
Optimal Space Trajectory Design: A Heuristic-Based Approach

C. R. Bessette∗

Pennsylvania State University
University Park, PA 16802

D. B. Spencer, Ph.D.†

Pennsylvania State University
University Park, PA 16802

* Graduate Student, Aerospace Engineering
† Assistant Professor of Aerospace Engineering

Abstract

While it is widely known that the Hohmann
transfer is the optimal trajectory in terms of Δv,
it is certainly non-optimal in terms of time of
flight (TOF). As a result, the aim of this paper is,
using Lambert’s Algorithm, to determine those
orbital trajectories that require low Δv’s, but also
require small TOFs. However, there are two
restrictions placed on these transfer trajectories:
that the transfer arcs are less than 180O, and their
rendezvous time (TOF+Time of Launch) is less
than that of the Hohmann case. In the two cases
examined (Low-Earth Orbit (LEO) to LEO and
LEO to Geosynchronous Earth Orbit (GEO)), the
evolutionary algorithm (EA) was able to obtain
solutions which were marginally more expensive
in Δv, yet much lower in terms of rendezvous
time. For the LEO to LEO case, the trajectory
would require an additional 50% more Δv; but it
would required a rendezvous time that is 68%
that of the Hohmann case. For the LEO to GEO
case, the trajectory would require 45% more fuel,
but the savings in terms of rendezvous time
would be 22%. In addition, three different
heuristics were used in the analysis of this
problem: Particle Swarm Optimization (PSO),
Differential Evolution (DE), and Covariance
Matrix Adapted Evolutionary Strategies (CMA-
ES). After a comprehensive comparison of the
aforementioned algorithms, CMA-ES had the
quickest convergence, yet also had a poor
reliability record based upon random seed
analyses. PSO converged the second quickest as
compared to the other two algorithms, and it had
a perfect reliability record. As a result, PSO was
deemed the best algorithm to solve this problem
due to its quick convergence, and its excellent
reliability.

1 INTRODUCTION

1.1 ORBITAL TRANSFERS

This paper deals with the concept of minimizing the
amount of fuel required to rendezvous with another
spacecraft, while also obtaining trajectories much quicker
than Hohmann transfers in terms of rendezvous time.
This paper considers rendezvous with both spacecraft
residing inside Earth’s sphere of influence. For the
dynamics of the system, a 2-body, perturbation-free
gravitational model was assumed. Equation 1 describes
the model:

 (1)

While it is no secret that the Hohmann Transfer is the
optimal impulsive transfer, it is a long-duration transfer
with a 180O transfer arc. Equation 2 describes the time of
flight (TOF) using a Hohmann Transfer,

 (2)

Consequently, for the Hohmann transfer, the target
vehicle, at rendezvous, must be exactly 180O from the
chaser vehicle, upon departure. If a time-critical
rendezvous needs to be done, mission planners must wait
for the opportunity where the above configuration occurs
– more about this phasing time will be discussed later in
detail. In summary, the Hohmann Transfer is a long
transfer, and necessary conditions must be met for it to be
of use.

As a result, Lambert’s Algorithm was used. This
algorithm was developed in Prussing and Conway1, but
the f and g series used to solve for the required Δv’s came

€

v ˙ ̇ r = −
µ⊕

v r
r 3

€

tHohmann,1 = π
66783

µ⊕

= 52min.

tHohmann, 2 = π
442403

µ⊕

= 317min.

from Vallado2. This algorithm requires the position
vector of the chaser vehicle at departure, the position
vector of the target vehicle at arrival, and the required
TOF. The algorithm outputs the velocity vector required
to leave the initial orbit, and the velocity vector required
to enter the final orbit. It is important to note that a
singularity exists in the f and g series – and that
singularity exists for transfer orbits of 180O – i.e. the
Hohmann transfer. So consequently, Lambert’s
Algorithm will not return a low Δv for Hohmann
transfers, thus excluding them as possible solutions for
the Evolutionary Algorithms (EA).

It is important to note that the metric measuring fuel
consumption is Δv. This stands for the total change in
velocity required for the transfer. It is inherent that the
required amount of fuel is directly proportional to the Δv.

2 PROBLEM FORMULATION

2.1 PROBLEM SETUP

In this paper, two cases will be analyzed. The first has the
chaser vehicle initially in a circular, 20O inclined orbit,
with a 300 km altitude. The target vehicle, meanwhile, is
in a circular, 1600 km altitude, 30O inclined orbit. At the
epoch time, each of these vehicles share an argument of
latitude of 0O. For convenience, this case will be referred
to as the Low-Earth Orbit (LEO) to LEO case.

The second case, has the chaser vehicle in the same orbit
as the first case; but the target vehicle this time is in
Geosynchronous Earth Orbit (GEO) (a=44240 km). As
specified in the first case, the initial argument of latitude
for each of vehicle in this case is 0O. Similar to the first
case, this one will be referred to as the LEO-to-GEO case.
Figure 1 describes the radius and velocity vectors used for
each case:

€

rc,1,2 = 6678ˆ i + 0 ˆ j + 0 ˆ k { }
T
[km]

vc,1,2 = 0ˆ i + 7.2599176 ˆ j + 2.64239 ˆ k { }
T
[km /s]

rt,1 = 7978ˆ i + 0 ˆ j + 0 ˆ k { }
T

vt,1 = 0ˆ i + 6.11301ˆ j + 3.529345 ˆ k { }
T

rt,2 = 42240ˆ i + 0 ˆ j + 0 ˆ k { }
T

vt,2 = 0ˆ i + 3.07186 ˆ j + 0 ˆ k { }
T

Fig. 1: Position/Velocity Vectors at the Epoch Time

The three variables used in the formulation of this
problem are: time of launch (TOL), TOF, and Δv. In
order to obtain the position vector of the chaser vehicle
upon departure, equation 1 was numerically integrated
using MATLAB’s ODE45 function to the specified TOL.
To obtain the position of the target vehicle at rendezvous,

equation 1 is again numerically integrated to the specified
rendezvous time (TOL+TOF).

The function to be minimized is the sum of the required
Δv for the chaser vehicle to leave its initial orbit and the
Δv for the chaser to rendezvous with the target:

€

f = Δv1 + Δv2 (3)

2.2 CONSTRAINTS

The objective of each case is to obtain a trajectory that is
relatively close to the optimality of the Hohmann transfer
(in terms of Δv), yet is not nearly as expensive in
rendezvous time. As a result, weights were introduced to
penalize solutions that contain rendezvous times
comparable to the Hohmann case. The reason why these
weights were used is because why would a mission
planner want to use extra Δv for a rendezvous when he or
she could wait marginally longer to use a Hohmann
transfer?

The constraints used for the LEO-to-LEO example are as
follows:

Fig. 2: Penalty Weights

With the vehicles in the initial configuration as given in
figure 1, if one were to attempt a Hohmann transfer on the
LEO-to-LEO case, the mission planner would have to
wait 360 minutes for the vehicles to obtain a geometry
favorable for the Hohmann transfer. Then, if the
Hohmann time of transfer were added to the phasing time,
the total rendezvous time would be 410 minutes. As a
result, the constraints in figure 2 were set so that solutions
could be found with total rendezvous times much lower
than that of the Hohmann example. The minimum
rendezvous time in the LEO-to-GEO case is 390 minutes.
This is due to the fact that the orbital periods in the LEO-
to-LEO case are so close, that it takes a few orbits for the
argument of latitude between the two vehicles to differ by
180O. As a result, the same constraints were used for the
LEO-to-GEO transfer.

3 EVOLUTIONARY ALGORITHMS

3.1 ALGORITHM OVERVIEW

EAs are stochastic, population-based heuristics. Because
this problem is real-coded, as opposed to binary, real-
coded EAs were evaluated. As a result, three real-coded
algorithms were utilized in solving this problem. The
first, Differential Evolution (DE), is a heuristic developed
by Rainer Storn and Kenneth Price in 19963 and has
shown promise in solving problems with large search
spaces. DE is a classical EA in the sense that it functions
on the basic premise of Darwinian natural selection:
mutation, crossover, and selection. The second heuristic
used in this problem is Particle Swarm Optimization

€

if (TOF+TOL) > 300,Δv = Δv+1
if (TOF+TOL) > 330,Δv = Δv+ 3

(PSO) developed by Russell Eberhart and James Kennedy
in 1995; which, unlike DE, does not mimic Darwinian
natural selection; but rather imitates the motion of a
swarm or bees, or a school of fish4. The final EA used for
analysis of this problem is Evolutionary Strategies using
Covariance Matrix Adaptation (CMA-ES) developed by
Nikolaus Hanson5 in 2005, which also uses Darwinian
natural selection as its underlying principle.

3.2.1 DE’S Mutation Scheme

In order to use DE, there are a series of parameters that
must be set. One of those parameters is the mutation
weight. This value, F, ranges between 0 and 2, and serves
to amplify the difference between the two trial vectors.
Figure 3 serves to illustrate how DE uses mutation:

Fig. 3: Storn/Price’s Mutation Schematic3

Equation 4 describes the mutation scheme:

€

vi,G+1 = xr1,G + F xr2,G − xr3,G() (4)

where the r subscripts refer to random integers. For this
to work, the number of population members must be
greater than 4. This is because a total of four population
members are used in the process of mutation (r1,r2,r3), and
they are chosen to be different than the i’th index on
vi,G+1. So essentially, DE takes the weighted difference
(F) between two randomly selected trial vectors from the
population, and then adds that difference to a third vector.
That sum becomes the mutated vector.

3.2.2 Crossover

Another user-defined parameter is the Crossover Ratio
(CR). CR is a ratio that is bounded by 0 and 1. Crossover
works on each dimension of the vector. For dimension 1,
if a random number is less than CR, then the value of
dimension 1 for the mutant vector becomes the value of
dimension 1 in the trial vector. If the random number is
greater than CR, then the trial vector keeps its value for
dimension 1. That process is repeated for all of the

dimensions of the vector (in this case, 2 dimensions).
Figure 4 illustrates how crossover works in DE:

Fig. 4: Storn/Price’s Crossover Schematic3

Equation 5 describes how DE handles crossover:

 (5)

3.2.3 Selection

To decide which vectors are allowed to enter the new
generation, an elitist approach is utilized. Elitism ensures
that the vector with the lowest fitness value will enter the
new generation. In essence, the uui,G+1 trial vector and the
xi,G target vectors from equation 5 are compared. If the
trial vector yields a lower fitness value, then that vector
enters the new population; otherwise, the target vector
will enter the new population.

3.2.4 DE Variants

Storn and Price’s DE code has 9 variants that can be used.
Often the variant of DE is specified by: DE/x/y/z

where x specifies the vector to be mutated (either
randomly chosen from the population, or the vector with
the lowest fitness value); y specifies the number of
difference vectors to be used (the number of difference
vectors present in the parenthesis in equation 5); and z
specifies the crossover type – either exponential or binary.

Because of the rugged search space topology,
DE/best/2/bin was used. With high enough population
sizes, using 2 difference vectors increases the diversity.
Due to the plethora of infeasible spaces, high diversity
was essential in order to escape from local minima that
may be surrounded by infeasibility.

3.3.1 PSO Basics

As mentioned previously, PSO works by mimicking the
motion of a school of fish, or a flock of birds. A main

€

uji,G+1 =
vji,G+1if (rand(j) ≤ CR)
xji,Gif (rand(j) > CR)

driving principle behind PSO is that social sharing of
information among individuals in a population may
provide an evolutionary advantage4. In contrast to many
EAs, most heuristics encourage competition between
members of a population, but PSO fosters cooperation
between members.

3.3.2 Position and Velocity

Upon initialization, the particles are randomly distributed
throughout the search space. Then each particle is given a
velocity governed by equation 6:

 (6)

As is evident from equation 6, the velocity for each
particle is comprised of the individual’s current and best
position, as well as the global best position. The
cognitive parameter, social parameter, and inertia weight
are constants which are defined by the user. One popular
prescription for the social and cognitive parameters is that
their sum must be bounded by zero and four. In addition,
it is advised that the inertia weight be set to one initially,
but then it decreases incrementally until it reaches zero at
the maximum number of iterations. This encourages low
selection pressure at the beginning, but the search
pressure then increases as the particles begin to converge
to an optimum. The constriction factor is often set to one,
but it simply serves as a scaling factor; that is, it amplifies
the velocity. If the search space is excessively large, then
it is advantageous to use a larger constriction factor, such
that the particles can analyze the search space in fewer
iterations. Finally, the r1 and r2 values in equation 6 are
simply random numbers (between zero and 1) which are
generated upon each generation. The second governing
equation for PSO describes the position of the particles in
each successive generation:

 (7)

From equation 7, the updated position is simply the sum
of the current position plus the velocity. From a
mechanics standpoint, this equation is valid assuming that
the time step is one time unit.

3.3.3 PSO Pseudo Code

Initially, the population members are randomly
distributed throughout the search space. Then the fitness
of each particle is measured. The particles begin to move
towards the global best particle, this is done by
calculating the velocity for each particle (6), and then
using the position equation (7) to update the position of
each particle as they move towards the global minimum.
In the next generation, again the fitness of each particle is
measured. If there is a new global best particle, then all
of the particles will migrate towards that particle;
otherwise, they will continue to move towards the initial
global best particle. This procedure will continue until all
of the particles have converged to an optimum.

3.4.1 The CMA Evolutionary Strategy

The driving principle behind CMA-ES is that an adaptive
covariance matrix is utilized in order to sample the new
population of search points5. First, the new population is
sampled using a multivariate normal distribution,
described by equation 8. This is in contrast to DE and
PSO where they invoke use of a uniform distribution for
all random number generations.

 (8)

For the initial generation, the covariance matrix is set to
the identity matrix, I. Then selection and recombination
are used to determine which population members evolve
to the subsequent generation. Selection and
recombination are controlled by equation 9:

 (9)

In addition, CMA-ES makes use of an adaptive step size,
governed by equation 10:

 (10)

€

vid
n+1 = χ ωvid

n + c1r1
n pid

n − xid
n() + c2r2

n pgd
n − xid

n()()
where
vid
n+1 :Updated Velocity
vid
n :Current Velocity
xid
n :Current Position
χ :Constriction Factor
pid
n Individual Best Position
pgd
n :Global Best Position

c1 :Cognitive Parameter
c2 : Social Parameter
ω : Inertia Weight

€

xid
n+1 = xid

n + vid
n+1

where
xid
n+1 :Updated Position
xid
n :Current Position

€

xk
g+1 ~ Ν mg , σ g()

2
,Cg()

k =1,...,λ

€

mg+1 = ω ixi:λ
g+1

i=1

µ

∑

ω i = 1
i=1

µ

∑

where
ω i > 0

€

pσ
g+1 = 1− cσ() pσg + cσ 2− cσ()µ eff C

g−1/ 2 −
mg+1− mg

σ g

σ g+1 = σ g exp cσ
dσ

pσ
g+1

Ε Ν(0,I)
−1

And finally, CMA-ES adapts the covariance matrix for
the subsequent generation:

 (11)

CMA-ES will continue to loop until a stopping criterion
has been satisfied.

3.4.2 The CMA Evolution Strategy Parameters

Equation 12 describes some of the default parameter
settings for CMA-ES:

€

λ = 4 + 3ln(n)

µ =
λ
2

ω i =
ln(µ +1) − ln(i)

µ ln(µ +1) − ln(j)
j=1

µ

∑
,i =1,...,µ

 (12)

Equation 12: CMA-ES Parameters

CMA-ES is unique in the sense that it is meant to utilize
small populations (λ). Using the λ -equation, the
population size for the two problems at hand was 6, and
that proved marginally effective. The number of
crossover points is defined by µ. In this case, that was set
to 3. The above formulae are simply a guideline – as they
are defaults. The user can change those values if desired,
but CMA-ES has been shown to converge in the fewest
function evaluations with those prescribed formulae. One
important parameter that the user must set is sigma.
Sigma is the initial coordinate-wise standard deviations
for the search. It is recommended that sigma is set to 20-
50% of the search space (for each direction).

4 RESULTS AND DISCUSSION
4.1 SEARCH SPACE ANALYSIS

One of the complicating factors in this problem is the
rugged search space topology. Infeasible spaces are
scattered throughout the decision space. These infeasible
spaces stem from the fact that transfer angles in the
Lambert’s problem were restricted to be less than 180O.
As a result, for a given set of chaser and target position
vectors, only a certain number of TOFs exist for an
elliptic transfer trajectory between the two points. There
are two cases which result in infeasible spaces, the first
being those TOFs that result in a parabolic or hyperbolic
trajectory, because for those cases, the required Δv
approaches infinity. The other case which results in an

infeasible space is if the TOF is too great for a transfer
angle below 180O. An example of this would be if a
spacecraft were simply doing a simple 100-km orbit-
raising maneuver, and the input TOF to Lambert’s
algorithm was 300 minutes, then a trajectory (with a
transfer angle less than 180O) could not be fit to the above
criteria – thus introducing an infeasible space.

It is important to note the method used to sift out
infeasible spaces. When a function evaluation was
performed, and the TOL and TOF combination were
deemed infeasible, the Δv returned would be 20 km/s.
Once the function evaluator returns such a high Δv, that
value will not be the best in the population, so it will
simply be ignored, and not allowed to enter the next
generation.

4.2 LEO-to-LEO

For a LEO-to-LEO transfer, the Δv required for a
Hohmann transfer is 0.6561 km/s, and the minimum time
to rendezvous with the target vehicle is 410 minutes.
Using Storn and Price’s DE, a rendezvous trajectory was
found, with the rendezvous time being a mere 130
minutes, and the Δv expenditure being only 1.4242 km/s.
In summary, the trajectory DE found requires 50% more
fuel, but the rendezvous time is 68% that of the Hohmann
case.

4.2.1 LEO-to-LEO With DE

Using DE, the above results were obtained using a CR
and F value of 0.5 and 0.95 respectively. The reasoning
behind having a high F was to help combat the problem
introduced by numerous infeasibility islands surrounding
local minima. Higher mutation weights can decrease
search pressure – thus allowing the algorithm to perform a
thorough search of the decision space.

First, 10 population members were used. Intermittant
convergence was seen across random seeds – i.e. about
40-50% convergence. The seeds which misconverged
were getting trapped inside a valley with a large infeasible
space surrounding it. As a result, the population size was
increased to 30. Once this was done, another random
seed analysis was performed, and 90% of the seeds
converged to the optimal region.

Furthermore, many values for CR and F were attempted,
but F=0.95 proved to be most effective. F seemed to be
the dominant of the two user-defined parameters. This
can be attributed to the many infeasible spaces. F values
greater than 1 proved to be too greedy, as sub-optimal
convergence was seen. However, F values that were too
low resulted in non-convergence.

4.2.2 LEO-to-LEO With PSO

The LEO-to-LEO case was also solved using PSO. In
order to do this, c1 and c2 were set to 2.8 and 0.8
respectively. These values were chosen using a trial and

€

λ = 4 + 3ln(n)

µ =
λ

2

ω i =
ln(µ +1)− ln(i)

µ ln(µ +1)− ln(j)
j=1

µ

∑
,i = 1,...,µ

€

pc
g+1 = 1− cc() pcg + hσ

g+1 cc 2− cc()µ eff
mg+1− mg

σ g

Cg+1 = 1− ccov()Cg +
ccov
µ cov

pc
g+1pc

(g+1)T −δ hσ
g+1()Cg() +

+ccov 1−
1

µ cov

 ω iOP

xi:λ
g+1− mg

σ g
i=1

µ

∑

error analysis. Previous analysis of PSO with various test
functions did not indicate any corrolation of parameters
between different problems. As a result, proper parameter
tuning becomes a trial and error process. The constriction
factor was set to 1. Due to the large search space, higher
constriction factor values were tried, but that simply
resulted in a search that was increasingly greedy; and thus
unsuccessful as sub-optimal convergence was witnessed.
And the inertia weight was set such that it equaled 1
initially, and then approached 0 as the population
converged.

Initially a population size of 20 was used, however,
intermittant success was seen across random seeds.
Therefore, the population size was doubled, and success
was seen across all random seeds.

4.2.3 LEO-to-LEO With CMA-ES

The most difficult step in implemating this problem into
CMA-ES was determining the proper sigma values.
Knowing that sigma should be 20-50% of the search
space, sigma was set to [100;100]. When this was done,
quick convergence was seen; however, across random
seeds, this algorithm converged to sub-optimal regions,
yielding a success rate of 30%. In addition, numerous
values for sigma were attempted in hopes of finding a
more reliable parameter setting, but nothing seemed to
eclipse the 30% success rate.

This analysis was done using Hanson’s prescribed
formulae for population sizes. Larger population sizes
were tried, but better success rates were not seen. In
addition, the number of crossover points was also altered,
and that did not prove effective either. As well, the
recombination weights were also changed, again, to no
avail.

4.2.4 LEO-to-LEO Termination

The concept of termination is quite amorphous because, a
priori, the global minimum is not known. There is no
certainty that the minimum outlined above is the global
minimum. As a result, each program was allowed to run
for 1000 generations. This was done a few times, and
each time the same minimum was obtained. Therefore,
for the random seed analysis performed above, the seed
was counted as successful if it converged to a value below
1.43.

4.3 LEO-to-GEO TRANSFER

For a Hohmann transfer from LEO-to-GEO, the required
Δv is 3.8938 km/s. As mentioned in section 2.2, the
minimum rendezvous time is 390 minutes As a result, the
EA strives to find a solution which is marginally higher in
Δv expenditure, yet much lower in rendezvous time. For
this case, the best solution found yielded a Δv of 7.177908
km/s. That solution was found at a TOL of 77.98
minutes, and a TOF of 228 minutes – giving a total

rendezvous time of 306 minutes. Using this transfer, the
chaser vehicle would arrive 86 minutes (22%) quicker,
yet would require 45% more fuel as compared to the
Hohmann transfer case.

4.3.1 LEO-to-GEO With DE

Using a population size of 20, and the same CR and F
constants as in the LEO-to-LEO case, DE converged to
the above-mentioned optimum in relatively few function
evaluations.

With that initial population size of 20, a random seed
analysis was performed. Using the above parameters, DE
had a success rate of 100% across random seeds. This is
in direct contrast to the population size used in the LEO-
to-LEO example because this problem is simply not as
difficult to solve, so smaller population sizes population
sizes can still converge to the optimal solution.

4.3.2 LEO-to-GEO With PSO

Using PSO, the cognitive and social parameters were set
to 3.4 and 0.2 respectively – which varies from the LEO-
to-LEO case. Other than that, the same parameters were
used in this case, as compared to the first. Using the
above parameters, PSO was also able to converge to the
same optimum as DE. In addition, PSO succeeded 100%
of the time when a random seed analysis was performed.

Initially, the population size was set to 10 (half of that for
the LEO-to-LEO case) to speed up convergence, due to
the fact that this problem is conceptually easier to solve.
However, intermittent convergence was witnessed across
random seeds, so the population size was changed to 20,
where constant success was seen.

4.3.3 LEO-to-GEO With CMA-ES

Finally, CMA-ES was used for this problem. The same
values as the LEO-to-LEO case were used, with the
exception of sigma. A larger sigma value was used
because the search space for this problem is larger due to
the fact that larger TOFs had to be accounted for. Similar
to DE and PSO, CMA-ES solved this problem for the
same optimum. However, CMA-ES only solved this
problem 50% of the time when a random seed analysis
was performed.

As described in section 4.2.4, the recombination weights,
parent sizes, and crossover points were all changed in
hopes of CMA-ES becoming more reliable; but again,
success rates eclipsing the 50% plateau were not found.

4.3.4 LEO-to-GEO Termination

As mentioned in section 4.2.5, determining when to
termination is certainly an inexact science. While running
numerous simulations (with varying search pressure), the
best solution found was 7.177908 km/s. As a result, runs

were terminated when they reached that value – so for the
random seed analysis, termination was determined by
whether or not the fitness value was below 7.18.

4.4 HEURISTIC COMPARISON

This section serves to compare the above algorithms to
determine which one provided the best performance. For
the first case, CMA-ES converged in the fewest number
of function evaluations. Figure 5 shows a plot of the
number of function evaluations for each heuristic to
converge to the optimum.

Figure 5: Number of Function Evaluations

Notice in figure 5 that CMA-ES converges in
approximately 1/3 fewer function evaluations than DE,
and 1/9 fewer function evaluations than PSO.

For the second case, DE converged in the fewest number
of function evaluations – figure 6 shows a plot of the
number of function evaluations as a function of fitness.

Figure 6: Number of Function Evals

Figure 6: Number of Function Evaluations

Notice the effect of a different search space topology on
the heuristics – CMA-ES converged the quickest for the
first case, but that certainly did not occur in the second
case.

However, the algorithm that converged the quickest is far
from an adequate metric of algorithm efficacy. Another
performance metric that must be considered is reliability.
In order to measure reliability, figure 7 depicts the
aforementioned random seed analysis performed on each
algorithm. Figure 7 shows the number of failed runs (out
of 10), and the average number of function evaluations for
convergence.

Failed Per

10 Runs

Average # of

NFE for

Convergence

LEO-to-LEO

DE 0 860

PSO 0 558

CMA-ES 7 249

LEO-to-GEO

DE 0 474

PSO 0 190

CMA-ES 5 176

Figure 7: Random Seed Analysis

For the first problem, CMA-ES converged the quickest,
but it also had a 30% success rate as compared to PSO
and DE. For a problem where run time is not a significant
factor, an algorithm with a high success rate outweighs a
speedy algorithm with a poor success rate. As a result,
PSO seemed to perform the best for case 1 because it had
the 2nd fewest number of function evaluations, and it also
had a perfect success rate.

For the second problem, again CMA-ES had the fewest
number of function evaluations. However, it also had the
poorest success rate at 50%. Again, because the run time
is not extreme, the algorithm that has a higher success rate
is better than one with quick convergence. Judging from
the statistics from case 2, again PSO performed the best
with its fairly low number of function evaluations coupled
with its 100% success rate.

5 CONCLUSION
It seems as though the topology is more rugged in the
LEO-to-LEO example as opposed to the LEO-to-GEO
example. This variance in topology can be attributed to
the fact that fewer infeasible spaces exist in the LEO-to-
GEO case. This occurs because for such a long transfer, a
larger number of TOFs create elliptical trajectories.

One can be confident the optima located by the EAs are
the global optimums – although that is not a guarantee.
Each heuristic was allowed to run for over 1000
generations with varying input parameters, and the optima
outlined in this paper were the lowest that were seen. A
2-dimensional search space is not huge by any standards,
therefore, one can be confident that the EAs found the
global minimums

Both DE and PSO proved to be viable tools for solving
each case. Where CMA-ES was quicker in terms of
number of function evaluations, DE and PSO were much
more reliable. In a case where run time is not significant,
a reliable algorithm is much more desirable. A classical
search method is not available for comparison due to the
non-continuous nature of the search space; so as a result,
heuristics are the sole means of a solution.

References
1Prussing, J.E. and Conway (1993), B.A. Orbital
Mechanics, Oxford University Press Inc.
2Vallado, David A. (1999), Fundamentals of
Astrodynamics and Applications.
3Storn, R., and Price, K. Differential Evolution – A
Simple and Efficient Heuristic for Global Optimization
over Continuous Spaces. Journal of Global Optimization.
4Parsopoulos, K.E., Recent Approaches to Global
Optimization Problems through Particle Swarm
Optimization. 2002.
5Hanson, Nikolaus. The CMA Evolution Strategy: A
Tutorial. 2005.

