
Phased Linear Stochastic Array Synthesis via hybrid Particle Swarm 
Optimization 

 
Zikri Bayraktar 

Electrical Engineering Department 
The Pennsylvania State University 

University Park, PA 16802 

Abstract 
 
 
A hybrid Particle Swarm Optimization (PSO) 
with uniform mutation and arithmetic crossover 
applied to optimization of four and six elements 
stochastic aperiodic phased antenna arrays. 
Comparison against the conventional arrays has 
shown that hybrid particle swarm can make the 
resistance curve flatter over the 30º to 90º scan 
angles range while keeping the Voltage Standing 
Wave Ratio (VSWR) of each array element 
below 2:1 by generating stochastic element 
structures and perturbing the element spacing. 

1 INTRODUCTION 
In the design of the phased arrays, designers commonly 
encounter the problem that the driving-point impedances 
of the array elements considerably change with the scan 
angle. A phased array is an n-element antenna array, 
which has independently powered elements. Each element 
can be driven by different source amplitude and phase. 
This allows the designer to steer the beam by driving each 
element with different phase.  
The driving point impedance of a phased array element is 
a function of the self-impedance, the mutual impedance 
from the other array elements and the array excitation 
currents. This can be formulated as follows: 
 
 
 
 
Where Zn is the driving point impedance of the nth array 
element, ZnN is the mutual impedance between two 
elements and In is the element excitation current. Here, the 
mutual impedance depends on the distance from the 
adjacent array elements and self impedance depends on 
the shape of the individual element.  

 
In many optimization applications, only the pattern of the 
antenna is considered without regard to the resulting 
driving point impedances. This leads to impractical 
values, which cannot be implemented. Bray et al. (2002) 
has utilized a Genetic Algorithm (GA) to implement 
driving point restriction on each element. They took eight 
elements phased linear dipole arrays and perturb the 
element distances. One should note that the real part of 
the driving point impedance is related to the radiated 
energy and the imaginary part is related to the stored 
energy on the antenna. Minimizing the imaginary part of 
impedance reduces the stored energy, and increases the 
radiation, which is the main task of an antenna. Also, 
Voltage Standing Wave Ratio (VSWR) is a measure of 
how well the antenna matches to the transmission line. 
VSWR 1:1 means that all the power from the 
transmission line is received by the antenna and radiated. 
VSWR 2:1 means only 10% of the power is reflected 
back to the transmission line, which is a good percentage 
for practical applications. 
Bray et al. managed to restrict the real part of the 
impedance (resistance) to be in the range of 30 and 130 Ω 
over the entire desired scanning range. From the matching 
network point of view, placing restrictions on the 
resistance over the scan range simplifies the design of 
matching network for each element so that VSWR is 
below 2:1. In this paper, hybrid PSO is first given the task 
to find stochastic aperiodic arrays, which has resistance 
restriction from 40 to 80 Ω. Then, second fitness function, 
independent from the first fitness function, is set to 
optimize the VSWR to be less than 2:1. Various 
configurations are implemented with hybrid PSO. 
This paper will continue with a short analysis of a 
conventional four elements periodic phased dipole array 
and a random seed analysis on hybrid PSO. In the third 
section, the stochastic array structure, Particle Swam 
Optimization and hybridization will be explained. Section 
four will be split into two parts. In the first part, a parallel 
grid similar elements configuration results on only 
resistance optimization will be presented. Second part of 
section four will talk about 2:1 VSWR optimization, in 
which the reactance part of the input impedance is 
included into the optimization. Section five will present 
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various configurations. First, planar grids similar 
elements; second, parallel grids different elements; and 
third, planar grids different elements configuration results 
will be presented.  In the second and third cases, the 
dimension of the problem is four times of the first 
configuration due to different element structures. This 
section will conclude with six elements array optimization 
results. This paper will end with conclusions and future 
work section. 
 

2 CONVENTIONAL FOUR ELEMENTS 
PHASED DIPOLE ARRAY  

One first should look at the driving point impedance 
characteristics of four elements phased dipole array to 
have a fair comparison between the stochastic structures. 
Below figure displays the four elements periodic phased 
array where element spacing is half wave length. 
 
 
 
 
 

Figure 1: Periodic (d=λ/2) phased dipole array 
Figure 2 plots the resistance verses scan angle curves of 
this conventional periodic (d=0.5λ) phased linear dipole 
array and Figure 3 plots the VSWR verses scan angle 
curves of the same conventional array. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Resistance of periodic (d=λ/2) four elements 
phased linear dipole array vs. scan angle 

 
As it is seen from the above figure, the resistance (real 
part of the impedance) of each array element varies 
drastically as the scan angle changes. The range of the 
resistance is between 55 and 160 Ω. As the impedance 
varies, the VSWR changes accordingly. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: VSWR of periodic (d=λ/2) four elements 
phased linear dipole array vs. scan angle 

 
A random seed analysis is conducted in order to account 
for the seed effect in the hybrid PSO. A population of 30 
particles was allowed to run for 5,000 generations 
(150,000 fitness evaluations) with 15 different seeds. The 
results are plotted below in Figure 4. Three different 
optima points are observed; two of them were dominated 
by the third optimum. Seven random seeds out of fifteen 
have converged to this optimum, which has better fitness 
than other two optima. Value of X on Figure 4 is the 
number of function evaluations and Y is the fitness value 
at that optimum. Figure 4 shows that the results presented 
here will be seed dependent, the fitness values are not 
global best optima and if there is a better seed, better 
results may be found.  
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Random seed analysis 

3 STOCHASTIC STRUCTURE AND 
HYBRADIZATION 

3.1 STOCHASTIC ARRAY STRUCTURE 
Stochastic grid antenna element structure is invented and 
investigated in Computational Electromagnetics and 



Antenna Research Laboratory at PennState. Previously, 
single element dipoles, crossed dipoles (Werner, 2002) 
and three elements Yagi-Uda arrays (Bayraktar, 2004) 
were successfully optimized for performance and 
miniaturization. 
Figure 5 displays the predetermined grid planes (grey) 
and four elements stochastic phased planar array structure 
(black). Each grid consists of nine columns and 21 rows. 
The three rows in the middle are used to place a voltage 
source. This leaves nine rows above the source and nine 
rows below the source. Due to symmetry respect to the 
source, only one side will be parameterized and included 
in the optimization. Thus, each grid has nine parameters 
to optimize. From the center of the first grid to the center 
of the second grid is the first distance (d1) and other 
distances between adjacent elements are named similar to 
the first one as dn. For a four different elements 
configuration the number of parameters (number of 
dimension of the search space would be 9x4 + 3 = 39). 
The same grid structure is used in parallel grid 
configuration too. In this case though, grids are aligned in 
such a way that they look like parallel surfaces to each 
other. The distance between each adjacent grid is 
represented by dn. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Four elements stochastic phased planar array 

3.2 PARTICLE SWARM OPTIMIZATION (PSO) 
PSO is one of the newest population based evolutionary 
optimization techniques which was introduced to the 
literature in 1995 (Kennedy et al. 2001).  Unlike the 
Genetic Algorithms, PSO does not utilize genetic 
operators such as crossover, mutation or selection. PSO 
has position and velocity operators, which are simply 
algebraic equations. The members of the population are 
called particles. Initially, each particle is assigned random 
position and random velocity on each dimension of the 
problem. Then the position of the each particle is 

evaluated and fitness is assigned based on this evaluation. 
After finding the personal best positions (pbest) and 
population’s best position (gbest), positions and velocities 
are updated based on the below operators:  
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where, Vnext
i,d is the updated velocity for ith 

particle in the d dimension, ω is the nostalgia constant, 
Vnow

d is the current velocity in the d dimension, c1 and c2 
are randomly generated constants in the range of [0,1], 
Xnow

d is the current position in the d dimension, pbest,d is 
the personal best of the ith particle in the d dimension and 
gbest,d is the global best of the whole swarm in the same 
dimension. The position update equation is as follows: 
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where Xnext
d is the updated position in the d 

dimension, and the time step (∆t) is usually chosen to be 
one for simplicity. The value of ω is linearly decreased 
from 0.9 to 0.4 throughout the search by this equation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Particle Swarm Algorithm Flowchart 
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The fitness evaluation and operator update loop continues 
as shown in Figure 6. After every 15 generations, either 
arithmetic crossover or mutation (in turns) is applied to 
the swarm in order to increase the diversity among the 
particles. Both the position and the velocity are undergone 
boundary limiting. The position is limited to be in the 
range of [0, 1] and the velocity to be in the range of [-1, 
1]. Yet, these boundaries interpolated to the discrete grid 
structure and to the continuous element spacing. If the 
particle goes out of the search space, its position is set to 
the nearest boundary. If the velocity is increased too much 
a simple velocity limit rule is applied as shown below:  
 
If ( max, VV di

next > ) then   
 

With an ideal population size of 30 particles, the code is 
allowed to run minimum of 300,000 fitness evaluations 
before it terminates. 
 

3.3 HYBRIDIZATION 
Due to the greedy search habit of PSO, genetic operators 
are introduced to the solution vector. In order to 
encourage diversity over the search, arithmetic crossover 
(Tsai et al. 2004) and uniform mutation are implemented 
as explained below. 

3.3.1 Arithmetic Crossover 
The crossover operators used here are taken from (Tsai et 
al. 2004) in which the one-cut-point crossover integrated 
with an arithmetical operator derived from convex set 
theory. This operator randomly picks two particles as 
parents and selects one cut-point. Then it swaps the right 
parts of two parents after the cut-point, and calculates the 
linear combinations at the cut-point to generate new 
offspring particles. For example, let two parents be 

),...,,( 21 Nxxxx =  and ),...,,( 21 Nyyyy = . If they are crossed 
after the mth position, the resulting offspring (children) are  
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Where )( MMM
c
M xyxx −+= β  and  )( MMM

c
M LULy −+= β  

 LM and UM are the domain of yM and β is a random value. 
 

3.3.2 Uniform Mutation 
Another operator that used in turns with arithmetic 
crossover is a uniform mutation operator. This operator 
takes the position vector of each particle and introduces a 
uniformly generated random noise. The range of the 
generated random noise is limited by [-U/2 U/2] where 
the search spaces is bounded by [0 U]. 

4 PARALLEL GRIDS SIMILAR 
ELEMENTS CONFIGURATION  

This configuration is constructed simply taking the 
structure in Figure 5 and rotating the grids 90 degrees, so 
that each grid looks like parallel surfaces to each other. 
This configuration allows the PSO to place the elements 
as close as 0.021λ, if the array performs well.  
The impedance of an array element is represented as 
Zn=Rn+jIn, where Rn is the real part and In is the 
imaginary part of the impedance. With this configuration 
two different fitness functions are considered. In the first 
fitness function, PSO was to optimize the real part of the 
impedance (resistance) between 40 and 80 Ω, without 
taking the imaginary part into account. In this fitness 
function it is assumed that the imaginary part of the 
impedance can be taken care of with a matching network.  
First fitness function is as follows: 

 
 
where Rn(θ) is the driving point resistance of the nth array 
element when the beam is scanned to an angle of θ from 
endfire, α and β are parameters that have to be 
experimentally determined so as to produce the best 
driving point resistance curves. 
In the second fitness function, PSO was to optimize 
VSWR to be below 2:1. VSWR calculation is given 
below and a ratio of 2:1 means that 90% of the power 
received from the transmission line is radiated properly by 
the antenna. VSWR optimization either simplifies the 
matching network or removes the need for it. 
Second fitness function is as follows: 
if (VSW(J).GT.2) then 

VSWR(K) = VSWR(K) + (100x(VSW(J)-1)2) 

else 

 VSWR(K) = VSWR(K) + |VSW(J)-1| 

end if 

VSWR can be calculated as follows: 
 
 
 
 
 
Figure 7 plots the resistance verses scan angle curves for 
each element for the first fitness function. Hybrid PSO 
had found a parallel similar elements configuration as 
shown below, which has resistance values bounded by 40 
and 80 Ω.  
Common coax transmission line impedances are 50 and 
75 Ω. Thus, in the VSWR calculations, the value of 60 Ω 
is used because it is a good approximation to both these 
impedance values.  
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Figure 7: Resistance (Rn) optimization of four elements 
parallel grids configuration 

When the second fitness function is implemented with the 
same configuration, hybrid PSO optimized the structure to 
make the VSWR below 2:1 for all elements at all scan 
angles. Figure 8 displays the VSWR optimization results, 
which is better than the conventional periodic (d=λ/2) 
phased dipole array shown in Figure 3.  
VSWR is optimized in the expense of a wider range of 
resistance when it is compared to only resistance 
optimization in the first fitness function. The resistance 
values for the VSWR optimized array (Figure 8) are 
shown in Figure 9 and it can be seen that the values 
fluctuate between 35 and 110 Ω. Although the range of 
resistances is worse than the only resistance optimized 
case (range of [40 to 80 Ω]), it performs better than 
periodic phased dipole which was analyzed in section 2. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: VSWR optimization of four elements 

parallel grids configuration  
Unlike the half-wave dipole arrays, stochastic structure 
that presented above is reduced 16% in projected length. 
The projected length of each element is 0.42 λ, which 
helps to reduce the resistance values. The element 
distances are restricted to be minimum 0.2 λ and 

maximum 1.8 λ. This allowed the PSO, to perturb 
distances freely and reduce mutual coupling between 
elements in order to meet the design objectives. 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 9: Resistance vs. Scan Angle plot of VSWR 
optimized four elements parallel grids configuration 

5 OTHER CONFIGURATIONS  
In addition to the configurations presented so far, three 
other configurations are inspected for four element arrays 
and two for six element arrays in this paper.  
First of these three structures is planar grids similar 
elements configuration in which each element has the 
same shape and grids are placed on the same plane as it is 
in Figure 5. The projected length of this array is 0.42 λ 
and the boom length is 5.12 λ which is longer than half-
wave spaced dipole arrays (1.5 λ). VSWR plot on Figure 
10 shows that all elements have a VSWR of less than 
1.5:1 at all scan angles. Significance of having VSWR 
close to 1:1 ratio is that power delivered by the 
transmission line is not reflected back to the power 
source. The resistance curves are more flat compared to 
the periodic phased dipole in the range of 40 and 75 Ω.  
 
 
 

 
 
 
 
 
 
 
 

Figure 10: VSWR optimization of four element 
 planar grid configuration 



 
 
 
 
 
 
 
 
 
 
 

Figure 11: Resistance vs. Scan Angle plot of VSWR 
optimized four elements planar grid configuration 

 
In another configuration, grids are aligned parallel, in 
which each element has a different shape. The projected 
length of each element is 0.42 λ with a boom length of 
3.428 λ. Boom length simply is the length of the array 
from the tip of the first array element to the tip of the last 
array element. The array is shown in Figure 12. Different 
element shapes lead to different self-inductances and 
different element spacing leads to different mutual 
couplings between elements which may lead to better 
optimization. One should point out that different element 
configurations are more difficult optimization problems. 
While in similar elements array optimization the number 
of dimensions is 12, this number rises to 39 for different 
elements array optimization.  
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Four elements different shaped parallel 

 grids phased array configuration 
Although it is not clear in Figure 12, element grids are 
parallel to each other. It also displays the magnitude of 
the currents on each wire. Purple dots on each element 
represent the voltage sources with uniform magnitude but 
different phase. 

The structure shown in Figure 12 is optimized by the 
hybrid PSO for 2:1 VSWR ratio and the VSWR verses 
scan angle plot is shown in Figure 13.  
 
 
 
 
 
 
 
 
 
 
 

Figure 13: VSWR optimization of four different 
elements parallel grid configuration 

Having VSWR ratio less than 2:1 is important to reduce 
the reflected power from the antenna, but having a flat 
resistance curve is as important as VSWR optimization. 
While PSO keeps the VSWR below 2:1 ratio, the 
resistance curves are in the range of 40 and 86 Ω shown 
in Figure 14, which is very close to the target range aimed 
in this paper (acceptable range is 40 to 80 Ω). 
 

 
 
 
 
 

 
 
 
 
 
 

Figure 14: Resistance vs. Scan Angle plot of VSWR 
optimized four different elements parallel grids 

Last two configurations will be on six elements stochastic 
phased arrays. As the number of the elements increase, 
the mutual coupling among the array elements increases 
also. The first six elements configuration is similar 
element parallel grids configuration. This configuration is 
only a 14 dimensional problem: 9 discrete valued 
dimensions for the shape of the similar elements and 5 
continuous valued for the element distances. Before 
presenting the stochastic array results, one should look at 
the six elements phased periodic dipole array VSWR and 
resistance plots. 



 
 
 
 
 
 
 
 
 
 
 

Figure 15: VSWR vs. scan angle plot of phased six 
elements periodic (d=λ/2) dipole array 

 
 
 
 
 
 
 
 
 
 
 

Figure 16: Resistance vs. scan angle plot of phased 
six elements periodic (d=λ/2) dipole array 

 
The VSWR values of conventional phased periodic dipole 
array goes up to 5.2:1 ratio at some scan angles and the 
resistance values fluctuate between 55 and 170 Ω. 
 
 
 
 

Figure 17: Six elements parallel grids  
stochastic phased array 

 
When compared to the four elements case, six elements 
array, shown in Figure 17, has a boom length of 4.35 λ, 
which is relatively short compared to some of the four 
elements arrays presented above. However, it still is 
longer than six elements periodic phased dipole array 
which has 2.5 λ boom length.    
When the VSWR vs. Scan angle plots are compared, it is 
clear that stochastic phased arrays are better than the 

conventional phased dipole arrays and all elements are at 
or below 2:1 ratio at all scan angles as seen in Figure 19. 
The resistance curves are plotted in Figure 18 and they 
vary in the range of 35 to 95 Ω, which offers smaller 
fluctuation in resistance values than conventional array. 

Figure 18: Resistance vs. Scan Angle plot of VSWR 
optimized six similar elements parallel grids array 

 
Figure 19: VSWR optimization of six similar  

elements parallel grids array 
 
The last configuration is six elements planar grids array, 
which is also optimized for 2:1 VSWR ratio. Hybrid PSO 
again found a solution for this configuration which is 
presented in Figure 21. VSWR is below 2:1 ratio for all 
elements at all angles and the resistance curves are limited 
by the resistance values of 35 and 95 Ω. 
Figure 20 displays the number of fitness evaluations of a 
swarm with 30 particles which is used to optimize the last 
configuration. Mutation operator is applied after 5000th 
function evaluation and provided diversity to the 
population, which helped the particles to find better spots 
on the solution space. The fitness is 596.3 before mutation 
and the fitness after mutation is 102.9, which clearly 
demonstrates the usefulness of hybridization in PSO. The 
global optimum point has a fitness of 18.32. 



PSO is a greedy search algorithm, which is highly elitist 
that particles move towards both their personal best 
coordinates and global best coordinates. All particles 
eventually converge to an optimum or land very close to 
it, which sets the velocity zero and makes it impossible 
for particles to get out of that optimum. If it is not the 
global optimum, particles get trapped at that local point. 
Mutation can help particles get out of local optimum and 
continue their search. 
Crossover served as a local tool to search around the 
optimum in finer details. After 15 generations (~ 4500 
fitness evaluations) particles tend to accumulate around a 
spot on the search space. This causes velocity to decrease 
to zero and particles simply freeze at their location. On 
the other hand, crossover helps particles to move another 
location around that optimum and particles continue their 
search in finer detail.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Fitness vs. Number of function evaluations for 

six similar elements planar grids array optimization 

 
Figure 21: VSWR optimization of six similar  

elements planar grids array 

6 CONCLUSIONS 
Combination of hybrid particle swarm with stochastic 
structure gives promising results especially in low 
dimensional design problems. Optimized arrays those 
were presented above have a smaller range on resistance 
curves which are relatively flatter than the periodic dipole 
arrays. These stochastic designs also keep the VSWR 
below 2:1 for all array elements at all scan angles, which 
may reduce the cost of constructing matching networks. It 
is shown that crossover and mutation can help PSO to get 
out of local optima or do finer search around the optimum 
points. 

7 FUTURE WORK 
Similar to the four different elements configurations, six 
elements configurations can be generated. The only 
difference between four and six elements is the number of 
dimension of the search spaces. In four different elements 
array, PSO works on 39 dimensional search space and in 
six different elements arrays PSO has to work on 59 
dimensional search space. This represents a great 
challenge for the hybrid PSO. 
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