ENGINEERING FACULTY COUNCIL

Meeting Agenda
February 11, 2020
11:00 a.m. – 1:00 p.m.
202 Hammond Building (Stavely Conference Room)

1. Approval of minutes for the meeting of January 21, 2020
2. Chair’s Report—March meeting schedule; EFC Elections
3. Deans’ Report—Peter Butler
4. Update from Undergraduate Studies Committee—Gary Gray (proposals in Box)
5. Update from Graduate Studies Committee—Puneet Singla
6. Update from Engineering Technology Committee—Ram Rajagopalan
7. Update from Nominating Committee—Dan Hayes
8. Academic Integrity—Christine Masters
9. Updating the CoE Promotion and Tenure Guidelines—Brief update from 10 am working meeting
10. Update from Faculty Senate—Alok Sinha
11. Update from Graduate Council—Bo Cheng
12. Other Business

<table>
<thead>
<tr>
<th>Type and Description of Change</th>
<th>Description or Rationale for Curricular Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDSGN 462 Introduction to Design for Additive Manufacturing</td>
<td>EDSGN 462 offers an introduction to modern additive manufacturing (AM, also known as 3D printing) technology, with a special focus on how at the desktop-scale AM is changing the way in which engineers approach design. The principles discussed in the course will center on product design and manufacturing. Students will be exposed to a wide variety of application areas, spanning numerous traditional engineering disciplines. Students will work in a project-driven environment, where they will be tasked with designing products meant to expose them to key design for additive manufacturing concepts. Topics to be covered include the overall role of AM as a tool in engineering design, an introduction to the possibilities enabled by AM’s “free complexity,” and an introduction to how desktop-scale AM may limit the manufacturability of designs. Students who complete the course will be better prepared to understand the role that AM may play in their future as engineering designers, and will be ready to undertake a deeper study of design for additive manufacturing principles as applied in industry and research.</td>
</tr>
<tr>
<td>AE 441 Engineering Lifecycle Economic Analysis for Buildings</td>
<td>Course Add Principles and methods for analyzing building lifecycle and economic feasibility for alternative systems.</td>
</tr>
</tbody>
</table>

Submitted by: Nicholas Meisel
Submitted by: Sez Atamturktur, Robert Leicht, and Richard Mistrick