
The XCS Classifier System in a Financial Market

Erin K. Boland

Chemical Engineering Dept.
121 Fenske Laboratory

Pennsylvania State University
University Park, PA 16802

Karl R. Klingebiel
Aerospace Engineering Dept.

234 Hammond Building
Pennsylvania State University

University Park, PA 16802

Theodore R. Stodgell
Aerospace Engineering Dept.

233 Hammond Building
Pennsylvania State University
University Park, PA 16802

Abstract

This paper investigates an application of the
XCS learning classifier system to a stock market
environment with the goal of executing stock
trades for profit. The effects of varying XCS
system parameters are first investigated in a set
of trade studies. Improved settings were found
for a maze environment and XCS learning
phases were characterized. System performance
was then evaluated on stock market
environments. The results indicate that though
XCS may be able to trade profitably in a
financial market, several challenges slow the
evolution of high-performing problem solutions.
There are enough independent factors which
affect performance, including environment sense
string formulation, reward schema and algorithm
parameters, which may inhibit the learning
ability of XCS in a stochastic environment.

1 INTRODUCTION
The stock market is a tempting investment environment,
giving a savvy investor the potential to make a significant
amount of profit. Because of the large potential for profit,
a noteworthy effort has been placed into modeling and
predicting the trends of the stock market in addition to
portfolio risk management and masking money flow in an
attempt to hide trading moves. Though many of the
advanced applications are proprietary, there have been
many efforts made using genetic algorithms and classifier
systems in an attempt to model financial markets.
One strategy (Lin et al. 2004) presents a genetic algorithm
that overcomes the problem of variable market trading
parameters by applying a simple two-step divide-and-
conquer approach. The algorithm first chooses a sub
domain and then finds a near optimal value within it. The
sub domains are then analyzed to find the optimal
parameters over the entire trading domain. In another
study, Kaboudan (Kaboudan 2004) predicts stock prices
using genetic programming (GP) to develop a profitable
trading strategy and then proceeds to demonstrate whether

processes are GP-predictable. A model to produce one-
day-ahead forecasts is evolved and proven over a fifty-
day investment period.
In addition to being treated as a system which can be
described mathematically, the stock market can be
evaluated as a population of trading agents. Based on
Fama’s definition (Fama 1965), an efficient marketplace
must fulfill two key criteria: the individual agents must be
classified as rational and all information must be freely
available. A rational agent is an individual who seeks to
maximize their economic value or profit, each agent will
actively attempt to predict future market trends based on
the available information and behave accordingly. In this
scenario, the actual economic value of a security reflects
all information concerning its economic environment at
that point in time. Given the speed of information
transmission over the internet and the accessibility online
brokers, treating the stock market as an efficient
marketplace is not an unrealistic assumption.
Learning classifier systems have been successfully
applied as trading agents in a simulated marketplace
environment (Schulenburg and Ross 2000). In one
experiment, three types of agents were devised: a non-
intelligent agent that practiced a buy-and-hold strategy, a
bank agent that placed all of its wealth in a savings
account with 8% interest and an intelligent trader agent
with access to a source of information concerning the
state of the financial market. None of the agents could
change their identities, though they could change their
goal from maximizing their own wealth to mimicking the
behavior of another successful agent. In a study consisting
of three trader agents, a bank agent and a buy-and-hold
agent, the three intelligent agents always outperformed
the others.
Zhou and Purvis (Zhou and Purvis 2004) have developed
a system called market-based rule learning (MBRL). The
technique uses modified classifier systems to refine
trading rules that have been extracted by neural networks,
and to possibly discover new, higher performing rules.
The classifier-system-based model used in MBRL
attempts to eliminate some weaknesses of classic
classifier systems such as difficulty in initial classifier
generation and system parameter settings. In addition,

 2

MBRL seeks to generate rule sets which are more easily
interpreted by the user than those generated by classical
systems. Though the study is not intended to be financial,
its application in the financial marketplace is a
straightforward extension.
If the stock market is treated as an efficient marketplace, a
learning classifier system could be used to evolve an
optimal rule set to govern the behavior of an autonomous
agent operating in a stock market environment. The
treatment of the stock market as an efficient marketplace
is an important decision. Close-of-business prices and
price derivatives will be used in the learning classifier
environment implementation; these data must be expected
to reflect the behavior of intelligent fully informed agents.
If these economic assumptions are not valid, a learning
classifier system could not be expected to make the best
choices because the agent behavior it studies and attempts
to mimic would not be based on the most intelligent
decisions possible.
The current study attempts to apply an accuracy-based
classifier system (XCS) with a unique stock-market
environment formulation to develop a profitable set of
trading rules. To our knowledge there is no prior
documentation of this approach. The following discussion
presents an improvement on XCS operational parameters
in a maze environment and the results of a stock market
implementation.

1.1 THE XCS CLASSIFIER SYSTEM
The XCS classifier system was first proposed by Stewart
Wilson (Wilson 1995). XCS is based on the Michigan-
type classifier systems originally implemented by Holland
(Holland and Reitman 1978), but includes a number of
improvements. Geyer-Schulz’s complete description of
Holland classifier systems will be summarized before the
description of Wilson’s improvements (Geyer-Schulz
1995).
The goal of a classifier system is to use information about
its environment to generate actions on that environment in
order to receive the highest payoff. Environments may
fall into one of two classifications: single-step or multi-
step. Single-step environments provide external reward to
the system on every time-step and the environmental state
at each time-step is independent of previous states. An
example of such an environment would be a Boolean
multiplexer problem which represents a set of logic gates.
In this environment a single set of classifiers matches a
single binary output for a given binary string input.
Multi-step environments do not necessarily produce an
external reward for the system on every time-step and the
current environmental state may be dependent on
previous states and actions. The stock market is an
example of a multi-step environment. A classifier system
implementation for stock trading would use market data
such as current stock prices, to make trading in order to
maximize profits. In this case, the environment evolves
throughout the trading period. Each member of the rule

set which governs the decisions to act on the environment
is called a classifier. A classifier takes the form of an if-
then statement as often seen in computer programming.
Every classifier has a condition which represents a range
of environment states. If the environment meets the
classifier’s condition the classifier will propose an action
on the environment. In addition to the set of classifiers,
the Holland classifier system contains three other main
components: the production system, the apportionment of
credit system, and the rule discovery system.
The production system provides communication between
the classifiers and the environment interface (sensors for
reading the environmental state, and effectors for
performing actions on the environment). Classic classifier
systems implement the production system with a
“message list” where sensors post messages containing
the environmental state and classifiers post messages
proposing actions. The message list can be read by
classifiers and effectors. Based on the current messages,
the classifiers and effectors determine if they should act.
The apportionment of credit system determines which
classifiers are most responsible for actions that have
produced positive payoff. A strength parameter is
associated with every classifier and can be modified by
the apportionment of credit system. One use of this value
is in determining which classifiers are allowed to become
active. However, the message list is restricted in the
number of messages which may exist at a given time, so
only a subset of classifiers with satisfied conditions are
allowed to become active and post a message to the list.
Classifiers compete for the chance to be active in an
auction type system where their strength can be thought
of as wealth. The classifiers which are able to make the
highest “bids” in an auction have the best chance of
becoming active. When a payoff from the environment is
received, it is distributed among the winning classifiers as
modifications to their strength values. This method of
assigning credit to the classifiers is known as the bucket
brigade algorithm.
Development of new classifiers is handled primarily by
the rule discovery system. Following an initial random
generation of classifiers, a genetic algorithm (GA) is run
periodically using the set of classifiers as its population
and the strength value of each classifier as the fitness
value. The goal of the GA is to improve the quality of the
population of classifiers over a number of generations
through the evolutionary concepts of mating, mutation
and selection. This method makes the assumption that a
classifier’s strength is a good representation of its fitness.
In addition to the evolution of classifiers through the GA,
there are three operators which can also create new
classifiers. These are known as cover operators and the
triggered-chaining operator. In the case that there are no
classifiers which have conditions satisfied by the current
sensor readings, the cover detector operator will create a
new classifier having a condition that is satisfied.
Similarly, the cover effector operator creates new
classifiers when none of the effectors are being activated

 3

by the current set of classifiers and sensor readings. The
triggered-chaining operator is implemented to produce
pairs of classifiers in which the condition of one classifier
is satisfied when the other becomes active. The purpose of
these pairs is to enable short term memory in the system.
Wilson made the observation that the use of classifier
strength as fitness led to the system favoring high payoff
classifiers. The GA will often evolve the population to
include large numbers of classifiers which exist in high-
payoff niches. Additionally, classifiers which are overly
general but have the same average payoff as accurate
classifiers are favored. This tendency often causes the
deletion of classifiers governing behavior in low-payoff
niches. This behavior is a problem since low-payoff
classifiers may be the best choice in particular
environmental regions and retaining these classifiers may
lead to better overall performance. In order to mitigate
this problem Wilson developed the XCS classifier system,
incorporating two major changes.
In XCS, the most significant change to classic classifier
systems is the replacement of the strength parameter by a
set of three new attributes: prediction, prediction error and
fitness. The prediction parameter p represents an estimate
of future payoff based on the past rewards a classifier has
earned. The prediction error ε represents the error
between predicted payoff and actual payoff. Finally,
fitness F is defined as the classifier’s accuracy (an inverse
function of the prediction error). This arrangement allows
the system to discriminate between parameters for
determining which actions to take and which classifiers
are most fit. The key point is that in XCS, the GA
evaluates and evolves classifiers based on their accuracy
in predicting payoff, rather than the magnitude of their
payoff.
The second major difference between classic classifier
systems and XCS lies in the apportionment of credit
system. Instead of the bucket brigade algorithm acting
upon a single attribute (strength), classifier attributes in
XCS are adjusted by a suite of algorithms including Q-
learning methods (Watkins 1992) and the moyenne
adaptif modifée (MAM) technique (Wilson 1995). Rather
than reinforcing strength or payoff, the algorithms adjust
P, ε and F. Classifier attributes “learn” or are adjusted
based on their own experience as well as the collective
experiences of like classifiers.
A more mathematically rigorous explanation of XCS is
beyond the scope of this discussion but may be referenced
in Wilson’s 1995 paper. However, a high-level overview
of some key attributes and parameters in XCS follows
with the understanding that this paper cannot treat XCS in
utmost detail.

1.2 XCS CLASSIFIER ATTRIBUTES
As described previously, each classifier has three
attributes: p, ε and F used in the XCS reinforcement
learning methods and the GA. Additionally, each
classifier carries a fourth attribute n to represent the

concept of numerosity, used to reduce computation time
by minimizing population size and facilitating matching.
XCS does not permit duplicate classifiers to coexist in a
population. If the GA should happen to evolve a child
classifier with the same sense-action pair (considering
wildcards) as a parent, XCS deletes the less general of the
pair and increments the second classifier’s numerosity by
one. All classifiers begin life with a numerosity of one.
System operations acting upon a macroclassifier, a
classifier where n is greater than 1 treat the
macroclassifier as n individual instances.

1.3 XCS SYSTEM PARAMETERS
To enhance understanding of the XCS algorithm and ease
interpretation of performance results a brief discussion of
user-controlled parameters is provided below.

1.3.1 Learning and Adjustment Parameters
XCS permits the user to fine tune the learning process via
the set of related parameters, α, β, γ, ε0, and ν. The rate at
which at which P, ε and F are adjusted for experienced
classifiers is set by α. The discount factor γ controls the
proportion of knowledge gained from its own experience
versus the experience of other classifiers. For young
classifiers which have not yet participated in 1/β action
sets, a simplified accelerated learning technique is used to
rapidly adjust P, ε and F to meaningful values. ε0 sets the
error discrimination threshold between classifiers;
classifiers which differ in error less than ε0 are considered
to have equal error. The exponent ν is applied in an
internal function which scales errors nonlinearly. Table 1
displays generally appropriate ranges for selected
parameters.

Table 1: XCS Learning and Adjustment Parameters
Parameter Absolute

Range
Suggested Optimal

Range

α 0 < α < 1 0.1 – 0.3
β 0 < β < 1 0.1 – 0.2
γ 0 < γ < 1 0.1 – 0.9
ε0 Reals > 0 10-2 – 101
ν Integers > 1 5

1.3.2 Genetic Algorithm Parameters
The GA used in the XCS implementation chosen for this
study is a traditional binary-coded genetic algorithm. It
generates children via mutation and uniform crossover
operators, choosing fit individuals though tournament
selection. The mutation probability PM, crossover
probability PX, and the probability for generating
wildcard-bits Pdontcare may be set by the user. A wildcard-
bit, represented by a hash-mark (#) will match with either

 4

a 1 or a 0 in the environment sense string resulting in a
more general rule. The value for Pdontcare is usually set as a
function of the sense-string size.

1.3.3 Population Parameters
The classifier population is permitted to grow or shrink as
XCS runs however a hard limit to the population size
exists. An optimal value for the maximum population size
is highly dependant on the complexity of the environment
and the number of possible sense-action combinations.
Subsets of the entire population which match the current
sensory input string are known as match sets. A user-
definable constant, θGA, controls how many time-steps
pass between applications of the genetic algorithm to the
current match set. In a multi-step environment, an
appropriate value for θGA is largely defined by the number
of steps possible in the environment.
As previously described, XCS uses the concept of
numerosity to eliminate duplicate classifiers. If, however,
two classifiers are identical with the exception of their
wildcard bits (#), the more general classifier may
subsume or absorb the less general one. In subsumption
the more general classifier’s numerosity is incremented
while the more specific classifier is deleted. Three user-
defined parameters permit adjustment of subsumption:
θsubsumption, GA-subsumption, and Action-Set-Subsumption.
θsubsumption sets the minimum age at which a classifier
becomes eligible for subsumption. GA-subsumption and
action-set-subsumption are simple Booleans. GA-
subsumption determines whether individual classifiers are
permitted to subsume other individual classifiers and
action-set-subsumption determines whether entire action
sets of classifiers are permitted to subsume other action-
sets.

1.3.4 Classifier Initialization Values
At the start of operation, or when a new random classifier
is generated via covering, the system must supply initial
values for F, ε and p. These initial values are set as three
user-definable constants: FI, εI and pI whose ranges are
arbitrary. The initial, completely random population of
classifiers is assumed to be suboptimal.

2 IMPLEMENTATION AND TESTING
METHODOLOGY

For this study, Butz’s JavaXCS 1.0 implementation was
chosen. The algorithm’s performance was analyzed in a
maze environment using trade studies over a range of
parameter values. A trade study involves varying one
parameter across a wide range while holding all other
parameters constant, enabling a view of the parameter’s
influence on the algorithm’s behavior. In the case of a
traditional genetic algorithm, the number of function
evaluations is most commonly used as a performance
metric. This is inappropriate for XCS. Instead, prediction
accuracy and an environment defined performance metric

are preferred. In the case of the maze environment, the
performance is evaluated as the number of steps required
to reach the food, while in the stock market, performance
is evaluated in terms of the agent’s final wealth.
During each trial XCS performs in two different modes:
exploration and exploitation. During the exploration
mode, XCS makes random moves in an attempt to learn
as much as possible about its environment. During the
exploitation mode, XCS uses what it has learned in an
attempt to maximize environmental reward. In all
analyses, data are reported as results of the exploitation
mode runs.
For the trade studies XCS was allowed to make 4950 runs
through its environment, learning as it proceeded. By the
final set of trials, the classifier system was expected to be
fit. The data are reported as the average of the final fifty
environment trials. To minimize variation in the data
trends, each trade study is averaged over ten different
random starting populations. In cases where the out-of-
the-box parameters from Butz’s original source code were
found to be sub-optimal, second and third generation
trade-studies elucidated trends in algorithm’s
performance. For the sake of brevity, only three of the
most important trade studies and a learning rate analysis
have been selected for discussion. For the application of
XCS to the stock market environment, Table 2 shows the
parameters which were changed from Butz’s original
source code. A discussion of the motivation for these
changes is provided in section 3.

Table 2: Parameter Comparison: Butz vs. Stock Market
Parameter Butz Stock Market

γ 0.95 0.1
δ 0.1 0.95
ε0 10 0.002
θdel 20 30
PM 0.04 0.2

Pdontcare 0.5 0.05

2.1 MAZE ENVIRONMENTS
The maze environment is a typical multi-step
environment used to test performance in a learning
classifier system. Though the maze is a relatively small
environment, it is complicated, with few large blocks of
open space. Figure 1 shows a pictorial representation of a
typical maze. Table 3 is provided as a key. The classifier
system models an intelligent agent, or animat moving
through the maze searching for food. In addition to the
spatial definition of the environment, the animat is also
given functionality to perform actions within its
environment. The animat can move about in empty space
and perceive its immediate surroundings.

 5

OOOOOOOOO
O*****OFO
O**O*OO*O
O*O*****O
O***OO**O
O*O*O**OO
O*O*****O
O*****O*O
OOOOOOOOO

Figure 1: Sample Maze Environment

Table 3: Environment Symbol Key

SYMBOL DESCRIPTION

* Open Space
O Obstacle
F Food

A three-bit maze environment (24 bit sense string) with 8
movement actions has 8x224 or 1.342x108 unique sense-
action pairs. Disregarding don’t-care bits, XCS does not
permit multiple classifiers to have matching sense-action
pairs, so a theoretical extreme upper limit of population
size exists. In practical applications, though, XCS would
never be implemented with populations even remotely
this large.

2.2 ONE-BIT STOCK MARKET
ENVIRNONMENT

The stock environment sense string consists of binary
digits representing the information that an agent may use
to make a decision. The implementation has two input
formats, a real number describing the current state of a
particular stock and a binary string describing the state of
the environment with respect to past information. The real
input allows the system’s detectors and effectors to make
accurate movements within the environment. The binary
string allows classifiers to be general with respect to the
stock identity, allowing a rule set developed on a stock
with a unique range of values to be used on a stock with
an entirely different range. Since the fitness in XCS is
accuracy based, the environment could potentially consist
of real numbers represented in binary encoding; however
this would result in a very large environment and slow
down the learning rate immensely. This study does not
include an analysis of this representation.
In the ten-bit long environment, the first eight bits
represent market information and the last two bits will be
added by the market environment implementation. The
added bits will represent whether or not all of the agent’s
money is located in the bank and whether selling owned
stock would lead to a profit after commission is paid.
Table 4 describes the environment variables that XCS has

access to and Table 5 describes the environmental
representation of pertinent information. Subscripts t, t-1,
and t-2 indicate present and past time. Currently the
environment contains no hysteritic information
concerning whether or not a sale would be more
profitable today then it was yesterday.

Table 4: Stock Market Environment Variables
Variable Definition

P Stock Price

D Price Derivative
P10 Volume-Weighted 10-Day

Moving Average
D10 Moving Average

Derivative

Table 5: Stock Market Binary Environment
Bit Representation

1 Pt ≥ Pt-1

2 Pt-1 ≥ Pt-2
3 Dt ≥ Dt-1
4 Dt-1 ≥ Dt-2
5 P10t ≥ P10t-1
6 P10t-1 ≥ P10t-2
7 D10t ≥ D10t -1
8 D10t-1 ≥ D10t -2
9 All Money in the Bank

10 Is a Sale Now Profitable?

The stock market environment has a ten-bit sense string
with three possible actions: buy, sell or hold. This
translates to a maximum of 3x210 or 3072 unique sense-
action pairs, a much smaller theoretical figure then the
three-bit maze environment. This is a much smaller set
then would exist if XCS were given individual binary-
encoded variable values in 16- or 32-bit representation.
Given this fact, XCS should not require as large of a
population as a multi-step maze environment. This
representation scheme also has several advantages; it is
very straightforward to add or subtract information from
the environment. It also imparts a flexibility to the rule set
that XCS generates: a set that performs well for a high-
cap stock should, in theory, perform well for a low-cap
stock with similar overall trends.
In the stock market environment, XCS can take three
possible actions: buy, sell or hold. Currently the
classifiers are rewarded for a sale that makes money. If a
real encoded environment is used, a scheme that returns a
change in wealth may be the most appropriate reward.
Several combinations of environmental variables were

 6

tried, with combinations including information on price
and derivatives. The environment formalism presented in
Table 5 is the first environment that worked well: it
consists of two day derivative information and ten-day
moving average price information. While this particular
environment did provide profitable results with a simple
rewards scheme, it may not be optimal. For the sake of
this study, unless otherwise noted – this is the
environment used to analyze the XCS stock agent
performance.

3 TRADE STUDY RESULTS
A key performance metric in XCS is the rate at which the
classifier population maps the payoff from the
environment. Figure 2 shows that XCS improves its maze
performance continuously right up to the specified
stopping criterion. Due to computation time the trade
studies were limited to 5000 runs; the impact of XCS
parameters upon performance is still clear. If XCS had
been allowed many thousand more maze runs with which
to learn, the trends would eventually asymptote to an
almost constant number of steps to reach the food.
The two data sets in Figure 2 show maze performance at
near optimal settings and average out-of-the-box
parameters. Each point represents the average
performance of 50 maze runs in exploitation mode.

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000

Maze Runs

M
e
a
n

 N
o

.
o

f
S

te
p

s
to

 R
e
a
ch

 F
o

o
d

Optimal Parameters Poor Parameters
Figure 2: Learning Rate – Steps to Food vs. Maze Runs

Figure 3 shows the learning rate in terms of the average
prediction error, ε, and compares it to the steps required to
reach the food. The average prediction error settles quite
rapidly, long before the overall system begins to exhibit
high performance. Learning in the life of an XCS
classifier population can be characterized into two phases
as seen in Figure 3. Before learning begins, there is an
initial period of equilibration or rapid adjustment where
the majority of classifiers are grossly inappropriate. In
this initial period, roughly between 0 and 100 maze runs,
the classifiers perform very poorly and are unaware of
their poor performance.

The next phase in the life of a classifier population
appears once most classifiers have gained enough
experience to predict error well. Though the classifiers
have not yet learned high performance actions, most
classifiers have a baseline of experience. With only
moderate payoff, classifiers can predict their own
performance accurately. This stage appears in the maze
environment roughly between 100 and 2000 runs.
Finally, the classifiers slowly evolve towards higher
performance actions while the average prediction error
remains stable. The classifiers learn to perform better
while continuing to predict their performance well.

0

10

20

30

40

50

60

70

80

50 55
0

10
50

15
50

20
50

25
50

30
50

35
50

40
50

45
50

 Maze Runs

St
ep

s
to

 F
oo

d

0

0.005

0.01

0.015

0.02

0.025

0.03

Error

Steps to Food Error
Figure 3: Learning Rate – Average Prediction Error and

Steps to Food vs. Maze Runs

The fitness adjustment parameters ε and γ were found to
be critical in achieving the best performance with XCS.
Figure 4 shows the effect of the error discrimination value
ε0. All classifiers with an error prediction value greater
than ε0 are considered to be equally unfit and their
experiences are excluded from the fitness adjustment
algorithm. Classifiers with small prediction error are
preferred and their experiences are used in adjusting the
fitness of other classifiers.
An overview of the reinforcement learning method used
in fitness adjustment is shown in Equations 1-4 below. A
more detailed explanation is available in Lanzi’s notes
(2002). Every j-th classifier’s fitness is adjusted via both
its own prediction error and collective data from other
classifiers in the same action set.

{ }0
0

: j
j j

νε
ε ε κ α

ε

> =

 [1]

{ }0 : 1j jε ε κ≤ = [2]

' j
j

j

κκ κ= ∑ [3]

 7

(')j j j jF F Fα κ← + − [4]

Setting ε0 too high excludes classifiers from collective
reinforcement learning causing a classifier’s fitness to be
adjusted only through its own individual experiences.
Setting ε0 too low includes poorly predicting classifiers in
the reinforcement learning method. This causes all of the
classifiers’ fitness to be perturbed by including low-worth
information from poor-predicting classifiers. The sweet
spot in the curve in Figure 4 coincides with ε0
approximately one order of magnitude greater than the
average steady-state error prediction value. Any classifier
with error greater than one order of magnitude above the
population’s average error is excluded from the fitness
reinforcement learning process. In the case of the stock
market implementation, ε0 was chosen using this
principle.

0

10

20

30

40

50

60

70

80

90

0.0001 0.001 0.01 0.1 1 10 100

Epsilon_0

M
e
a
n

 N
o

.
o

f
S

te
p

s
 t

o
 R

e
a
ch

 F
o

o
d

Figure 4: Steps to Food vs. ε0

Figure 5 shows the effect of the adjustment discount
factor, γ, which plays a role in the adjustment of
prediction, and prediction error. A classifier’s values of P
and ε are adjusted with data from both that classifier’s
own experiences and the experiences of other classifiers
in the same set. As with ε0, γ can be thought of as a
learning adjustment parameter which balances the weight
of a classifier’s own experiences against the collective
experience of other classifiers in the same set. The highest
performing value for γ found in the trade studies for the
three-bit maze environment was 0.1. Butz suggests 0.71
(Butz and Wilson 2001), though it is mentioned that the
optimal value may vary with the environment. To
minimize the number of independent variables that would
affect performance, parameters were not re-optimized for
the stock market environment. A value of 0.1 was chosen
for γ because it produced the optimal results in the maze
environment.

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1

gamma

M
e
a
n

 N
o

.
o

f
S

te
p

s
 t

o
 R

e
a
ch

 F
o

o
d

Figure 5: Steps to Reach Food vs. γ

The average prediction error increases with increasing γ,
as shown in Figure 6. Learning can be more difficult
when classifiers are forced to learn mostly by their own
experiences without sharing feedback among like
classifiers.

0.00

0.01

0.02

0.03

0.04

0.05

0 0.2 0.4 0.6 0.8 1

gamma

A
v
e
ra

g
e
 P

re
d

ic
ti

o
n

 E
rr

o
r

Figure 6: Average Prediction Error vs. γ

The impact of the exponent ν (see Equation 1) used in
adjusting classifier fitness is shown in Figure 7. This
exponent scales the difference in prediction error when
comparing fit classifiers. A value of 5 was found to be
appropriate.

 8

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

nu

M
e
a
n

 N
o

.
o

f
S

te
p

s
 t

o
 R

e
a
ch

 F
o

o
d

Figure 7: Steps to Food vs. ν

4 RESULTS AND DISCUSSION
The stock market environment implementation was run
on four data sets: two historical 5-year-long stock data
sets (for 2000 – 2004 trading years) and two test functions
designed to represent an idealized set of stock data. The
trading agent began each trial with a $10,000 trading
account. Interest was not earned on money left in the bank
in order to simulate a real trading account. A commission
of $10.00 was charged for each transaction. In all cases,
performance is gauged as a function of the trader’s final
wealth after the 5-year period.
Harrah’s Entertainment (HET) was chosen because it was
an upward trending stock, while Ford Motor Company (F)
exhibited a steady downward trend as shown in Figure 8.
Despite their overall trends, both Ford and Harrah’s
exhibit local price fluctuations on a small time scale. An
astute trader could take advantage of local trends with
well timed market maneuvers. Both stock data sets run the
entire 5 year period without splitting. A company may
split its stock shares when the price grows high: doubling
the number of shares and splitting the share price in half.
The current code has not yet been expanded to handle
stock splits; splits are infrequent events and their presence
may inhibit classifier learning.

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200

Days

P
ri

ce

FORD HARRAHS
Figure 8: Stock Price Profiles

The two test functions simulated a stock with a bound
price that fluctuated as a sine wave with a steady period.
Illustrative portions of the test function price profiles are
shown in Figure 9.

17

18

19

20

21

22

23

10 20 30 40 50

Days

P
ri

ce

Test Function 1 Test Function 2
Figure 9: Test Function Price Profiles

The smoother function (Test Function 2, TF2) was
infused with noise using a cubic distribution to vary the
price by ±10¢. The other test case (Test Function 1, TF1)
has a uniformly random noise spike of ± $1.00. Analysis
of a uniformly smooth sine wave is not included because
XCS was able to exploit the regularity and make the
maximal profit in almost every run. Since real stocks do
not perform with the uniformly predicable behavior of a
sine wave, a smooth sine curve would not be
representative of a real world data set. Test functions were
generated and compared to historical data because it is
very rare to find a stock for which price falls within a
bound range for long periods of time. Such simplistic test
functions serve as a good metric for XCS performance.
The difference in noise between the two cases should
shed light on how the system responds to varying degrees
of noise in the environment data.
To map the learning rate of XCS on stock market
environments, two trials using the HET and TF1 data sets
were performed for 500,000 runs. Since the results were
similar, only those for TF1 are presented. It is apparent
from Figure 10 that there is no improvement during
500,000 trial runs, yet in terms of pure market
performance, XCS consistently does well. It was
infeasible to extend this study further due to a lack of
computational resources.

 9

Figure 10: Final Wealth vs. Market Trial Runs

The standard deviation of the final wealth was analyzed in
sequential samples of 500 trials. Figure 11 shows the
results as a function of each sequentially numbered
sample. With the exception of several outlying samples,
the standard deviation is essentially constant. If XCS were
exhibiting a learning trend, the standard deviation would
be expected to decrease with subsequent trial runs. For the
sake of this paper, XCS is considered to exhibit no
learning trends in the stock market environment.

Figure 11: Standard Deviation vs. Market Trial Runs

All following studies on the stock market environment
were performed with 500 trial runs through a single-stock
environment. This procedure is justified because XCS
shows no performance improvement with an increased
trial size. Since the length of the data-set should not affect
the learning over a long period of time, only five years of
historical data were considered.

One of the first gauges of performance is a comparison of
the four test cases. A comparison of the two historical
stocks shows that the XCS trading agent performs
significantly better on an upward trending stock than it
does when trading a downward trending stock, though the
performance is much less consistent (see Table 6 and
Figure 12). When trading HET, the agent performs
profitably most of the time, however it does not, on
average, outperform the market as represented by the buy-
and-hold strategy. Dividends have not been included in
these numbers. On the trial with a downward trending
stock, the agent never makes a profit, though there are
many cases in which it simply chooses not to trade.

Table 6: Stock and Test Function Performance
Case Buy and

Hold
Average
Wealth

Standard
Deviation

Deviation
Relative

to
Wealth

HET 30719.13 25614.16 5907.62 23.06%

F 2405.25 3832.53 2694.33 70.30%

TF1 10558.30 91781.08 127291 138.69%

TF2 9819.75 21200000 17166800 80.96%

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

0 100 200 300 400 500

Training Runs

En
d

W
ea

lth

F Wealth HET Wealth
Figure 12: Historical Stock Performance

The trading agent performance on the test functions is
interesting. The noisier price series, TF2, resulted in
poorer performance with a much higher variance as
exhibited in Figure 13. This result may explain the
variance seen on historical stock price-series where prices
reflect the stochastic nature of the market. It is interesting
to note that the performance was three orders of
magnitude better when trading TF2 than TF1, though the
prices were bound in similar regions. This phenomenon
could be an effect of XCS exploiting the regular pattern
present in TF2.

 10

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

$100,000,000

0 100 200 300 400 500

Training Runs

En
d

W
ea

lth

TF1 Wealth TF2 Wealth
Figure 13: Test Function Performance

The trading agent’s habits were analyzed for both HET
and TF1 to gain insight to the agent’s holding-patterns.
Figure 14 shows the transactions made during the 5-year
trading period. Though individual transactions are
difficult to discern, a general trend is apparent: the agent
usually day-trades, in most cases holding stock for no
more than 4-day periods. There is one downward trending
period of note, where the agent held the stock for a
significant period of time: between days 348 and 425. In
this case, the agent chose not to sell during the downward
trending period in an attempt to minimize losses. In
general, the agent typically sells a stock as soon as a profit
may be made, resulting in a higher frequency of trades
during a bull market and a lower frequency of trades
during a bear market. This phenomenon may explain the
extremely poor performance when trading F.

$10

$20

$30

$40

$50

$60

$70

0 200 400 600 800 1000 1200

Days

Pr
ic

e

Stock Price
Buy Points
Sell Points

Figure 14: HET – Buy Sell Analysis

When the agent traded the TF1 stock, the holding-pattern
was shorter with an average of 3 days, as shown in Figure
15. While the trader may not always find optimal points
to buy and sell, there is clear evidence of buy-low-sell-
high behavior. Additionally, the narrow range of price-
fluctuation in this particular case allows the trading-agent

to make some mistakes without suffering heavy financial
losses.

$18.00

$18.50

$19.00

$19.50

$20.00

$20.50

$21.00

$21.50

$22.00

350 360 370 380 390 400

Days

Pr
ic

e

Stock Price Buy Points Sell Points
Figure 15: TF1 – Buy Sell Analysis

Gauging the performance of the trading agent is an
interesting analysis point. Should the goal of XCS simply
be to make a profit, or to make a profit and outperform a
buy-and-hold trading strategy? If the latter is desired, the
most pertinent issues regarding XCS’s performance are
environment and reward schema formulation. That is,
how can the environment and reward schema be adapted
to provide as consistent as possible performance that beats
the stock market in its return on investment? A similar
study, using strength-based learning classifier systems to
develop optimal trading rules was preformed by
Schulenburg and Ross (2000). While a one-to-one
comparison of these studies is not appropriate since the
approaches differed significantly. It is, however useful to
discuss the differences in an effort to improve
interpretation of the results presented herein. The stock
studied by Schulenburg and Ross contained splits which
had been handled by adjusting the price-time series. It
was opted not to take this approach since it complicated
the definition of moving averages. As previously
mentioned, splits had not been implemented with XCS so
a direct stock-to-stock performance comparison is not
possible at this time.
This study presents a similarly formulated environment,
where variables are represented with a one-bit binary
encoding. In this formulation, the classifier system is only
aware of trends and not actual values. Though the
representation was the same, the environments presented
by Schulenburg and Ross differ in the type of information
deemed appropriate. The study also implemented a
variety of reward schemes, many which seemed to
possess a large degree of imposed heuristics. In contrast,
the reward scheme presented here is simple: rewarding
the classifier favorably only when a profitable sale is
made or when a stock with increasing value is held. There
are no imposed heuristics based on moving averages or
price comparisons. The complexity of this type of reward

 11

scheme seems to defeat the purpose of a learning
classifier system.
The Schulenburg-Ross study does indicate that for
consistently profitable performance a more complex
reward method may be necessary for a 1-bit environment
representation. The addition of bits representing whether
or not the current price is higher than the highest
historical price or lower than the lowest historical price
may be a worthy extension to the environment and might
cause the classifier systems to hold stock for a longer
period. XCS has shown the ability to produce very
profitable populations of classifiers yet it does not
produce them consistently nor does it show trends of
evolving more fit populations over time. Though the
system generates a profit often, the results indicate that
the present environment formulation, parameter settings
and reward structure may not be an optimal way to
develop financial trading rules. If XCS is to succeed, a
reformulation of the environment or reward structure is
required. Though the current reward system and
environment do not allow XCS to exhibit learning
behavior, they were chosen after several formulations and
provided the best average performance as tested with
HET.
There are several different actions that XCS can take,
each with varying rewards, either negative or positive.
Table 7 displays the best reward settings found. Financial
maneuvers that were considered incorrect or “against the
rules” e.g. trying to sell when no stock was owned or
trying to purchase stock shares when no money was
available were negatively rewarded moreso than
maneuvers that were unprofitable. The reward scheme
was discretized into integer values rather than real values
representing an agent’s wealth or profit because XCS is
not currently given exact price (or other variable)
information in this implementation.

Table 7: Stock Market Classifier Rewards
Action Reward

Buy: No Stock is Owned 0
Buy: Stock is Owned -1000

Sell: No Stock is Owned -1000
Sell: Stock is Owned 100

Bank: Money in a Rising Stock 100
Bank: Money in a Falling Stock -10

Bank: No Money in Stocks 0

Prior to implementing negative rewards, the positive
rewards were investigated relative to one another. The
experiments were executed on HET, since XCS showed
the lowest relative variance on this data set. A description
of the schema is presented in Table 8.

Table 8: Sell and Bank Reward Scheme Results
Case Bank

Reward
Sell

Reward
Average
Wealth

Standard
Deviation

A 500 100 19932.01 5089.2
B 200 100 20205.07 4505.55
C 100 100 25472.46 3781.53
D 0 100 15664.58 6140.03

 In general, the XCS stock agent performs worse with
differentially weighted rewards. As shown in Figures 16
and 17, the wealth appears to be more stochastic than
deterministic. It is interesting to note that as the
performance improves in terms of wealth, the variance
from run to run decreases. The best case shows an outlier
in an early run through the market environment. This may
be a pure statistical anomaly since similar outliers are
found in other studies and the classifier system does not
seem to develop a memory.

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

$45,000

0 100 200 300 400 500

Training Runs

E
n

d
 W

e
a
lt

h

Case A Case B
Figure 16: Wealth vs. Reward Scheme: Cases A & B

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

$45,000

$50,000

0 100 200 300 400 500

Training Runs

E
n

d
 W

e
a
lt

h

Case C Case D
Figure 17: Wealth vs. Reward Scheme: Cases C & D

 12

The next complication to the rewards scheme involves
adding negative reinforcement when a classifier attempted
actions which were defined as illegal. The addition of a
moderately scaled reward of the same order of magnitude
as the buy-bank rewards in Case E introduced less of a
variation in the final wealth than the larger scaled reward
(Case G). It did, however, result in a slightly poorer
average performance. Negative rewards were then added
for actions that caused the trader to lose money: selling
when the price had dropped too low or holding a
downward trending stock. In these cases, the performance
of the classifier population tended to decrease in
proportion to the negative feedback. When a slight
negative signal was returned (Case F) the classifiers
performance decreased from the previous best (Case G).
Though the average wealth decreased slightly, the
variation also decreased, making this reward schema more
desirable then a case with only negative feedback for an
incorrect action.

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

$45,000

$50,000

0 100 200 300 400 500

Training Runs

E
n

d
 W

e
a
lt

h

Case: E Case: G
Figure 18: Reward Scheme for Incorrect Actions

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

0 100 200 300 400 500

Training Runs

E
n

d
 W

e
a
lt

h

Case: F Case: H
Figure 19: Reward Scheme for Unprofitable Actions

Table 9 shows that a slight amount of negative
reinforcement, as in case F, can decrease variance while
preserving overall profitability. Harsher penalties,

however, increased variance and in case H, sharply
decreased performance.

Table 9: Negative Reward Scheme Results
Case Incorrect

Buy or
Sell

Poor
Bank or

Sell

Average
Wealth

Standard
Deviation

E -100 0 25258.25 3728.27
F -1000 -10 25654.93 5656.85
G -1000 0 25775.86 5718.39
H -1000 -100 12278.29 5856.62

In addition to experimenting with various reward schema,
several different environment sensory configurations were
tested. Table 10 shows the impact of adding extra bits of
data to the sensory string. In Case 1, the agent had access
to a one-day history of previous price changes. Case 2
added one extra bit, providing both one-day history and 2
day histories. Case 3 added yet another bit, encoding one,
two and three day histories. The sensory string in Case 4
is equivalent to that of Case 2, with the addition of a bit to
track daily change in wealth.
Over 500 training runs, XCS did not learn better
performance under any of these cases. However, the
complexity of the extra bits affected classifier
performance despite the lack of learning. The case with
the shortest environment string, Case 1, displayed the
lowest variance yet also performed poorest. Adding
additional history bits increased performance at the
expense of increased variance. In general, as
environments grow more complex, the rate of
performance uniformity decreases. Experimental results
agree with Wilson’s (1998) hypothesis that learning
complexity scales as a low order polynomial of the
complexity of the problem, not with the complexity of the
learning space.

Table 10: History Results
Case Modified

Environment
Average
Wealth

Standard
Deviation

1 1 Day History 24687.61 4171.33
2 1 & 2 Day History 25614.16 5907.62
3 1, 2 &3 Day History 25923.66 7529.94
4 Did Wealth Go Up? 25178.08 5394.44

The final pertinent study, inspired by the Schulenburg-
Ross study examines the effect of generality on the
performance of the trading agent. The original studies set
Pdontcare, or the probability of including a wildcard bit in
the sense string, to 0.05 or 5% of the environment sense
string length. Schulenburg and Ross chose a much higher

 13

probability – 0.5, in an effort to create a generalized rule
set. The XCS results in Figure 20 and Table 11 show that
the trading agent performs significantly worse when
Pdontcare is raised in an effort to generalize the trading
rules. These results do not disagree with the performance
in the Schulenburg-Ross study because reward heuristics
were added to coax profitable trading performance.

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

$70,000

0 100 200 300 400 500

Training Runs

En
d

W
ea

lth

P_dontcare = 0.05 P_dontcare = 0.5

Figure 20: Reward Scheme for Unprofitable Actions

Table 11: Pdontcare Results
Case Modified

Environment
Average
Wealth

Standard
Deviation

1 Pdontcare = 0.05 25614.16 5907.62
2 Pdontcare = 0.5 18926.43 8093.49

In a bull market, XCS performs slightly worse than the
market average. However, one must consider that XCS
still nets a profit on average and the system often comes
within one standard deviation of market performance.
Considering that the system is not completely optimized,
results are promising. It shows that even a mediocre
classifier system can exploit a purely stochastic
environment.

5 CONCLUSIONS AND FUTURE WORK
The present study examines the performance of XCS in a
single-option-single-stock environment as a first step
towards a portfolio management system. It is clear that
XCS exhibits the best potential for a profit in the case of a
bound stock where it can buy low and sell high. It may
not be the best application where long term investments
are desired.
Before the algorithm is developed further to handle a
more complex environment, extensive trade studies
should be performed to find the set of XCS parameters

that provide optimal performance. It may also be
necessary to compare different types of environment
information, for example: moving averages or different
types of derivatives. XCS may have a chance to allow its
accuracy based fitness metrics to perform well if the
environment consists of binary encoded real values so that
it has finite price and derivative information and dynamic
reward schema. The tradeoff in this case would be a
retarded learning rate vs. providing XCS with a non-
generalized reward schema biased towards making the
largest possible profit. This environment change may
produce classifiers that are only valid for prices and
derivatives in a specific range, resulting in a less generally
usable end classifier population.
Based on these results it is clear that XCS may not be the
most appropriate classifier system for handling a stock
market environment. While this conclusion is preliminary
and more experimentation is needed in order to assess
XCS’s performance, the current set of data strongly
supports this hypothesis. However, XCS does
occasionally produce excellent profitable outliers and
each set of classifiers produced over different runs
through an environment could be mined for use in a static
expert system. However, if an XCS environment that
successfully produced profitable trades could be
implemented, there are some improvements that could be
made to make it a more practical tool for stock investing.
The first step is the implementation of a multi-option-
single-stock environment where XCS can choose a single
type of stock to trade at any given time from a set of
choices. Granting XCS the opportunity to trade among
several bound stocks may provide a greater opportunity
for profit maximization than may be feasible when only
one oscillating stock is bought and sold. This environment
would take advantage of market timing and it may be able
to exploit stock increases continuously instead of waiting
for an oscillating price to fall.
While the multi-option-single-stock environment may be
the optimal scenario in terms of pure profit, the next step
in extending the program’s functionality is the
implementation of a multiple-option-multiple-stock
environment with the inclusion of an aggressiveness
factor. In this scenario, XCS would manage a portfolio.
An aggressiveness factor would describe whether or not
the algorithm attempts to minimize risk or maximize
profit. In this case, if risk minimization were desired, the
algorithm might either choose to sit on “upper” stocks for
long periods or time or diversify holdings, while a
portfolio that chose to maximize profit may choose to
perform similarly to a multi-option-single-stock
environment, where stocks with the largest derivatives are
bought and sold on a day to day basis.
The implementation of a multi-option-single-stock
environment would be a fairly straightforward step in
extending the program, requiring only the addition of
tracking variables in the XCS environment. This
implementation may even be possible by training XCS in
a single stock environment and then implementing the

 14

optimal classifier in a multi-option-single-stock
environment.
Expanding the market environment to manage a portfolio
is a more ambitious task than the extension of the multi-
option-single-stock environment. This extension is the
most complex of the two being proposed here and would
require large modifications to XCS. It would be the
simplest to execute in an object oriented program where a
stock class could be implemented and used in a portfolio
environment.

Acknowledgments
We would like to thank the Graduate Education and
Research Services Group (GEARS) for their cooperation
in providing joint drive space members in our group.
Shared space proved indispensable in the completion of
our project.
We would also like to acknowledge the Illinois Genetic
Algorithms Laboratory (IlliGAL) for providing Java
source code for Martin Butz’s XCS and Wharton
Research Data Services for providing daily stock price
profiles.

References
Butz, M.V. and Wilson, S.W. (2001) An Algorithmic
Description of XCS, LNAI 1996, Lanzi, P. L., Stolzmann,
W., and S. W. Wilson (Eds.), Advances in Learning
Classifier Systems (pp. 253-272)
Fama, E.F. (1966) Random Walks in Stock-Market
Prices, Financial Analyst Journal, London.
Geyer-Schulz, A. (1995) Holland Classifier Systems, APL
Quote Quad, Vol. 25 No. 4, pp. 43-55.
Holland, J.H. and Reitman, J.S. (1978) Cognitive systems
based on adaptive algorithms. In D.A. Waterman & F.
Hayes-Roth (Eds.), Pattern Directed Inference Systems
(pp. 313-329)
Kaboudan, M.A. (2000) Genetic Programming Prediction
of Stock Prices, Computational Economics, Vol. 16 pp.
207-236.
Lanzi, P. L. (2002) Lezione 10: Sistemi a Classificatori,
class notes, Ingeneria della Conoscenza e Sistemi Esperti
2002, Politecnico di Milano.
Lin L., Cao, L., Wang, J. and Zhang C. (2004) The
Applications of Genetic Algorithms in Stock Market Data
Mining Optimization, Proceedings of Fifth International
Conference on Data Mining, Text Mining and their
Business Applications, September 15-17, Malaga, Spain.
Schulenburg, S. and Ross, P. (2000) An Adaptive Based
Economic Model, Lecture Notes in Artificial Intelligence,
pp. 263-282.
Watkins, C.J.C.H. and Dayan, P. (1992) Technical Note
Q-Learning, Machine Learning, 8, pp. 279-292

Wilson, S. (1995) Classifer Fitness Based on Accuracy,
Evolutionary Computation, Vol. 3, No. 2, pp. 149-175.
Wilson, S. (1998) Generalization in the XCS Classifier
System, Genetic Programming 1998: Proceedings of the
Third Annual Conference, pp. 665-674.
Zhou, Q.Q. and Purvis, M. (2004) A Market-based Rule
Learning System, Proceedings of the Second Workshop
on Australasian Information Security, Data Mining and
Web Intelligence, and Software Internationalisation, Vol.
32, pp. 175-180.

