The electrical engineering program at Penn State consistently ranks as a top program in the United States as reported by U.S. News & World Report.

Our curriculum provides broad-based knowledge in electrical circuits, digital systems, electronic devices, electromagnetics, signal processing, communications, and control, as well as expertise in one or more areas of specialization.

Additional problem-solving skills and practical experiences are developed through design projects and laboratory assignments, which also provide team-building and technical communications skills.

We have a number of professional societies that allow students to explore electrical engineering outside the classroom.

Students have access to speakers, career fairs, conferences, competitions, tours, professional contacts, leadership opportunities, and social events.

Our alumni remain actively involved, particularly in our mentoring program. Our undergraduates are paired with electrical engineering alumni working in industry. Our mentors facilitate professional development by providing students with guidance, counsel, and networking opportunities.

For more information about the School of Electrical Engineering and Computer Science at Penn State, visit eecs.psu.edu.

Math, Physics, and Computer Programming
Students who enjoy these will do well in electrical engineering. Our areas of specialization build on these skills.

Engineering Co-Op & Internship Program
Integrate classroom learning with real-world experience.

Study Abroad Programs
Gain a worldwide perspective as you develop foreign language skills, cultural understanding, and professional experience.

Graduate Program
Broaden educational credentials and improve your marketability in the global workplace.

AVERAGE ENTRY-LEVEL SALARY OF ELECTRICAL ENGINEERING GRADUATES

$77,436

Hear from students and alumni by watching the Exposure to Major video series: bit.ly/PennStateEngineering
Electrical engineers (EEs) study and apply physics and mathematics to design electrical and electronic systems and their components for a wide range of applications such as mobile phones; wireless communications; consumer electronics; control systems; computers; computer networks; power generation; machine learning; robotics; nanoelectronics; nanophotonics; bioelectronics; autonomous transportation; wearable electronics; and metamaterials.

Examples of career opportunities: Systems and circuit design for consumer electronics; sensors; control systems; power and energy systems; communications, signal processing software and hardware development for audio and video applications; software design and algorithm development for artificial intelligence; cyber security; computer vision; medical imaging; big data analytics

“I love electrical engineering because it is such a broad field. I have met EEs using radio waves to study glaciers, designing power supplies for sounding rockets, and helping biomedical researchers develop wireless imaging devices, and those were all undergrads!”

Erica Venkatesulu
Schreyer Honors College
Class of 2020