Promotion and Tenure - Candidate's Narrative Statement

Statement Preparation

The Candidate’s Narrative Statement will be prepared in Activity Insight (AI). The statement is part of University Dossier report from AI.

Focus of Statement

In the College of Engineering, a single narrative statement written by the candidate is required. This statement should focus on clarifying and highlighting the primary area(s) of concentration and contribution by the candidate to aid the College and University Committees in their review of the dossier.

Process for Statement Review Prior to Finalization

The Department Head has responsibility to review the candidate’s narrative statement and ensure that it is not subjective or evaluative. The candidate may be asked to make revisions as part of this review.

Guidelines for Statement Preparation

The format of the Narrative Statement should:

- Be a brief statement explaining areas of emphasis and major contributions
- Be written in the third person

The content of the Narrative Statement should:

- Explain how the candidate’s work and activities fit in the context of their overall goals and agendas (not call attention to achievements already listed in the dossier).
- Be factual and objective, not subjective or evaluative.
- Avoid use of:
 - Unnecessary technical jargon, technical acronyms or other phrases that reviewers outside the discipline would not understand.
 - Qualitative phrases, adjectives, and adverbs to describe a candidate's work and contributions – see examples to avoid below:

Examples to Avoid: "strong record," "particularly effective," "well-funded," "has strengths in...,” "was successful in ...,” "tremendous effort,” "developed an excellent reputation,” "teaching evaluations have improved,” "received favorable recognition,” ”is one of the pioneers in the area,” ”performed original and voluminous work,” "work was well-received,” "... greatly enjoys interacting with students,” ”he has established visibility in ...,” ”she has strengthened the curriculum by ...,” ”has demonstrated abilities in ...,” ”constantly strives to show the students ...,” ”students find (the faculty member) knowledgeable and interesting,” ”has passed on an enthusiasm for ...,” ”has developed expertise in ...,” ”his long-term goal is
Examples of Narrative Statements

These examples illustrate the content and format of an appropriate narrative statement to use as a guide or template.

Narrative Statement - Example 1

Jane Doe joined the faculty of Penn State University in the Fall of 1990 following five years in industry with the Acme All-Purpose Systems Company. While at Acme, she performed research in computational analysis of power systems. As part of an Acme-funded research program, the candidate initiated the Acme High-Speed Computing Effort, which grew to include 20 researchers in electric power and control systems analysis using massively parallel computers with an emphasis on computer graphics.

Doe’s research interests are in the related areas of power system dynamics, energy conversion, and power electronics. Her work in each of these areas has primarily involved analysis and computer modeling along with some experimental investigations. At Penn State, she initiated NSF-supported research in the first of these areas, focusing on system-level, model-order reduction, and development of a state-space method for determining harmonics in power systems which contain power electronic converters. In addition to this power systems research, she is collaborating with faculty members in Mechanical and Nuclear Engineering on a three-year Department of Energy grant pertaining to intelligent distributed control of nuclear and fossil-fuel power plants. The goal of this research is to apply new intelligent control methodologies to the subsystem and supervisory controls in a target nuclear power plant operated by Argonne National Laboratory and to a fossil fuel plant to be identified. This work is of potential interest to both electric utilities and government agencies involved in power system design and analysis.

Since coming to Penn State, Doe has taught all of the courses in the control systems and power areas at both the undergraduate and graduate level. She has developed and taught a new graduate course in Power System Networks and is currently developing a new undergraduate course in Computer Control of Power Systems. From the high-technology classrooms in the new classroom and office building, Doe uses an advanced Unix color workstation at the podium (with high-resolution projection capability) to teach numerical methods for analysis and design of power and control systems. She collaborated with the CBEL group at the CAC to develop a multi-media computer program for classroom instruction. This program is used to demonstrate the interactive nature of design and the importance of trade-offs in the design process.

The candidate has led the development of computer facilities for both undergraduate and graduate students in the department. These facilities include the latest X-terminals, Unix workstations, and microcomputers for the department. In particular the candidate received a Department of Defense equipment grant that supported the acquisition of the only massively parallel computer of its kind on campus. The peak speed of this machine is faster than any other
computer on campus. This computer is housed in the department for both instruction and research.

Narrative Statement - Example 2

John Doe’s research interests are in the reactor control area: optimal, robust, and intelligent control including fuzzy logic, neural network, and reconfigurable control techniques. His work includes interdisciplinary collaboration with faculty members in Electrical and Mechanical Engineering. Doe established an intelligent distributed controls research laboratory that is used to conduct real-world experimental control research at the TRIGA reactor facility. This work includes both diagnostics and advanced automatic control for power plants. Doe’s research has led to the development of a new diagnostic model approved by the Nuclear Regulatory Commission for use in the electric power generation industry. Doe’s research interests also include nuclear safety analysis and the use of computational methods in reactor physics. He uses various reactor simulation computer programs to evaluate the relative safety characteristics of pressurized and boiling water reactors during past related failures and accidents. This analysis adds to the industry's understanding of time-dependent phenomena during events. Since large-scale experimental testing of events in actual plants is very costly, code simulations become the best-estimate approach to investigate plant response and the impact of design changes.

Doe teaches the graduate reactor control course, the capstone nuclear reactor design course, and the multiple section undergraduate reactor physics laboratory course. He also teaches the summer "ramp" course, which compresses two semesters of reactor physics into an 8-week course for undergraduate co-op and incoming graduate students. Doe has incorporated modern simulation and computer-based control systems analysis software into the reactor control course. Similarly, in the senior laboratory course, Doe has incorporated simulation of reactor experiments to demonstrate the theoretical basis of the experiments. In order to have better visualization of nuclear engineering concepts, he developed (with support from the Leonhard Center) a Nuclear Plant Simulation Intelligent Tutoring System for use in the capstone design course.

Doe has been selected as a Presidential Young Investigator. He serves as chair of the Reactor Design Committee for the Nuclear Regulatory Commission and as a member of the Executive Board of the American Nuclear Society.