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Abstract 
 

 
A new methodology is developed to 
optimize the shape of airfoils for high 
aerodynamic performance. A boundary 
layer panel method coupled solver and 
an evolutionary algorithm are linked 
within an automated design loop. A 
multi-parameter objective function is 
based on drag to lift ratio of airfoil. The 
problem is constrained with a minimum 
allowable lift coefficient, a maximum 
allowable flow angle of attack, and a 
moment coefficient range.  

1 INTRODUCTION 

Airfoil performance is an important parameter 
in aircraft flight mechanics. Maximum lift, 
maximum lift to drag ratio, its behavior after 
stall affects the overall performance of the 
aircraft. In addition to this, pitching moment 
generated by the airfoil also has a strong effect 
on the tail size. Therefore, good airfoil selection 
and design still remain to be an important 
problem. There are two basic approaches to 
designing airfoils. The first, the direct method 
consists of selecting a known airfoil shape with 
performance similar to that required by the new 
application and making slight modifications to 
the shape to achieve the required performance. 
The other approach is known as the inverse 

method. Here, the designer specifies the 
performance characteristics required by the 
airfoil and uses computer programs to compute 
the airfoil geometry that produces that 
performance. The advantage of direct approach 
is its simplicity. But classical direct approaches 
mostly could do a local search. The inverse 
approach is far more powerful since the 
designer has much more precise control over the 
final performance of the airfoil. However, while 
every airfoil shape produces a particular set of 
performance characteristics, not every set of 
performance characteristics can be used to 
generate a realistic airfoil shape. The designer 
must be aware of what is practical, the trade-
offs required between different types of 
performance, and physical constraints. As a 
consequence, classical design methods mainly 
adopt “trial and error” approach and strongly 
rely on designer’s future experience rather than 
the current needs. A global optimization method 
based on evolutionary algorithms is expected to 
shorten and simplify the iterative design process 
and improve the design output. A similar 
approach has been previously used for 
aerodynamic optimization of turbomachinery 
cascades1, and very good results were obtained.  
 
In this project the flow solutions are obtained 
using a boundary layer coupled panel method 
based on source and vortex panels. Boundary 
layer part of the code is responsible for accurate 



drag prediction. Method can be easily 
implemented and gives fast and reliable results 
at moderate angles of attack.  
 
Optimization part is performed using 
Differential Evolution algorithm originally 
developed by Storn and Price2. The algorithm is 
a real coded direct search method for 
minimizing continuous space functions. This 
way it is similar to Deb’s G3 model3,4.  
 
In the solutions maximum number of 
generations is taken to be 50.  The algorithm is 
tested for several population sizes and algorithm 
parameters. Results are obtained using the 
optimum program parameters with randomly 
generated initial population and an initial 
population consisting of known NACA profiles.  
 

2 FLOW SOLVER 
The flow solution is obtained using a panel 
method, which assumes the flow is inviscid, 
incompressible, and irrotational. Panel method 
is based on modeling the airfoil surface with 
source and vortex panels with unknown 
strengths and then solving for those strengths to 
satisfy the solid wall boundary conditions, i.e., 
flow can not penetrate through the airfoil 
surface. Panel method can be easily 
implemented and gives fast and reliable results 
for moderate angles of attack. The biggest 
drawback of panel method is; it is based on 
inviscid flow equations therefore it can not 
predict aerodynamic drag accurately. To 
overcome the problem, the method is coupled 
with a boundary layer correction method. The 
method solves parabolized Navier-Stokes 
equations using Falkner-Skan5 transformation. 
The transformation reduces the system of partial 
differential equations to an ordinary differential 
equation of order 3. The method is capable of 
solving boundary layer equations for both 
laminar and turbulent cases. For turbulent flows, 
Baldwin-Lomax (1978) algebraic turbulence 

model is employed. The model is very reliable 
and is sometimes employed for flow solutions 
around complex three-dimensional bodies6, such 
as full aircraft configurations.  

3 DIFFERENTIAL EVOLUTION 
Problems which involve global optimization 
over continuous spaces are ubiquitous 
throughout the scientific community. In general, 
the task is to optimize certain properties of a 
system by pertinently choosing the system 
parameters. The standard approach to an 
optimization problem begins by designing an 
objective function that can model the problem’s 
objectives while incorporating any constraints. 
For some problems, the objective function 
defines the optimization problem as a 
minimization task. For such problems, the 
objective function is more accurately called a 
“cost” function. When the cost function is non-
linear and non-differentiable direct search 
methods are the methods of choice.  
 
Differential Evolution (DE) is a direct search 
method which utilizes NP D-dimensional 
parameter vectors as population for each 
generation2. DE generates new parameter 
vectors by adding the weighted difference 
between two population vectors to a third 
vector. This operation can be called mutation. 
The mutated vector’s parameters are then mixed 
with the parameters of another predetermined 
vector, the target vector, to yield a so called trial 
vector. Parameter mixing can be named 
crossover. If the trial vector yields a lower cost 
function value than the target vector, the trial 
vector replaces the target vector in the following 
generation. This operation is called selection. 
The details of these operations are explained in 
the following subsections.  

3.1 MUTATION 
For each target vector NPix Gi ,..,2,1,1, =+ , a 
mutant vector is generated according to 
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Where 321 ,, rrr  are random indexes which are 
mutually different. F is an amplification factor 
whose value changes between 0 and 2. The 
indexes 321 ,, rrr  are also chosen to be different 
than the running index i. Therefore, NP must be 
greater than or equal to four to allow this 
condition.  
 

3.2 CROSSOVER 
In order to increase the diversity of the 
perturbed parameter vectors, crossover is 
introduced. So a trial vector 
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is formed such that 
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where ran(j) is a uniform random number, CR is 
the crossover probability, and rnbr(i) is a 
randomly chosen index which ensures that the 
trial vector gets at least one parameter from the 
mutated vector. 
 

3.3 SELECTION 
To decide whether it should become a member 
of generation G+1, the cost trial vector is 
compared to the cost of the target vector. If trial 
vector yields a smaller cost than the target 
vector, it replaces the target vector in the next 
generation.  
 

4 PROBLEM FORMULATION 
In aerodynamics, lift to drag ratio is called the 
aerodynamic efficiency. The objective of many 
airfoil design approaches is to maximize the 
ratio. But since drag is informally named as the 
price that one pays to obtain lift, the reciprocal 
of aerodynamic efficiency can be called a “cost” 
function and the maximization problem can be 

turned to a minimization problem.  In a typical 
flow lift to drag ratio of an airfoil is related to 
flow angle of attack, Reynolds number, Mach 
number and the shape. For constant low speed 
flows where density fluctuations are relatively 
small, Mach number effects can be neglected 
and Reynolds number can be fixed to a certain 
value. This approximation leaves only two 
independent variables: Angle of attack and body 
shape. The shape of an airfoil is defined using 
many parameters; maximum thickness, camber 
distribution, leading edge radius, etc… A typical 
airfoil with these parameters can be seen in 
Figure 1. 
 

 
Figure 1. Airfoil profile with shape parameters.  

 
After the Second World War NACA scientists 
developed a theory of combining mean lines and 
thickness distribution to obtain desired airfoil 
shapes. This theory made it possible to obtain 
airfoil shapes using only three parameters.  

1. Maximum thickness,  
2. Maximum camber 
3. Location of maximum camber. 

Knowledge of these three parameters along with 
the angle of attack is sufficient to obtain the lift 
the drag ratio of a particular airfoil. Therefore, 
the problem reduces to a four-parameter single 
objective optimization problem with drag to lift 
ratio (D/L) being the objective to be minimized.  
 
Optimization process starts with an initial 
population of airfoils. The shape parameters are 
either randomly selected or picked from a 



known set of airfoils. Then population members 
are evaluated using the flow solver described 
above. Shape optimization procedure is 
performed using the Differential Evolution 
method. For this purpose a FORTAN code is 
developed consisting of two parts; DE and flow 
solver parts. The DE part of the code is 
developed based on the theory described by 
Storn and Price2. The latter part is developed by 
combining a first order panel code and a 
boundary layer code which solves Falkner-Skan 
equation. The DE part of the code initializes the 
population and evaluates them by calling the 
flow solver part. After that it generates the trial 
vectors are generated using the mutation and 
crossover operators. Later on the trial vectors 
are evaluated and a greedy selection operation 
performed between the trial and target vectors to 
generate the next generation. The loop continues 
until the maximum number of generations is 
reached.  
 
As it has been mentioned above, the problem is 
subject to three constraints: Minimum allowable 
lift coefficient, minimum and maximum 
moment coefficients, and maximum allowable 
angle of attack. First and second constraints are 
handled by penalizing the infeasible solutions 
using linear penalty functions. For these cases 
the minimum allowable lift coefficient is chosen 
to be 0.3, and upper and lower bounds of the 
moment coefficient are selected as 0.0 and -0.1, 
respectively. For the third constraint the flow 
angle of attack is not allowed to exceed 5 
degrees to prevent any possible flow separation 
which will increase drag and decrease lift.  
 

5 RESULTS AND DISCUSSION 

The algorithm is tested for different population 
sizes, amplification factors, F, and crossover 
rates, CR. First, all the crossover rate is set to 
0.9 and solutions with different amplification 
factors and population sizes are compared and 
displayed in Figure 1. Here the initial population 

is generated by randomly selecting the decision 
variables.   

Drag to Lift Ratio vs. Population Size
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Figure 1. Comparison of population sizes for 

different amplification factors. (CR = 0.9) 
 

It is clear from Figure 1 that the best solution is 
obtained when F = 0.5 and NP = 20. According 
to Figure 1 and reference 2, the optimum 
population size and DE parameters were 
selected to be: 

NP = 20 
F = 0.5 

CR = 0.9 
 

Based on these settings, the evolution of D/L is 
shown in Figure 2. 
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Figure 2. Evolution of D/L 

 



Drag to lift ratio, lift coefficient and moment 
coefficient of the best airfoil are listed in 
Table1.  
 

Table 1. Properties of the best airfoil 
D/L Cl Cm 

3.25x10-6 0.823477 -0.0964 
 

 
 According to Figure 2, the evolutionary 
algorithm successfully decreased D/L by 99.8 
%. It is also evident from Table 1 that the 
constraints were also satisfied. Since the 
algorithm employs a greedy selection, the best 
solution keeps surviving until been beaten. This 
leads to a piecewise continuous evolution curve 
which can be seen in Figure 2.  
 
The best members of the initial and the final 
populations and their pressure distributions are 
displayed in figures 3 and 4. 
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Figure 3. Best airfoils of the initial and final 

population. 
 

Initial and Final Best Pressure Distributions
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Figure 4. Pressure distributions of the best 

airfoils of initial and final populations.  
 
In the solutions above, the initial population is 
generated randomly, in which airfoil shape 
parameters and flow angle of attack are selected 
using random numbers. The airfoils of the initial 
population satisfied the constraints. Therefore, 
they can be easily considered as a reliable 
population. But it would also be interesting to 
see the performance of the algorithm when the 
initial population is constructed using some 
known airfoils. For his reason, a population of 
20 airfoils is initiated using the NACA profiles 
listed in Table 2.  

Table 2. Initial NACA profiles. 
0003 1403 2203 4403 
0006 1406 2206 4406 
0009 1409 2209 4409 
0012 1412 2212 4412 
0015 1415 2215 4415 

 
The flow angle of attack is selected randomly 
just like the previous case.  
 
Figure 5 shows the evolution history of the D/L. 



Evolution of Drag to Lift Ratio
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Figure 5. Evolution of D/L 

 
According to the figure, the algorithm dropped 
D/L by 83.9 %. Although not as good as the 
previous case, this result is really satisfactory. 
The variation of lift and moment coefficients 
during the evolution are displayed in figures 6 
and 7 
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Figure 6. Evolution of lift coefficient. 

 

Evolution of Moment Coefficient
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Figure 7. Evolution of moment coefficient. 

 
Figures 6 and 7 clearly showed that the 
constraints are satisfied all the time. The 
optimum airfoil found after the evolution had 
the maximum lift coefficient. It had a slightly 
larger moment (magnitude wise) but it is still in 
the acceptable limits.  
 
Figures 8 and 9 show the optimum airfoils at the 
initial and final populations, respectively. 
 

Optimum Airfoil of the Initial Population
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Figure 8. Optimum Airfoil at the initial 

population 
 



Optimum Airfoil After 50 Generations
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Figure 9. Optimum airfoil after 50 generations. 

 
Since the airfoils are drawn to scale in figures 8 
and 9, one can easily realize the changes in the 
shape parameters and the flow angle of attack. 
The pressure distributions of these airfoils are 
available in figures 10 and 11.  
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Figure 10. Optimum pressure distribution at the 

initial population 
 

Optimum Pressure Distribution after 50 
Generations
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Figure 11. Optimum pressure distribution after 

50 generations. 
 

The following conclusions can be made after a 
detailed examination of figures 10 and 11: 
The area between the upper and lower part of 
the Cp curve gives the lift coefficient of an 
airfoil. For the optimum airfoil of the initial 
population most of the lift is generated close to 
the leading edge, while it is more evenly 
distributed for the final optimum. This clearly 
decreases the drag coefficient. Unfortunately, 
this situation increases the moment generated by 
the airfoil. But although relatively higher, the 
moment coefficient of the final airfoil is still in 
the acceptable range. 
 

6 CONCLUSIONS 
Airfoil shape optimization was for high 
aerodynamic performance is performed using 
Differential Evolution algorithm.  In the 
solutions drag to lift coefficient is minimized 
while satisfying the constraints on lift 
coefficient, moment coefficient and flow angle 
of attack. In the first part of the computations, 
initial population was generated randomly. For 
this case optimum drag to lift ratio was 
minimized by 99.8 %, which was really 
amazing. In the second part, initial population 
was constructed using some well-known NACA 
profiles. For this case the optimum drag to lift 
ratio was dropped by 83.9 %. Although not as 



high as the first case, this is also a very 
significant decrease.  
 
The results clearly showed that Differential 
Evolution can be effectively used for airfoil 
shape optimization. The FORTRAN code 
developed using this algorithm is very fast and 
robust. It only takes a couple of minutes to run 
on Pentium III processors.  
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