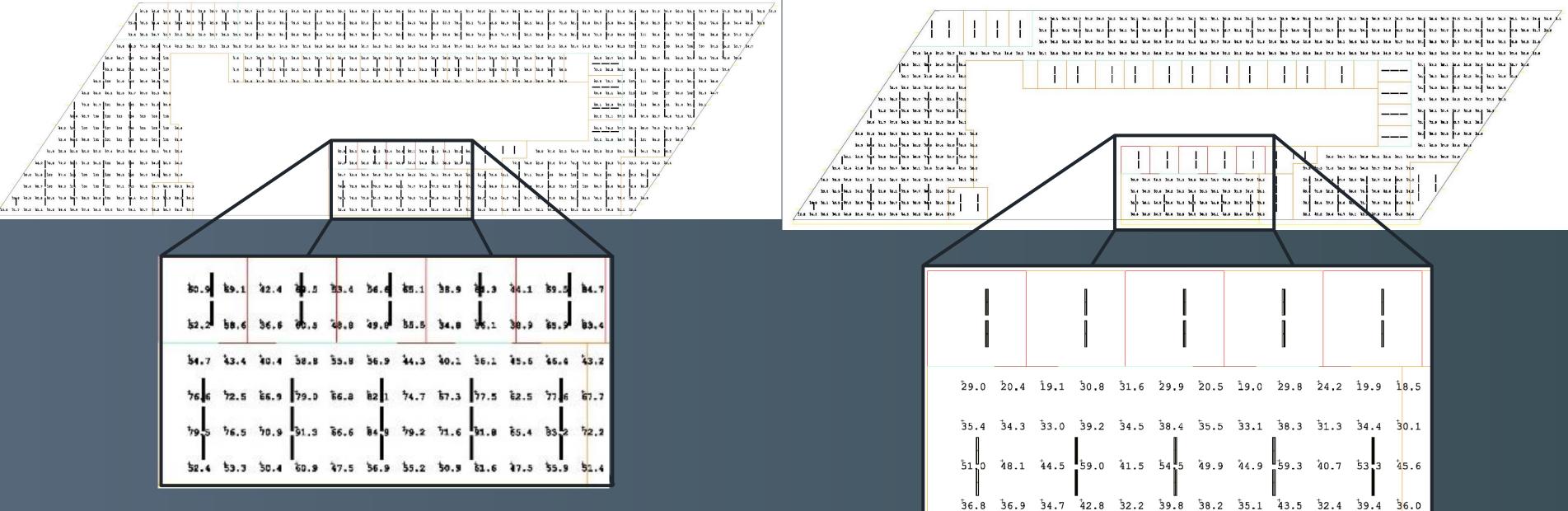
Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

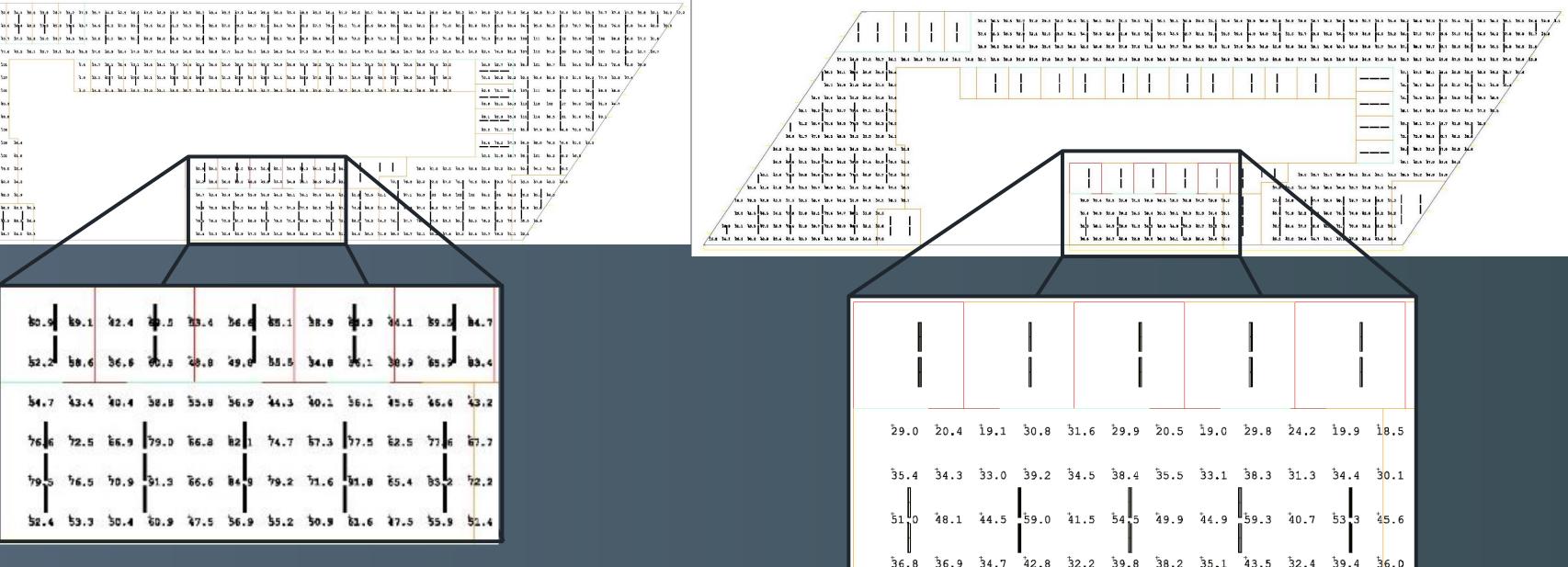
NASA AOB1 – Valerie Miller

Goals:

Lower illuminance on task

plane (goal: 30-50 fc)


Reduce initial cost of


luminaires

Reduce energy

consumption

Ensure ability to daylight space will not be compromised with alternative glazing systems

Original 2nd floor plan

Original 2nd floor plan

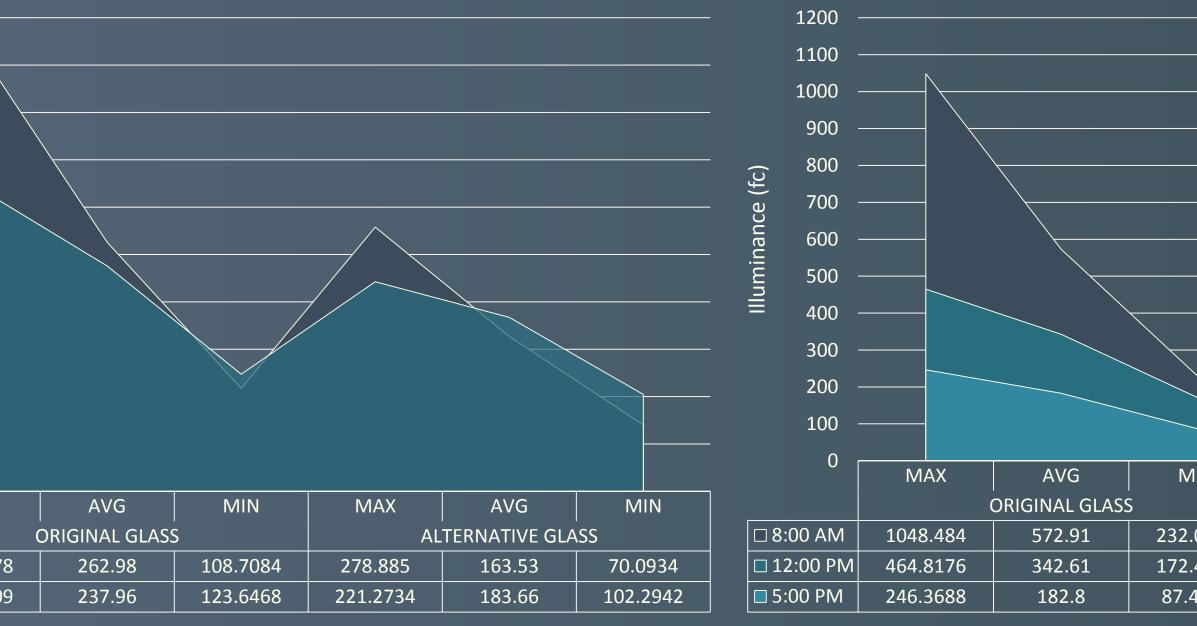
				_	_	
9	[‡] 20.5	19.O	[‡] 9.8	[‡] 24.2	19.9	18.5
4	⁻ 35.5	33.1	38.3 ∎	[‡] 31.3	[⁺] 34.4	30.1
5	49.9	[∔] 44.9	59.3	[∔] 40.7	⁵ 3.3	⁴ 45.6
. 8	38.2	35.1	∎ 43.5	32.4	[‡] 39.4	[‡] 6.0

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

Goals:

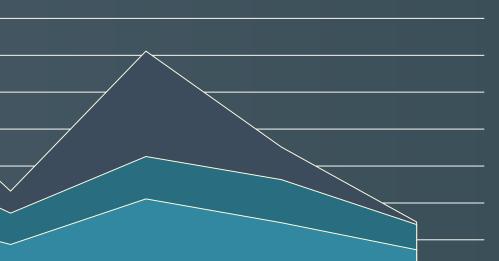
Lower illuminance on task plane (goal: 30-50 fc) Reduce initial cost of luminaires ✤ Reduce energy consumption Ensure ability to daylight space will not be compromised with alternative glazing systems


Material RMC conduit clips **RMC bodies and covers RMC** connectors J-boxes Metal conduit MC connectors ceiling supports Labor start-up install RMC install MC rough-in ceiling supports Material luminaires Labor install luminaires make electrical room remove luminaire bags rough-in ceiling supports

Building Sy	stem Wiring		Building System Wiring	Fine	elite Pen	dant				
Unit Cost	Quantity per lum.	Total Cost (\$)	Material	Unit Cost	Quantity	 Total Cost 				
0.98/ft	0.375	146	Rigid metallic conduit (RMC)	\$0.98/ft	60	\$58.80				
1	0.005	2	Conduit clips RMC bodies and covers	\$0.77 ea \$10.05 ea	5 0	\$3.85 \$0.00				
10	0.063	24	RMC connectors	\$1.90 ea	5	\$9.50				
s2	0.012	5	J-boxes Metal conduit (MC)	\$2.55 ea \$0.41/ft	8 30	\$20.40 \$12.30				
3	0.016	6	MC connectors	\$1.55 ea	10	\$15.50				
0.41/ft	0.003	1	Ceiling supports SUBTOTAL	\$2.05 ea	26	\$53.30 \$173.65				
2	0.010	4								
2	0.013	5	Labor	Minutes		 Total Cost @ \$65/h 				
Minutes	Quantity per lum.	Total Cost (\$)	Start-up	45 total	45	\$48.75				
45 total	45	49	Install RMC	2 per ft	120	\$130.00	Cost example from	Finelite ec	atalog	
2/ft	0.013	5	Install MC	1.5 per ft	45		Luminaires			
1.5/ft	0.009	4	Rough-in ceiling supports SUBTOTAL	10 ea	260	\$281.67 \$509.17	Material	Unit Cost		/ Total Cost
10	0.063	26					Luminaires SUBTOTAL	\$35-\$45/f	160	\$5,600-\$7,200 \$5,600-\$7,200
Lumi	naires									
Unit Cost	Quantity in length (ft)	Total Cost (\$)s					Labor	Minutes		/ Total Cost @ \$65/hr
40/ft	388	15,520							741110105	e 4007m
Minutes	Quantity per lum.	Total Cost (\$) @ \$65/hr					Install luminaires Make electrical conn.	1.5/ft	240	\$260.00
1.5/ft	0.009	4					Remove luminaire bags	15 ea 2 ea	75 30	\$81.25 \$32.50
15	0.094	39					Rough-in ceiling supports	15 tot	15	\$16.25
2	0.013	5					SUBTOTAL			\$390.00
15 total	15	16					TOTAL Per Ft ²			\$6,673-\$8,273 \$2.78-\$3.45
		45.004								÷2.70 ÷0.45

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

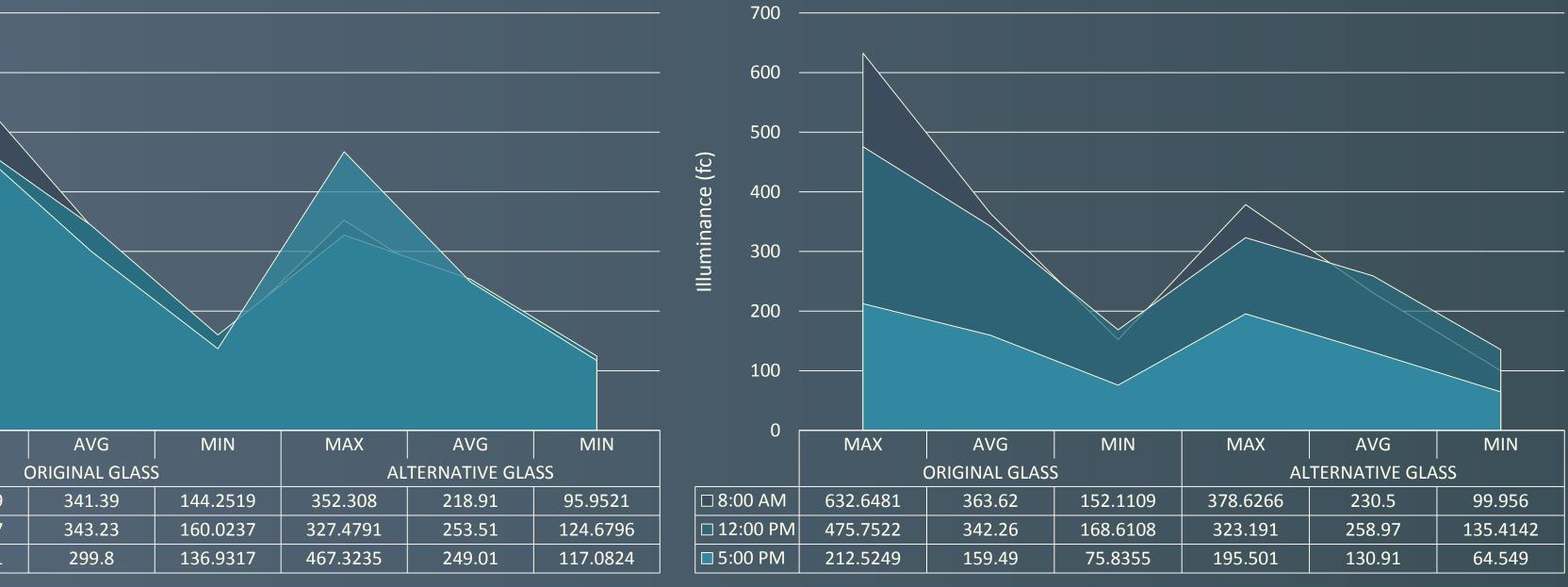
Goals:				V
Guais.	50	0 -		
Lower illuminance on task	45	0 -		
plane (goal: 30-50 fc)	40	0 -		
Reduce initial cost of	35	0 -		
luminaires	ce (fc)	0 -		
Iummanes	25 au	0 -		
Reduce energy	lluminance 50 50 50	0 -		
consumption	= 15	0 -		
Ensure ability to daylight	10	0 -		
space will not be	5	0 -		
Space will not be		0	N/	AX
compromised with			101/	
alternative glazing systems	□ 8:00 A		475.	767
altornativo glazing oyotorno	□ 12:00	PM	323.	710


Ninter Solstice Daylighting Comparisons

□ 8:00 AM □ 12:00 PM

□ 8:00 AM □ 12:00 PM □ 5:00 PM

Spring Equinox Daylighting Comparisons



N	MAX	AVG	MIN
	AL	TERNATIVE GLA	SS
)529	611.281	351.5	148.419
1139	325.7981	263.18	141.4369
667	210.9798	146.5	73.1149

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

		Si
Goals:	700	
Lower illuminance on task	600	
plane (goal: 30-50 fc)	500	
Reduce initial cost of		
luminaires	ance	
Reduce energy	Illuminance (fc) 005 007	
consumption	200	
Ensure ability to daylight	100	
space will not be	0	MAX
compromised with	□ 8:00 AM	584.277
	□ 12:00 PM	
alternative glazing systems	5:00 PM	489.695

□ 8:00 AM □ 12:00 PM □ 5:00 PM

□ 8:00 AM

Fall Equinox Daylighting Comparisons

□ 12:00 PM □ 5:00 PM

APPENDICES

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓< 1,050,000

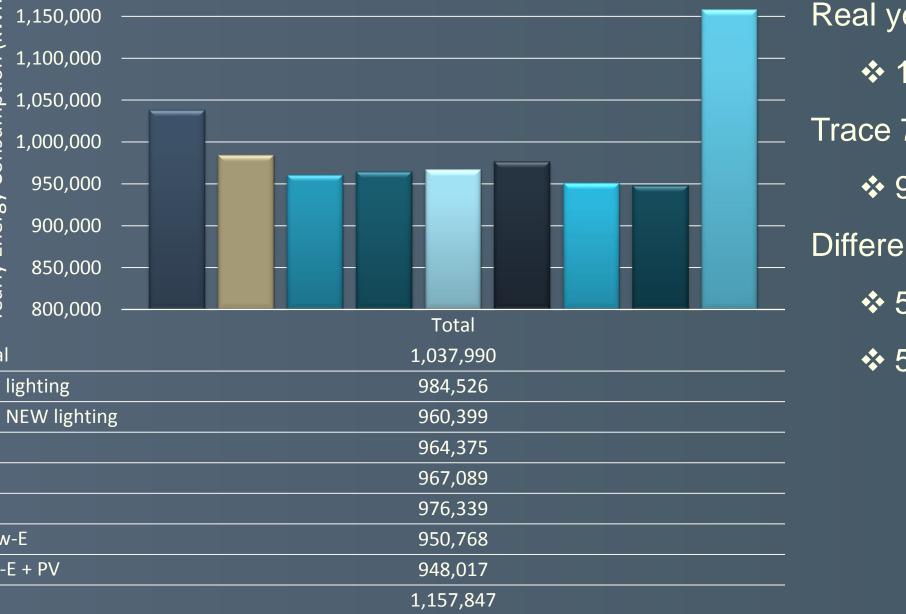
Real monthly total

Original glass and lighting

Original glass and NEW lighting

Original + PV

Triple low-E


■ Triple low-E + PV

Triple doubble low-E

Triple double low-E + PV

Basic glass type

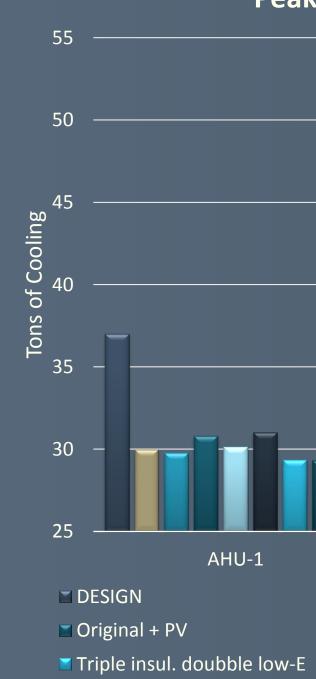
Yearly Energy Consumption: Real and Expected

Real yearly kWh consumption from submeter data: ✤ 1,037,990 kWh Trace 700 model yearly energy estimation for original model: ✤ 984,526 kWh Difference between real and Trace 700 prediction: ✤ 53,464 kWh ◆ 5.15%

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

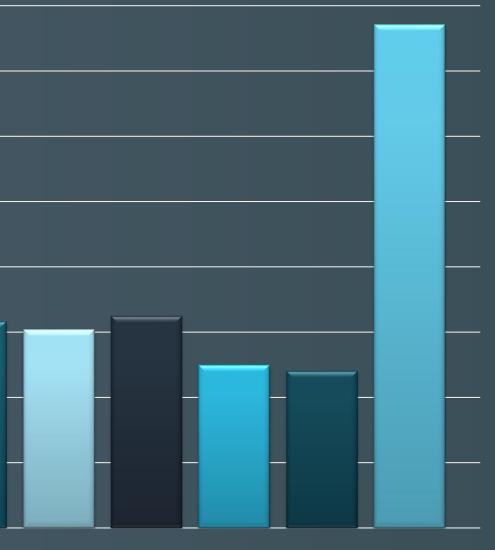
Kawneer 1600UT System Adjust properties of glass for use in a curtain wall assembly



Glass U-Factor	Overall U-Factor	Glass SHGC	Overall SHGC
0.32	0.42	0.40	0.37
0.26	0.37	0.30	0.28
0.22	0.33	0.25	0.24
0.18	0.30		
0.16	0.28		

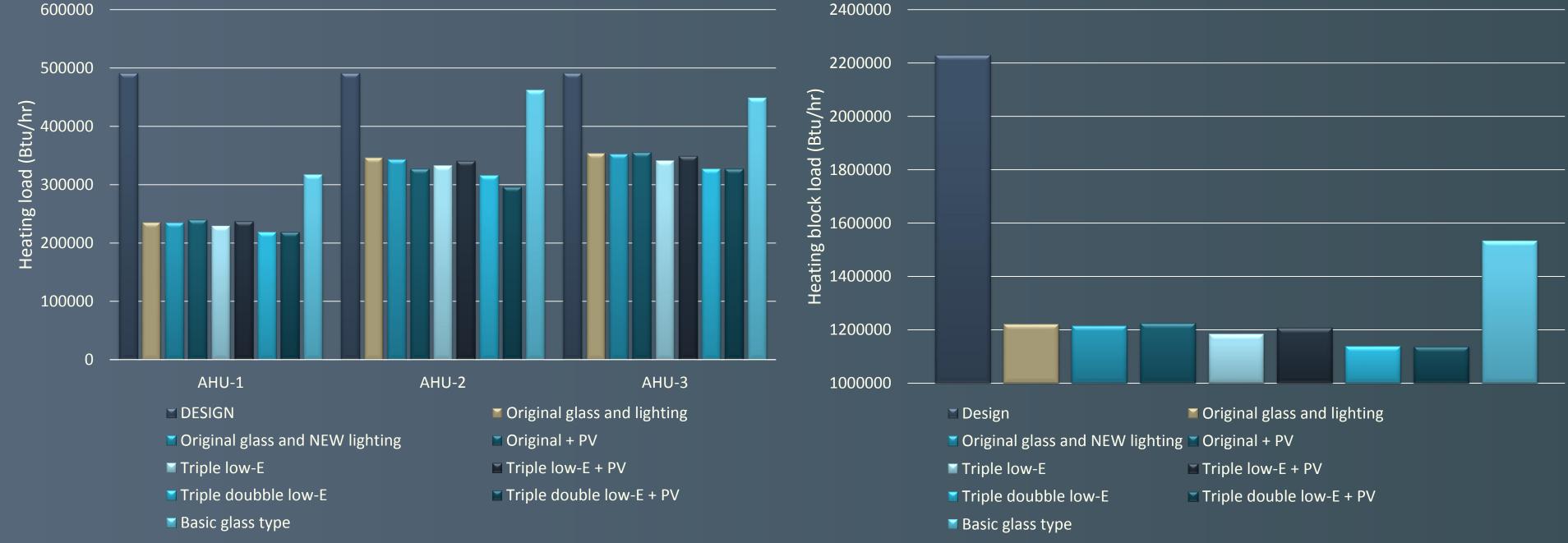
THERMAL PROPERTIES: **CURTAINWALL ADJUSTMENTS**

GLASS TYPE	MANUFACTURER	U-VALUE (ADJ)	SHGC (ADJ)		
Original glass	Viracon – low-E insulating laminated	0.37	0.255		
Triple Low-E	Viracon – triple insulating	0.33	0.275		
Triple Double Low-E	Viracon – triple insulating w/ second low-E coating	0.29	0.24		
Basic glass: double pane	NA – Trace 700 default	0.6*	0.71*		
PV glass	Onyx Solar	0.42	0.37		
*Note: this glass would not meet ASHRAE 90.1 requirements for this climate zone; these values are just for educational comparison purposes					


Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

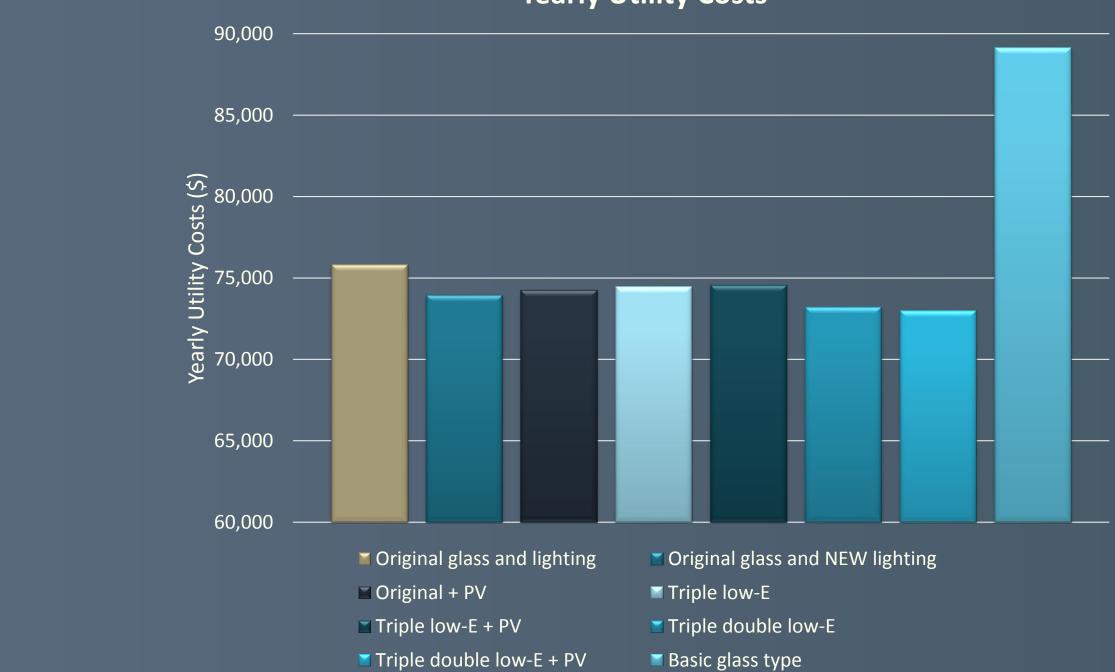
140 135 130 ອີ້ 125 — J 120 of suoL 115 — 110 — 105 — AHU-3 100 AHU-2 Original glass and new lighting Original glass and lighting 🖬 Design Original glass and lighting Triple insul. low-E 🖬 Original + PV Triple insul. low-E + PV Triple low-E ■ Triple insul. double low-E + PV ■ Basic glass type Triple doubble low-E Triple double low-E + PV

Peak Cooling Loads for AHU-1, 2, 3


Geothermal Transfer Field Cooling Load

Original glass and new lighting Triple low-E + PV Basic glass type

APPENDICES


Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

Peak Heating Loads for AHU-1, 2, 3

Geothermal Transfer Field Heating Load

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

Yearly Utility Costs

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

ltem

Triple IGU VRE1 Triple insulating VRE1-54 Argon filling addi Insulating lamina Basic double par glass: Double pane PV

low-E glass:

GLASS COSTS

	Cost (\$) per	Notes	Alternative	Cost (\$)		
square foot			Original glass	320,762		
1-54	27.80	Viracon	Original + PV	290,768		
J	29.40	Viracon	Triple low-E	422,616		
			Triple low-E + PV	368,669		
dition	0.50	Viracon	Triple double low-E	446,939		
nated:	21.10	Viracon	Triple double low-E + PV	387,272		
ane	11.10	RSMeans Assemblies Cost Data 2015	Basic double pane glass	168,742		
V	12.71	Assuming a 10% increase in glass cost for PV	*An additional \$5160 was added for an inverter for the PV alternatives			

APPENDICES

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

Cost data from RSMeans Mechanical Original glass and lightin Cost Data 2015 Original glass and NEW I Original + PV Triple low-E Triple low-E + PV Triple double low-E Triple double low-E + PV Basic glass type Typical RSMeans Sizes (CFM): Cost (\$):

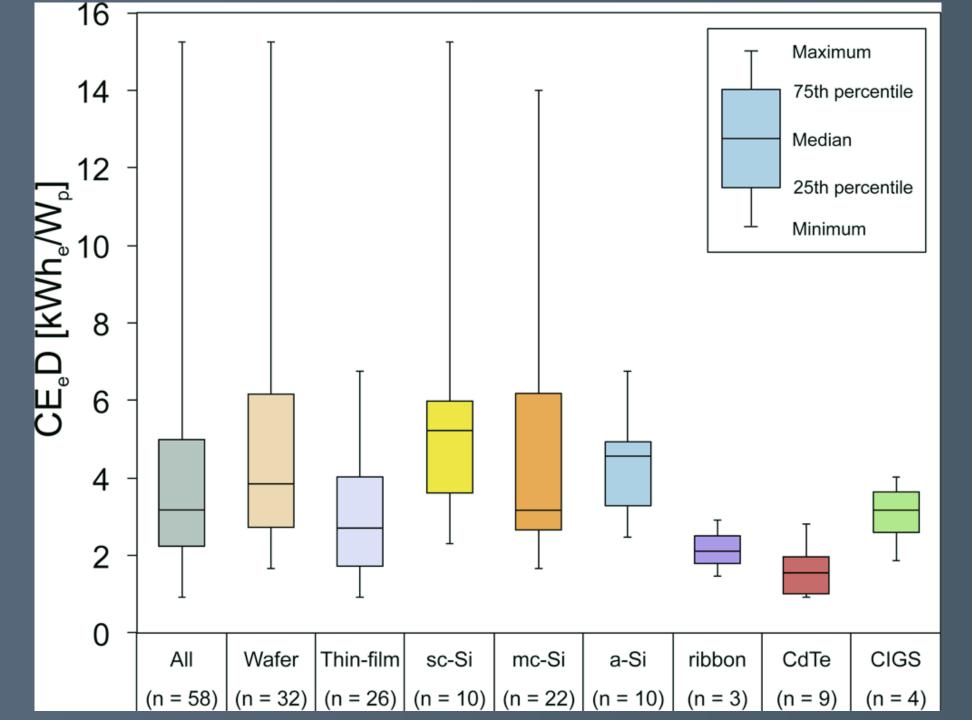
EQUIPMENT COSTS

		AHU-1	AHU-2	AHU-3	AHU-4	AHU-5	DOAS (ton/M	Bh)	Energy Recovery	Total equi	p cost:
	Total SA CFN	: 8728	12707	12842	2387	3812	130/1037		1808	5	
ing	Cost	:: \$20,600	\$26,000	\$26,000	\$7,400	\$9,525		\$311,000	\$30,40	0	\$430,925
	Total SA CFN	: 8583	12232	12533	2387	3812	129/1031		1764	4	
' lighting	Cost	:: \$20,600	\$26,000	\$26,000	\$7,400	\$9 <i>,</i> 525		\$311,000	\$30,40	0	\$430,925
	Total SA CFN	9166	11870	12813	2387	3812	130/1023		1788	2	
	Cost	: \$20,600	\$26,000	\$26,000	\$7,400	\$9 <i>,</i> 525		\$311,000	\$30,40	0	\$430,925
	Total SA CFN	: 8831	12560	12617	2374	3812	130/1004		1795	8	
	Cost	:: \$20,600	\$26,000	\$26,000	\$7,400	\$9,525		\$311,000	\$30,40	0	\$430,925
	Total SA CFN	: 9404	12061	12892	2374	3812	132/1027		1812	3	
	Cost	:: \$22,700	\$26,000	\$26,000	\$7,400	\$9,525		\$311,000	\$30,40	0	\$433,025
	Total SA CFN	: 8317	11876	12037	2361	3812	127/962		1711	3	
	Cost	:: \$20,600	\$26,000	\$26,000	\$7,400	\$9,525		\$311,000	\$30,40	0	\$430,925
	Total SA CFN	: 8317	11003	12037	2361	3812	125/942		1669	9	
V	Cost	:: \$20,600	\$22,700	\$26,000	\$7,400	\$9,525		\$311,000	\$30,40	0	\$427,625
	Total SA CFN	: 15568	21490	18130	2459	3812	163/1329		2801	7	
	Cost	: \$32,200	\$42,900	\$27,900	\$7,400	\$9,525		\$505,000	\$30,40	0	\$655,325
									(DOAS) ((DOAS)	(ERV)
3,000	4,000	9,200	11,500	13,20	00 1	6,500	19,500	22,000		70 tons	20,000
7,400	9,525	20,600	22,700	26,00)0 3	2,200	27,900	42,900	0 311,000 5	05,000	30,400

<u>Appendices</u>

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

	TOTAL
	EQUIP
	COST:
Original glass	\$430
and lighting	ຸ ວິ4ວປ
Original glass	
and NEW	\$430
lighting	
Original + PV	\$430
Triple low-E	\$430
Triple low-E +	ር ነጋጋ
PV	\$433
Triple double	ር ነጋር
low-E	\$430
Triple double	¢107
low-E + PV	\$427
Basic glass	\$655
type	- 2022


20 YEAR LIFE-CYCLE COSTS

	GLASS SYSTEM COST:	1 YEAR OP COST:	OPERATING COST FOR 20 YEARS:	20 YEAR LIFE- CYCLE COST:
),925	\$320,762	\$75 <i>,</i> 808.45	\$1,516,169	\$2,267,856
),925	\$320,762s	\$73,950.74	\$1,479,015	\$2,230,702
),925	\$295,927	\$74,256.85	\$1,485,137	\$2,211,989
),925	\$422,616	\$74,465.85	\$1,489,317	\$2,342,858
3,025	\$373,828	\$74 <i>,</i> 570.78	\$1,491,416	\$2,298,269
),925	\$446,939	\$73,209.13	\$1,464,183	\$2,342,046
7,625	\$392,431	\$72,997.30	\$1,459,946	\$2,280,002
5,325	\$168,742	\$89,154.20	\$1,783,084	\$2,607,151

<u>Appendices</u>

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

Distribution of energy input to output of PV technologies, from Environmental Science and Technology article by M. Dale and S. Benson

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

(ID OF POILUTANT PER KWYN OF Electricity)							
Pollutant (lb)	National	Eastern	Western	ERCOT	Alaska	Hawaii	
CO _{2e}	1.67E+00	1.74E+00	1.31E+00	1.84E+00	1.71E+00	1.91E+00	
CO ₂	1.57E+00	1.64E+00	1.22E+00	1.71E+00	1.55E+00	1.83E+00	
CH ₄	3.71E-03	3.59E-03	3.51E-03	5.30E-03	6.28E-03	2.96E-03	
N ₂ O	3.73E-05	3.87E-05	2.97E-05	4.02E-05	3.05E-05	2.00E-05	
NO _X	2.76E-03	3.00E-03	1.95E-03	2.20E-03	1.95E-03	4.32E-03	
SO _X	8.36E-03	8.57E-03	6.82E-03	9.70E-03	1.12E-02	8.36E-03	
СО	8.05E-04	8.54E-04	5.46E-04	9.07E-04	2.05E-03	7.43E-03	
TNMOC	7.13E-05	7.26E-05	6.45E-05	7.44E-05	8.40E-05	1.15E-04	
Lead	1.31E-07	1.39E-07	8.95E-08	1.42E-07	6.30E-08	1.32E-07	
Mercury	3.05E-08	3.36E-08	1.86E-08	2.79E-08	3.80E-08	1.72E-07	
PM10	9.16E-05	9.26E-05	6.99E-05	1.30E-04	1.09E-04	1.79E-04	
Solid Waste	1.90E-01	2.05E-01	1.39E-01	1.66E-01	7.89E-02	7.44E-02	

Factors for Energy Use in Buildings," 2007

Table 3 Total Emission Factors for Delivered Electricity (lb of pollutant per kWh of electricity)

Emissions per kWh of electricity generated							
		Sta an					
	kgCO ₂ /kWh	kgCH ₄ /kWh	kgN2O/kWh				
South Africa	1.069026617	0.00001131304	0.00001694748				
South Asia	1.213800412	0.00001520917	0.00001755688				
Southeast Asia/ASEAN	0.627076088	0.00001079622	0.00000567292				
Spain 2	0.34287509	0.00000553451	0.00000307467				
Sri Lanka 🦳 🚬 👘	0.417247633	0.00001644053	0.00000328811				
Sudan	0.614906086	0.00002436143	0.00000487229				

Spain emission factor from Ecometrica "Technical Paper Electricity-specific emission factors for grid electricity," 2011

U.S. Emission Factors from NREL "Source Energy and Emission

APPENDICES

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

Calculations: Method 1:

kWh generated = 1451 kWh/year (from manufacturer website application) Pounds CO2 saved/year = 1.64 lb CO2/kWh x 1451 kWh/year (generated) = 2380 lb CO2/year

- kWh to manufacture = $11.15 \text{ kWh/ft2} \times 3575 \text{ ft2} = 39861 \text{ kWh}$
 - (120 kWh/m2 = 11.15 kWh/ft2)
- Pounds of CO2 to manufacture = 0.755909 lb CO2/kWh x 39861 kWh = 30131 lb CO2
 - (0.342875 kg/kWh = 0.755909 lb/kWh)
- CO2 payback = 30131 lb CO2/ 2380 lb CO2/year = 12.66 years

APPENDICES

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

Calculations: Method 2:

kWh generated = 1451 kWh/year (from manufacturer website application)

Pounds CO2 saved/year = 1.64 lb CO2/kWh x 1451 kWh/year (generated) = 2380 lb CO2/year

- $Wp = 2.972 W/ft2 \times 2500 ft2 = 7440 W$
 - (32 Wp/m2 = 2.972 W/ft2)
- kWh to manufacture = $4.5 \text{ kWh/Wp} \times 7440 \text{ Wp} = 33480 \text{ kWh}$
- Pounds of CO2 to manufacture = 0.755909 lb CO2/kWh x 33480 kWh = 25308 lb CO2
 - (0.342875 kg/kWh = 0.755909 lb/kWh)
- CO2 payback = 25308 lb CO2/ 2380 lb CO2/year = 10.63 years

<u>Appendices</u>

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

 Renderings from AECOM Basis of Design drawings
 Photos courtesy of H.F. Lenz Company


<u>Appendices</u>

Floor plans Lighting breadth Building submeter data Trace 700 results Cost analysis Environmental calculations Pictures

NASA AOB1 – Valerie Miller

Renderings from AECOM
 Basis of Design drawings
 Photos courtesy of H.F.
 Lenz Company

1. ANSI/ASHRAE. (2013). Standard 62.1-2013, Ventilation for Acceptable Indoor Air Quality. Atlanta, GA: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. 2. ANSI/ASHRAE. (2013). Standard 90.1-2013, Energy Standard for Buildings Except Low Rise Residential Buildings. Atlanta, GA: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. 3. ASHRAE. (2009). 2009 ASHRAE Handbook, Fundamentals.. Atlanta, GA: American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. 4. Deru, M. P., Torcellini, P., & National Renewable Energy Laboratory (U.S.). (2007). Source energy and emission factors for energy use in buildings (Rev.). Golden, Colo.: National Renewable Energy Laboratory. 5. "Energy Balance of the Global Photovoltaic (PV) Industry - Is the PV Industry a Net Electricity Producer?" Environmental Science and Technology (2013). Print. 6. Energy Star (2014, September). Portfolio Manager, U.S. Energy Use Intensity by Property Type. Retrieved October 10, 2014, from https://portfoliomanager.energystar.gov/pdf/reference/US National Median Table.pdf 7. Flynn, J. (2008, January 1). Visualizing the Future of NASA Langley Research Center. Retrieved September 12, 2014. < http://proceedings.esri.com/library/userconf/feduc08/papers/feduc.pdf>. 8. "Onyx Solar - Building Integrated Photovoltaics (BIPV) - Photovoltaic Glass for Buildings." Onyx Solar- Photovoltaic Building Materials. Onyx Solar. Web. 1 Apr. 2015. http://www.onyxsolar.com/. 9. "PV FAQs." National Renewable Energy Laboratory. National Renewable Energy Laboratory, 1 Jan. 2004. Web. 4 Apr. 2015. < http://www.nrel.gov/docs/fy04osti/35489.pdf>. 10. Quinville, T. (2009, September 16). New Town NASA Langley Research Center's Revitalization Initiative Report to Hampton Roads SAME Chapter. Retrieved September 12, 2014, from http://posts.same.org/hamptonroads/NASANewTownSep2009.pdf 11. "Typical Foot Candle (FC) and LUX Ratings." Lashen Electronics. Lashen Electronics. Web. 1 Apr. 2015. < http://www.lashen.com/vendors/pelco/typical_light_levels.asp>.

12. U.S. Department of Energy (2008) Buildings Energy Data Book, Buildings Energy Data Book. Retrieved September 30, 2014. < http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=3.3.8>.

photovoltaics>.

14. Ver-Bruggen, Sara. "Smart Glass." Pv-magazine. Pv Magazine, 1 Feb. 2013. Web. 1 Apr. 2015. < http://www.pv-magazine.com/archive/articles/beitrag/smart-glass-_100010161/572/#axzz3VJcQNnfP>. 15. Viracon - Your Single-Source Architectural Glass Fabricator. Viracon. Web. 1 Apr. 2015. http://www.viracon.com/.

REFERENCES

13. Vaughan, Adam. "Colourful 'solar Glass' Means Entire Buildings Can Generate Clean Power." The Guardian, 12 Feb. 2013. Web. 1 Apr. 2015. < http://www.theguardian.com/environment/2013/feb/12/printed-solar-glass-panels-oxford-