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Abstract 
 
This paper investigates an application of the 
XCS learning classifier system to a stock market 
environment with the goal of executing stock 
trades for profit. The effects of varying XCS 
system parameters are first investigated in a set 
of trade studies. Improved settings were found 
for a maze environment and XCS learning 
phases were characterized. System performance 
was then evaluated on stock market 
environments. The results indicate that though 
XCS may be able to trade profitably in a 
financial market, several challenges slow the 
evolution of high-performing problem solutions. 
There are enough independent factors which 
affect performance, including environment sense 
string formulation, reward schema and algorithm 
parameters, which may inhibit the learning 
ability of XCS in a stochastic environment.   

1 INTRODUCTION 
The stock market is a tempting investment environment, 
giving a savvy investor the potential to make a significant 
amount of profit. Because of the large potential for profit, 
a noteworthy effort has been placed into modeling and 
predicting the trends of the stock market in addition to 
portfolio risk management and masking money flow in an 
attempt to hide trading moves. Though many of the 
advanced applications are proprietary, there have been 
many efforts made using genetic algorithms and classifier 
systems in an attempt to model financial markets.  
One strategy (Lin et al. 2004) presents a genetic algorithm 
that overcomes the problem of variable market trading 
parameters by applying a simple two-step divide-and-
conquer approach. The algorithm first chooses a sub 
domain and then finds a near optimal value within it. The 
sub domains are then analyzed to find the optimal 
parameters over the entire trading domain. In another 
study, Kaboudan (Kaboudan 2004) predicts stock prices 
using genetic programming (GP) to develop a profitable 
trading strategy and then proceeds to demonstrate whether 

processes are GP-predictable. A model to produce one-
day-ahead forecasts is evolved and proven over a fifty-
day investment period. 
In addition to being treated as a system which can be 
described mathematically, the stock market can be 
evaluated as a population of trading agents. Based on 
Fama’s definition (Fama 1965), an efficient marketplace 
must fulfill two key criteria: the individual agents must be 
classified as rational and all information must be freely 
available. A rational agent is an individual who seeks to 
maximize their economic value or profit, each agent will 
actively attempt to predict future market trends based on 
the available information and behave accordingly. In this 
scenario, the actual economic value of a security reflects 
all information concerning its economic environment at 
that point in time. Given the speed of information 
transmission over the internet and the accessibility online 
brokers, treating the stock market as an efficient 
marketplace is not an unrealistic assumption.  
Learning classifier systems have been successfully 
applied as trading agents in a simulated marketplace 
environment (Schulenburg and Ross 2000). In one 
experiment, three types of agents were devised: a non-
intelligent agent that practiced a buy-and-hold strategy, a 
bank agent that placed all of its wealth in a savings 
account with 8% interest and an intelligent trader agent 
with access to a source of information concerning the 
state of the financial market. None of the agents could 
change their identities, though they could change their 
goal from maximizing their own wealth to mimicking the 
behavior of another successful agent. In a study consisting 
of three trader agents, a bank agent and a buy-and-hold 
agent, the three intelligent agents always outperformed 
the others. 
Zhou and Purvis (Zhou and Purvis 2004) have developed 
a system called market-based rule learning (MBRL). The 
technique uses modified classifier systems to refine 
trading rules that have been extracted by neural networks, 
and to possibly discover new, higher performing rules. 
The classifier-system-based model used in MBRL 
attempts to eliminate some weaknesses of classic 
classifier systems such as difficulty in initial classifier 
generation and system parameter settings. In addition, 
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MBRL seeks to generate rule sets which are more easily 
interpreted by the user than those generated by classical 
systems. Though the study is not intended to be financial, 
its application in the financial marketplace is a 
straightforward extension. 
If the stock market is treated as an efficient marketplace, a 
learning classifier system could be used to evolve an 
optimal rule set to govern the behavior of an autonomous 
agent operating in a stock market environment. The 
treatment of the stock market as an efficient marketplace 
is an important decision. Close-of-business prices and 
price derivatives will be used in the learning classifier 
environment implementation; these data must be expected 
to reflect the behavior of intelligent fully informed agents. 
If these economic assumptions are not valid, a learning 
classifier system could not be expected to make the best 
choices because the agent behavior it studies and attempts 
to mimic would not be based on the most intelligent 
decisions possible.  
The current study attempts to apply an accuracy-based 
classifier system (XCS) with a unique stock-market 
environment formulation to develop a profitable set of 
trading rules. To our knowledge there is no prior 
documentation of this approach. The following discussion 
presents an improvement on XCS operational parameters 
in a maze environment and the results of a stock market 
implementation. 

1.1 THE XCS CLASSIFIER SYSTEM 
The XCS classifier system was first proposed by Stewart 
Wilson (Wilson 1995). XCS is based on the Michigan-
type classifier systems originally implemented by Holland 
(Holland and Reitman 1978), but includes a number of 
improvements. Geyer-Schulz’s complete description of 
Holland classifier systems will be summarized before the 
description of Wilson’s improvements (Geyer-Schulz 
1995). 
The goal of a classifier system is to use information about 
its environment to generate actions on that environment in 
order to receive the highest payoff. Environments may 
fall into one of two classifications: single-step or multi-
step. Single-step environments provide external reward to 
the system on every time-step and the environmental state 
at each time-step is independent of previous states. An 
example of such an environment would be a Boolean 
multiplexer problem which represents a set of logic gates. 
In this environment a single set of classifiers matches a 
single binary output for a given binary string input.  
Multi-step environments do not necessarily produce an 
external reward for the system on every time-step and the 
current environmental state may be dependent on 
previous states and actions. The stock market is an 
example of a multi-step environment. A classifier system 
implementation for stock trading would use market data 
such as current stock prices, to make trading in order to 
maximize profits. In this case, the environment evolves 
throughout the trading period. Each member of the rule 

set which governs the decisions to act on the environment 
is called a classifier. A classifier takes the form of an if-
then statement as often seen in computer programming. 
Every classifier has a condition which represents a range 
of environment states. If the environment meets the 
classifier’s condition the classifier will propose an action 
on the environment. In addition to the set of classifiers, 
the Holland classifier system contains three other main 
components: the production system, the apportionment of 
credit system, and the rule discovery system.  
The production system provides communication between 
the classifiers and the environment interface (sensors for 
reading the environmental state, and effectors for 
performing actions on the environment). Classic classifier 
systems implement the production system with a 
“message list” where sensors post messages containing 
the environmental state and classifiers post messages 
proposing actions. The message list can be read by 
classifiers and effectors. Based on the current messages, 
the classifiers and effectors determine if they should act. 
The apportionment of credit system determines which 
classifiers are most responsible for actions that have 
produced positive payoff. A strength parameter is 
associated with every classifier and can be modified by 
the apportionment of credit system. One use of this value 
is in determining which classifiers are allowed to become 
active. However, the message list is restricted in the 
number of messages which may exist at a given time, so 
only a subset of classifiers with satisfied conditions are 
allowed to become active and post a message to the list. 
Classifiers compete for the chance to be active in an 
auction type system where their strength can be thought 
of as wealth. The classifiers which are able to make the 
highest “bids” in an auction have the best chance of 
becoming active. When a payoff from the environment is 
received, it is distributed among the winning classifiers as 
modifications to their strength values. This method of 
assigning credit to the classifiers is known as the bucket 
brigade algorithm.  
Development of new classifiers is handled primarily by 
the rule discovery system. Following an initial random 
generation of classifiers, a genetic algorithm (GA) is run 
periodically using the set of classifiers as its population 
and the strength value of each classifier as the fitness 
value. The goal of the GA is to improve the quality of the 
population of classifiers over a number of generations 
through the evolutionary concepts of mating, mutation 
and selection. This method makes the assumption that a 
classifier’s strength is a good representation of its fitness.  
In addition to the evolution of classifiers through the GA, 
there are three operators which can also create new 
classifiers. These are known as cover operators and the 
triggered-chaining operator. In the case that there are no 
classifiers which have conditions satisfied by the current 
sensor readings, the cover detector operator will create a 
new classifier having a condition that is satisfied. 
Similarly, the cover effector operator creates new 
classifiers when none of the effectors are being activated 
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by the current set of classifiers and sensor readings. The 
triggered-chaining operator is implemented to produce 
pairs of classifiers in which the condition of one classifier 
is satisfied when the other becomes active. The purpose of 
these pairs is to enable short term memory in the system.   
Wilson made the observation that the use of classifier 
strength as fitness led to the system favoring high payoff 
classifiers. The GA will often evolve the population to 
include large numbers of classifiers which exist in high-
payoff niches. Additionally, classifiers which are overly 
general but have the same average payoff as accurate 
classifiers are favored. This tendency often causes the 
deletion of classifiers governing behavior in low-payoff 
niches. This behavior is a problem since low-payoff 
classifiers may be the best choice in particular 
environmental regions and retaining these classifiers may 
lead to better overall performance. In order to mitigate 
this problem Wilson developed the XCS classifier system, 
incorporating two major changes. 
In XCS, the most significant change to classic classifier 
systems is the replacement of the strength parameter by a 
set of three new attributes: prediction, prediction error and 
fitness. The prediction parameter p represents an estimate 
of future payoff based on the past rewards a classifier has 
earned. The prediction error ε represents the error 
between predicted payoff and actual payoff. Finally, 
fitness F is defined as the classifier’s accuracy (an inverse 
function of the prediction error). This arrangement allows 
the system to discriminate between parameters for 
determining which actions to take and which classifiers 
are most fit. The key point is that in XCS, the GA 
evaluates and evolves classifiers based on their accuracy 
in predicting payoff, rather than the magnitude of their 
payoff. 
The second major difference between classic classifier 
systems and XCS lies in the apportionment of credit 
system.  Instead of the bucket brigade algorithm acting 
upon a single attribute (strength), classifier attributes in 
XCS are adjusted by a suite of algorithms including Q-
learning methods (Watkins 1992) and the moyenne 
adaptif modifée (MAM) technique (Wilson 1995). Rather 
than reinforcing strength or payoff, the algorithms adjust 
P, ε and F. Classifier attributes “learn” or are adjusted 
based on their own experience as well as the collective 
experiences of like classifiers. 
A more mathematically rigorous explanation of XCS is 
beyond the scope of this discussion but may be referenced 
in Wilson’s 1995 paper. However, a high-level overview 
of some key attributes and parameters in XCS follows 
with the understanding that this paper cannot treat XCS in 
utmost detail. 

1.2 XCS CLASSIFIER ATTRIBUTES 
As described previously, each classifier has three 
attributes:  p, ε and F used in the XCS reinforcement 
learning methods and the GA. Additionally, each 
classifier carries a fourth attribute n to represent the 

concept of numerosity, used to reduce computation time 
by minimizing population size and facilitating matching. 
XCS does not permit duplicate classifiers to coexist in a 
population. If the GA should happen to evolve a child 
classifier with the same sense-action pair (considering 
wildcards) as a parent, XCS deletes the less general of the 
pair and increments the second classifier’s numerosity by 
one. All classifiers begin life with a numerosity of one. 
System operations acting upon a macroclassifier, a 
classifier where n is greater than 1 treat the 
macroclassifier as n individual instances. 

1.3 XCS SYSTEM PARAMETERS 
To enhance understanding of the XCS algorithm and ease 
interpretation of performance results a brief discussion of 
user-controlled parameters is provided below. 

1.3.1 Learning and Adjustment Parameters 
XCS permits the user to fine tune the learning process via 
the set of related parameters, α, β, γ, ε0, and ν. The rate at 
which at which P, ε and F are adjusted for experienced 
classifiers is set by α. The discount factor γ controls the 
proportion of knowledge gained from its own experience 
versus the experience of other classifiers. For young 
classifiers which have not yet participated in 1/β action 
sets, a simplified accelerated learning technique is used to 
rapidly adjust P, ε and F to meaningful values. ε0 sets the 
error discrimination threshold between classifiers; 
classifiers which differ in error less than ε0 are considered 
to have equal error. The exponent ν is applied in an 
internal function which scales errors nonlinearly. Table 1 
displays generally appropriate ranges for selected 
parameters. 
 

Table 1: XCS Learning and Adjustment Parameters 
Parameter Absolute 

Range 
Suggested Optimal 

Range 

α 0 < α < 1 0.1 – 0.3 
β 0 < β  < 1 0.1 – 0.2 
γ 0 < γ  < 1 0.1 – 0.9 
ε0 Reals > 0 10-2 – 101 
ν Integers > 1 5 

 

1.3.2 Genetic Algorithm Parameters 
The GA used in the XCS implementation chosen for this 
study is a traditional binary-coded genetic algorithm. It 
generates children via mutation and uniform crossover 
operators, choosing fit individuals though tournament 
selection. The mutation probability PM, crossover 
probability PX, and the probability for generating 
wildcard-bits Pdontcare may be set by the user. A wildcard-
bit, represented by a hash-mark (#) will match with either 



 4

a 1 or a 0 in the environment sense string resulting in a 
more general rule. The value for Pdontcare is usually set as a 
function of the sense-string size. 

1.3.3 Population Parameters 
The classifier population is permitted to grow or shrink as 
XCS runs however a hard limit to the population size 
exists. An optimal value for the maximum population size 
is highly dependant on the complexity of the environment 
and the number of possible sense-action combinations. 
Subsets of the entire population which match the current 
sensory input string are known as match sets. A user-
definable constant, θGA, controls how many time-steps 
pass between applications of the genetic algorithm to the 
current match set. In a multi-step environment, an 
appropriate value for θGA is largely defined by the number 
of steps possible in the environment. 
As previously described, XCS uses the concept of 
numerosity to eliminate duplicate classifiers. If, however, 
two classifiers are identical with the exception of their 
wildcard bits (#), the more general classifier may 
subsume or absorb the less general one. In subsumption 
the more general classifier’s numerosity is incremented 
while the more specific classifier is deleted. Three user-
defined parameters permit adjustment of subsumption: 
θsubsumption, GA-subsumption, and Action-Set-Subsumption. 
θsubsumption sets the minimum age at which a classifier 
becomes eligible for subsumption. GA-subsumption and 
action-set-subsumption are simple Booleans. GA-
subsumption determines whether individual classifiers are 
permitted to subsume other individual classifiers and 
action-set-subsumption determines whether entire action 
sets of classifiers are permitted to subsume other action-
sets. 

1.3.4 Classifier Initialization Values 
At the start of operation, or when a new random classifier 
is generated via covering, the system must supply initial 
values for F, ε and p. These initial values are set as three 
user-definable constants: FI, εI and pI whose ranges are 
arbitrary. The initial, completely random population of 
classifiers is assumed to be suboptimal. 

2 IMPLEMENTATION AND TESTING 
METHODOLOGY  

For this study, Butz’s JavaXCS 1.0 implementation was 
chosen. The algorithm’s performance was analyzed in a 
maze environment using trade studies over a range of 
parameter values. A trade study involves varying one 
parameter across a wide range while holding all other 
parameters constant, enabling a view of the parameter’s 
influence on the algorithm’s behavior. In the case of a 
traditional genetic algorithm, the number of function 
evaluations is most commonly used as a performance 
metric. This is inappropriate for XCS. Instead, prediction 
accuracy and an environment defined performance metric 

are preferred. In the case of the maze environment, the 
performance is evaluated as the number of steps required 
to reach the food, while in the stock market, performance 
is evaluated in terms of the agent’s final wealth.  
During each trial XCS performs in two different modes: 
exploration and exploitation. During the exploration 
mode, XCS makes random moves in an attempt to learn 
as much as possible about its environment. During the 
exploitation mode, XCS uses what it has learned in an 
attempt to maximize environmental reward. In all 
analyses, data are reported as results of the exploitation 
mode runs. 
For the trade studies XCS was allowed to make 4950 runs 
through its environment, learning as it proceeded. By the 
final set of trials, the classifier system was expected to be 
fit. The data are reported as the average of the final fifty 
environment trials. To minimize variation in the data 
trends, each trade study is averaged over ten different 
random starting populations. In cases where the out-of-
the-box parameters from Butz’s original source code were 
found to be sub-optimal, second and third generation 
trade-studies elucidated trends in algorithm’s 
performance. For the sake of brevity, only three of the 
most important trade studies and a learning rate analysis 
have been selected for discussion. For the application of 
XCS to the stock market environment, Table 2 shows the 
parameters which were changed from Butz’s original 
source code. A discussion of the motivation for these 
changes is provided in section 3. 
 

Table 2: Parameter Comparison: Butz vs. Stock Market 
Parameter Butz Stock Market 

γ 0.95 0.1 
δ 0.1 0.95 
ε0 10 0.002 
θdel 20 30 
PM 0.04 0.2 

Pdontcare 0.5 0.05 
 

2.1 MAZE ENVIRONMENTS 
The maze environment is a typical multi-step 
environment used to test performance in a learning 
classifier system. Though the maze is a relatively small 
environment, it is complicated, with few large blocks of 
open space. Figure 1 shows a pictorial representation of a 
typical maze. Table 3 is provided as a key. The classifier 
system models an intelligent agent, or animat moving 
through the maze searching for food. In addition to the 
spatial definition of the environment, the animat is also 
given functionality to perform actions within its 
environment. The animat can move about in empty space 
and perceive its immediate surroundings.  
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Figure 1:  Sample Maze Environment 

 
Table 3: Environment Symbol Key 

SYMBOL DESCRIPTION 

* Open Space 
O Obstacle 
F Food 

 
A three-bit maze environment (24 bit sense string) with 8 
movement actions has 8x224 or 1.342x108 unique sense-
action pairs. Disregarding don’t-care bits, XCS does not 
permit multiple classifiers to have matching sense-action 
pairs, so a theoretical extreme upper limit of population 
size exists. In practical applications, though, XCS would 
never be implemented with populations even remotely 
this large. 

2.2 ONE-BIT STOCK MARKET 
ENVIRNONMENT 

The stock environment sense string consists of binary 
digits representing the information that an agent may use 
to make a decision. The implementation has two input 
formats, a real number describing the current state of a 
particular stock and a binary string describing the state of 
the environment with respect to past information. The real 
input allows the system’s detectors and effectors to make 
accurate movements within the environment.  The binary 
string allows classifiers to be general with respect to the 
stock identity, allowing a rule set developed on a stock 
with a unique range of values to be used on a stock with 
an entirely different range. Since the fitness in XCS is 
accuracy based, the environment could potentially consist 
of real numbers represented in binary encoding; however 
this would result in a very large environment and slow 
down the learning rate immensely. This study does not 
include an analysis of this representation. 
In the ten-bit long environment, the first eight bits 
represent market information and the last two bits will be 
added by the market environment implementation. The 
added bits will represent whether or not all of the agent’s 
money is located in the bank and whether selling owned 
stock would lead to a profit after commission is paid. 
Table 4 describes the environment variables that XCS has 

access to and Table 5 describes the environmental 
representation of pertinent information. Subscripts t, t-1, 
and t-2 indicate present and past time. Currently the 
environment contains no hysteritic information 
concerning whether or not a sale would be more 
profitable today then it was yesterday.  
 

Table 4: Stock Market Environment Variables 
Variable Definition 

P Stock Price 

D Price Derivative 
P10 Volume-Weighted 10-Day 

Moving Average 
D10 Moving Average 

Derivative 
 

Table 5: Stock Market Binary Environment 
Bit Representation 

1 Pt ≥ Pt-1 

2 Pt-1 ≥ Pt-2 
3 Dt ≥ Dt-1 
4 Dt-1 ≥ Dt-2 
5 P10t ≥ P10t-1 
6 P10t-1 ≥ P10t-2 
7 D10t ≥ D10t -1 
8 D10t-1 ≥ D10t -2 
9 All Money in the Bank 

10 Is a Sale Now Profitable? 
 
The stock market environment has a ten-bit sense string 
with three possible actions: buy, sell or hold. This 
translates to a maximum of 3x210 or 3072 unique sense-
action pairs, a much smaller theoretical figure then the 
three-bit maze environment. This is a much smaller set 
then would exist if XCS were given individual binary-
encoded variable values in 16- or 32-bit representation. 
Given this fact, XCS should not require as large of a 
population as a multi-step maze environment. This 
representation scheme also has several advantages; it is 
very straightforward to add or subtract information from 
the environment. It also imparts a flexibility to the rule set 
that XCS generates: a set that performs well for a high-
cap stock should, in theory, perform well for a low-cap 
stock with similar overall trends. 
In the stock market environment, XCS can take three 
possible actions: buy, sell or hold. Currently the 
classifiers are rewarded for a sale that makes money. If a 
real encoded environment is used, a scheme that returns a 
change in wealth may be the most appropriate reward. 
Several combinations of environmental variables were 
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tried, with combinations including information on price 
and derivatives. The environment formalism presented in 
Table 5 is the first environment that worked well: it 
consists of two day derivative information and ten-day 
moving average price information. While this particular 
environment did provide profitable results with a simple 
rewards scheme, it may not be optimal. For the sake of 
this study, unless otherwise noted – this is the 
environment used to analyze the XCS stock agent 
performance. 

3 TRADE STUDY RESULTS 
A key performance metric in XCS is the rate at which the 
classifier population maps the payoff from the 
environment. Figure 2 shows that XCS improves its maze 
performance continuously right up to the specified 
stopping criterion.  Due to computation time the trade 
studies were limited to 5000 runs; the impact of XCS 
parameters upon performance is still clear. If XCS had 
been allowed many thousand more maze runs with which 
to learn, the trends would eventually asymptote to an 
almost constant number of steps to reach the food. 
The two data sets in Figure 2 show maze performance at 
near optimal settings and average out-of-the-box 
parameters. Each point represents the average 
performance of 50 maze runs in exploitation mode. 
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Figure 2:  Learning Rate – Steps to Food vs. Maze Runs 

 
Figure 3 shows the learning rate in terms of the average 
prediction error, ε, and compares it to the steps required to 
reach the food. The average prediction error settles quite 
rapidly, long before the overall system begins to exhibit 
high performance. Learning in the life of an XCS 
classifier population can be characterized into two phases 
as seen in Figure 3. Before learning begins, there is an 
initial period of equilibration or rapid adjustment where 
the majority of classifiers are grossly inappropriate. In 
this initial period, roughly between 0 and 100 maze runs, 
the classifiers perform very poorly and are unaware of 
their poor performance. 

The next phase in the life of a classifier population 
appears once most classifiers have gained enough 
experience to predict error well.  Though the classifiers 
have not yet learned high performance actions, most 
classifiers have a baseline of experience.  With only 
moderate payoff, classifiers can predict their own 
performance accurately. This stage appears in the maze 
environment roughly between 100 and 2000 runs. 
Finally, the classifiers slowly evolve towards higher 
performance actions while the average prediction error 
remains stable.  The classifiers learn to perform better 
while continuing to predict their performance well.  
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Steps to Food vs. Maze Runs 
 

The fitness adjustment parameters ε and γ were found to 
be critical in achieving the best performance with XCS.  
Figure 4 shows the effect of the error discrimination value 
ε0. All classifiers with an error prediction value greater 
than ε0 are considered to be equally unfit and their 
experiences are excluded from the fitness adjustment 
algorithm. Classifiers with small prediction error are 
preferred and their experiences are used in adjusting the 
fitness of other classifiers.   
An overview of the reinforcement learning method used 
in fitness adjustment is shown in Equations 1-4 below. A 
more detailed explanation is available in Lanzi’s notes 
(2002). Every j-th classifier’s fitness is adjusted via both 
its own prediction error and collective data from other 
classifiers in the same action set. 

{ }0
0

: j
j j

νε
ε ε κ α

ε
 

> =  
 

       [1] 

{ }0 : 1j jε ε κ≤ =   [2] 

' j
j

j

κκ κ= ∑    [3] 
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( ' )j j j jF F Fα κ← + −   [4] 

Setting ε0 too high excludes classifiers from collective 
reinforcement learning causing a classifier’s fitness to be 
adjusted only through its own individual experiences. 
Setting ε0 too low includes poorly predicting classifiers in 
the reinforcement learning method. This causes all of the 
classifiers’ fitness to be perturbed by including low-worth 
information from poor-predicting classifiers. The sweet 
spot in the curve in Figure 4 coincides with ε0 
approximately one order of magnitude greater than the 
average steady-state error prediction value. Any classifier 
with error greater than one order of magnitude above the 
population’s average error is excluded from the fitness 
reinforcement learning process. In the case of the stock 
market implementation, ε0 was chosen using this 
principle. 
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Figure 4: Steps to Food vs. ε0 

 
Figure 5 shows the effect of the adjustment discount 
factor, γ, which plays a role in the adjustment of 
prediction, and prediction error. A classifier’s values of P 
and ε are adjusted with data from both that classifier’s 
own experiences and the experiences of other classifiers 
in the same set. As with ε0, γ can be thought of as a 
learning adjustment parameter which balances the weight 
of a classifier’s own experiences against the collective 
experience of other classifiers in the same set. The highest 
performing value for γ found in the trade studies for the 
three-bit maze environment was 0.1. Butz suggests 0.71 
(Butz and Wilson 2001), though it is mentioned that the 
optimal value may vary with the environment. To 
minimize the number of independent variables that would 
affect performance, parameters were not re-optimized for 
the stock market environment. A value of 0.1 was chosen 
for γ because it produced the optimal results in the maze 
environment. 
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Figure 5: Steps to Reach Food vs. γ  

 
The average prediction error increases with increasing γ, 
as shown in Figure 6. Learning can be more difficult 
when classifiers are forced to learn mostly by their own 
experiences without sharing feedback among like 
classifiers.  
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Figure 6: Average Prediction Error vs. γ  

 
The impact of the exponent ν (see Equation 1) used in 
adjusting classifier fitness is shown in Figure 7. This 
exponent scales the difference in prediction error when 
comparing fit classifiers. A value of 5 was found to be 
appropriate. 
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Figure 7:  Steps to Food vs. ν  

4 RESULTS AND DISCUSSION 
The stock market environment implementation was run 
on four data sets: two historical 5-year-long stock data 
sets (for 2000 – 2004 trading years) and two test functions 
designed to represent an idealized set of stock data. The 
trading agent began each trial with a $10,000 trading 
account. Interest was not earned on money left in the bank 
in order to simulate a real trading account. A commission 
of $10.00 was charged for each transaction.  In all cases, 
performance is gauged as a function of the trader’s final 
wealth after the 5-year period. 
Harrah’s Entertainment (HET) was chosen because it was 
an upward trending stock, while Ford Motor Company (F) 
exhibited a steady downward trend as shown in Figure 8. 
Despite their overall trends, both Ford and Harrah’s 
exhibit local price fluctuations on a small time scale. An 
astute trader could take advantage of local trends with 
well timed market maneuvers. Both stock data sets run the 
entire 5 year period without splitting. A company may 
split its stock shares when the price grows high: doubling 
the number of shares and splitting the share price in half. 
The current code has not yet been expanded to handle 
stock splits; splits are infrequent events and their presence 
may inhibit classifier learning.  
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Figure 8:  Stock Price Profiles 

 
The two test functions simulated a stock with a bound 
price that fluctuated as a sine wave with a steady period. 
Illustrative portions of the test function price profiles are 
shown in Figure 9.  
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Figure 9:  Test Function Price Profiles  

 
The smoother function (Test Function 2, TF2) was 
infused with noise using a cubic distribution to vary the 
price by ±10¢. The other test case (Test Function 1, TF1) 
has a uniformly random noise spike of ± $1.00. Analysis 
of a uniformly smooth sine wave is not included because 
XCS was able to exploit the regularity and make the 
maximal profit in almost every run. Since real stocks do 
not perform with the uniformly predicable behavior of a 
sine wave, a smooth sine curve would not be 
representative of a real world data set. Test functions were 
generated and compared to historical data because it is 
very rare to find a stock for which price falls within a 
bound range for long periods of time. Such simplistic test 
functions serve as a good metric for XCS performance. 
The difference in noise between the two cases should 
shed light on how the system responds to varying degrees 
of noise in the environment data. 
To map the learning rate of XCS on stock market 
environments, two trials using the HET and TF1 data sets 
were performed for 500,000 runs. Since the results were 
similar, only those for TF1 are presented. It is apparent 
from Figure 10 that there is no improvement during 
500,000 trial runs, yet in terms of pure market 
performance, XCS consistently does well. It was 
infeasible to extend this study further due to a lack of 
computational resources.  
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Figure 10:  Final Wealth vs. Market Trial Runs 

 
The standard deviation of the final wealth was analyzed in 
sequential samples of 500 trials. Figure 11 shows the 
results as a function of each sequentially numbered 
sample. With the exception of several outlying samples, 
the standard deviation is essentially constant. If XCS were 
exhibiting a learning trend, the standard deviation would 
be expected to decrease with subsequent trial runs. For the 
sake of this paper, XCS is considered to exhibit no 
learning trends in the stock market environment. 
 

 
Figure 11:  Standard Deviation vs. Market Trial Runs 

 
All following studies on the stock market environment 
were performed with 500 trial runs through a single-stock 
environment. This procedure is justified because XCS 
shows no performance improvement with an increased 
trial size. Since the length of the data-set should not affect 
the learning over a long period of time, only five years of 
historical data were considered. 

One of the first gauges of performance is a comparison of 
the four test cases. A comparison of the two historical 
stocks shows that the XCS trading agent performs 
significantly better on an upward trending stock than it 
does when trading a downward trending stock, though the 
performance is much less consistent (see Table 6 and 
Figure 12). When trading HET, the agent performs 
profitably most of the time, however it does not, on 
average, outperform the market as represented by the buy-
and-hold strategy. Dividends have not been included in 
these numbers. On the trial with a downward trending 
stock, the agent never makes a profit, though there are 
many cases in which it simply chooses not to trade.  
 

Table 6: Stock and Test Function Performance 
Case Buy and 

Hold 
Average 
Wealth 

Standard 
Deviation 

Deviation 
Relative 

to 
Wealth 

HET 30719.13 25614.16 5907.62 23.06% 

F 2405.25 3832.53 2694.33 70.30% 

TF1 10558.30 91781.08 127291 138.69% 

TF2 9819.75 21200000 17166800 80.96% 
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Figure 12:  Historical Stock Performance 

 
The trading agent performance on the test functions is 
interesting. The noisier price series, TF2, resulted in 
poorer performance with a much higher variance as 
exhibited in Figure 13. This result may explain the 
variance seen on historical stock price-series where prices 
reflect the stochastic nature of the market. It is interesting 
to note that the performance was three orders of 
magnitude better when trading TF2 than TF1, though the 
prices were bound in similar regions. This phenomenon 
could be an effect of XCS exploiting the regular pattern 
present in TF2.  
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Figure 13:  Test Function Performance 

The trading agent’s habits were analyzed for both HET 
and TF1 to gain insight to the agent’s holding-patterns. 
Figure 14 shows the transactions made during the 5-year 
trading period. Though individual transactions are 
difficult to discern, a general trend is apparent: the agent 
usually day-trades, in most cases holding stock for no 
more than 4-day periods. There is one downward trending 
period of note, where the agent held the stock for a 
significant period of time: between days 348 and 425. In 
this case, the agent chose not to sell during the downward 
trending period in an attempt to minimize losses. In 
general, the agent typically sells a stock as soon as a profit 
may be made, resulting in a higher frequency of trades 
during a bull market and a lower frequency of trades 
during a bear market. This phenomenon may explain the 
extremely poor performance when trading F. 
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Figure 14:  HET – Buy Sell Analysis 

 
When the agent traded the TF1 stock, the holding-pattern 
was shorter with an average of 3 days, as shown in Figure 
15. While the trader may not always find optimal points 
to buy and sell, there is clear evidence of buy-low-sell-
high behavior. Additionally, the narrow range of price-
fluctuation in this particular case allows the trading-agent 

to make some mistakes without suffering heavy financial 
losses. 
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Figure 15:  TF1 – Buy Sell Analysis 

 
Gauging the performance of the trading agent is an 
interesting analysis point. Should the goal of XCS simply 
be to make a profit, or to make a profit and outperform a 
buy-and-hold trading strategy? If the latter is desired, the 
most pertinent issues regarding XCS’s performance are 
environment and reward schema formulation. That is, 
how can the environment and reward schema be adapted 
to provide as consistent as possible performance that beats 
the stock market in its return on investment? A similar 
study, using strength-based learning classifier systems to 
develop optimal trading rules was preformed by 
Schulenburg and Ross (2000). While a one-to-one 
comparison of these studies is not appropriate since the 
approaches differed significantly. It is, however useful to 
discuss the differences in an effort to improve 
interpretation of the results presented herein. The stock 
studied by Schulenburg and Ross contained splits which 
had been handled by adjusting the price-time series. It 
was opted not to take this approach since it complicated 
the definition of moving averages. As previously 
mentioned, splits had not been implemented with XCS so 
a direct stock-to-stock performance comparison is not 
possible at this time. 
This study presents a similarly formulated environment, 
where variables are represented with a one-bit binary 
encoding. In this formulation, the classifier system is only 
aware of trends and not actual values. Though the 
representation was the same, the environments presented 
by Schulenburg and Ross differ in the type of information 
deemed appropriate. The study also implemented a 
variety of reward schemes, many which seemed to 
possess a large degree of imposed heuristics. In contrast, 
the reward scheme presented here is simple: rewarding 
the classifier favorably only when a profitable sale is 
made or when a stock with increasing value is held. There 
are no imposed heuristics based on moving averages or 
price comparisons. The complexity of this type of reward 
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scheme seems to defeat the purpose of a learning 
classifier system.  
The Schulenburg-Ross study does indicate that for 
consistently profitable performance a more complex 
reward method may be necessary for a 1-bit environment 
representation. The addition of bits representing whether 
or not the current price is higher than the highest 
historical price or lower than the lowest historical price 
may be a worthy extension to the environment and might 
cause the classifier systems to hold stock for a longer 
period. XCS has shown the ability to produce very 
profitable populations of classifiers yet it does not 
produce them consistently nor does it show trends of 
evolving more fit populations over time. Though the 
system generates a profit often, the results indicate that 
the present environment formulation, parameter settings 
and reward structure may not be an optimal way to 
develop financial trading rules. If XCS is to succeed, a 
reformulation of the environment or reward structure is 
required. Though the current reward system and 
environment do not allow XCS to exhibit learning 
behavior, they were chosen after several formulations and 
provided the best average performance as tested with 
HET. 
There are several different actions that XCS can take, 
each with varying rewards, either negative or positive. 
Table 7 displays the best reward settings found. Financial 
maneuvers that were considered incorrect or “against the 
rules” e.g. trying to sell when no stock was owned or 
trying to purchase stock shares when no money was 
available were negatively rewarded moreso than 
maneuvers that were unprofitable. The reward scheme 
was discretized into integer values rather than real values 
representing an agent’s wealth or profit because XCS is 
not currently given exact price (or other variable) 
information in this implementation. 
 

Table 7: Stock Market Classifier Rewards 
Action Reward 

Buy: No Stock is Owned 0 
Buy: Stock is Owned -1000 

Sell: No Stock is Owned -1000 
Sell: Stock is Owned 100 

Bank: Money in a Rising Stock 100 
Bank: Money in a Falling Stock -10 

Bank: No Money in Stocks 0 
 
Prior to implementing negative rewards, the positive 
rewards were investigated relative to one another. The 
experiments were executed on HET, since XCS showed 
the lowest relative variance on this data set. A description 
of the schema is presented in Table 8. 
 

Table 8: Sell and Bank Reward Scheme Results 
Case Bank 

Reward 
Sell 

Reward 
Average 
Wealth 

Standard 
Deviation 

A 500 100 19932.01 5089.2 
B 200 100 20205.07 4505.55 
C 100 100 25472.46 3781.53 
D 0 100 15664.58 6140.03 

 
 In general, the XCS stock agent performs worse with 
differentially weighted rewards. As shown in Figures 16 
and 17, the wealth appears to be more stochastic than 
deterministic. It is interesting to note that as the 
performance improves in terms of wealth, the variance 
from run to run decreases. The best case shows an outlier 
in an early run through the market environment. This may 
be a pure statistical anomaly since similar outliers are 
found in other studies and the classifier system does not 
seem to develop a memory. 
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Figure 16:  Wealth vs. Reward Scheme: Cases A & B 
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Figure 17:  Wealth vs. Reward Scheme: Cases C & D 
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The next complication to the rewards scheme involves 
adding negative reinforcement when a classifier attempted 
actions which were defined as illegal. The addition of a 
moderately scaled reward of the same order of magnitude 
as the buy-bank rewards in Case E introduced less of a 
variation in the final wealth than the larger scaled reward 
(Case G).  It did, however, result in a slightly poorer 
average performance. Negative rewards were then added 
for actions that caused the trader to lose money: selling 
when the price had dropped too low or holding a 
downward trending stock. In these cases, the performance 
of the classifier population tended to decrease in 
proportion to the negative feedback. When a slight 
negative signal was returned (Case F) the classifiers 
performance decreased from the previous best (Case G). 
Though the average wealth decreased slightly, the 
variation also decreased, making this reward schema more 
desirable then a case with only negative feedback for an 
incorrect action. 
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Figure 18: Reward Scheme for Incorrect Actions 
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Figure 19:  Reward Scheme for Unprofitable Actions 

 
Table 9 shows that a slight amount of negative 
reinforcement, as in case F, can decrease variance while 
preserving overall profitability.  Harsher penalties, 

however, increased variance and in case H, sharply 
decreased performance. 
 

Table 9: Negative Reward Scheme Results 
Case Incorrect 

Buy or 
Sell 

Poor 
Bank or 

Sell 

Average 
Wealth 

Standard 
Deviation 

E -100 0 25258.25 3728.27 
F -1000 -10 25654.93 5656.85 
G -1000 0 25775.86 5718.39 
H -1000 -100 12278.29 5856.62 

 
In addition to experimenting with various reward schema, 
several different environment sensory configurations were 
tested.  Table 10 shows the impact of adding extra bits of 
data to the sensory string.  In Case 1, the agent had access 
to a one-day history of previous price changes.  Case 2 
added one extra bit, providing both one-day history and 2 
day histories.  Case 3 added yet another bit, encoding one, 
two and three day histories.  The sensory string in Case 4 
is equivalent to that of Case 2, with the addition of a bit to 
track daily change in wealth. 
Over 500 training runs, XCS did not learn better 
performance under any of these cases.  However, the 
complexity of the extra bits affected classifier 
performance despite the lack of learning.  The case with 
the shortest environment string, Case 1, displayed the 
lowest variance yet also performed poorest.  Adding 
additional history bits increased performance at the 
expense of increased variance. In general, as 
environments grow more complex, the rate of 
performance uniformity decreases. Experimental results 
agree with Wilson’s (1998) hypothesis that learning 
complexity scales as a low order polynomial of the 
complexity of the problem, not with the complexity of the 
learning space. 
 

Table 10: History Results 
Case Modified 

Environment 
Average 
Wealth 

Standard 
Deviation 

1 1 Day History 24687.61 4171.33 
2 1 & 2 Day History 25614.16 5907.62 
3 1, 2 &3 Day History 25923.66 7529.94 
4 Did Wealth Go Up? 25178.08 5394.44 

 
The final pertinent study, inspired by the Schulenburg-
Ross study examines the effect of generality on the 
performance of the trading agent. The original studies set 
Pdontcare, or the probability of including a wildcard bit in 
the sense string, to 0.05 or 5% of the environment sense 
string length. Schulenburg and Ross chose a much higher 
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probability – 0.5, in an effort to create a generalized rule 
set.  The XCS results in Figure 20 and Table 11 show that 
the trading agent performs significantly worse when 
Pdontcare is raised in an effort to generalize the trading 
rules. These results do not disagree with the performance 
in the Schulenburg-Ross study because reward heuristics 
were added to coax profitable trading performance. 
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Figure 20:  Reward Scheme for Unprofitable Actions 
 

Table 11: Pdontcare Results 
Case Modified 

Environment 
Average 
Wealth 

Standard 
Deviation 

1 Pdontcare = 0.05 25614.16 5907.62 
2 Pdontcare = 0.5 18926.43 8093.49 

 
 
In a bull market, XCS performs slightly worse than the 
market average.  However, one must consider that XCS 
still nets a profit on average and the system often comes 
within one standard deviation of market performance. 
Considering that the system is not completely optimized, 
results are promising. It shows that even a mediocre 
classifier system can exploit a purely stochastic 
environment. 

5 CONCLUSIONS AND FUTURE WORK 
The present study examines the performance of XCS in a 
single-option-single-stock environment as a first step 
towards a portfolio management system. It is clear that 
XCS exhibits the best potential for a profit in the case of a 
bound stock where it can buy low and sell high. It may 
not be the best application where long term investments 
are desired.  
Before the algorithm is developed further to handle a 
more complex environment, extensive trade studies 
should be performed to find the set of XCS parameters 

that provide optimal performance. It may also be 
necessary to compare different types of environment 
information, for example: moving averages or different 
types of derivatives. XCS may have a chance to allow its 
accuracy based fitness metrics to perform well if the 
environment consists of binary encoded real values so that 
it has finite price and derivative information and dynamic 
reward schema. The tradeoff in this case would be a 
retarded learning rate vs. providing XCS with a non-
generalized reward schema biased towards making the 
largest possible profit. This environment change may 
produce classifiers that are only valid for prices and 
derivatives in a specific range, resulting in a less generally 
usable end classifier population. 
Based on these results it is clear that XCS may not be the 
most appropriate classifier system for handling a stock 
market environment.  While this conclusion is preliminary 
and more experimentation is needed in order to assess 
XCS’s performance, the current set of data strongly 
supports this hypothesis. However, XCS does 
occasionally produce excellent profitable outliers and 
each set of classifiers produced over different runs 
through an environment could be mined for use in a static 
expert system.  However, if an XCS environment that 
successfully produced profitable trades could be 
implemented, there are some improvements that could be 
made to make it a more practical tool for stock investing. 
The first step is the implementation of a multi-option-
single-stock environment where XCS can choose a single 
type of stock to trade at any given time from a set of 
choices. Granting XCS the opportunity to trade among 
several bound stocks may provide a greater opportunity 
for profit maximization than may be feasible when only 
one oscillating stock is bought and sold. This environment 
would take advantage of market timing and it may be able 
to exploit stock increases continuously instead of waiting 
for an oscillating price to fall.  
While the multi-option-single-stock environment may be 
the optimal scenario in terms of pure profit, the next step 
in extending the program’s functionality is the 
implementation of a multiple-option-multiple-stock 
environment with the inclusion of an aggressiveness 
factor. In this scenario, XCS would manage a portfolio. 
An aggressiveness factor would describe whether or not 
the algorithm attempts to minimize risk or maximize 
profit. In this case, if risk minimization were desired, the 
algorithm might either choose to sit on “upper” stocks for 
long periods or time or diversify holdings, while a 
portfolio that chose to maximize profit may choose to 
perform similarly to a multi-option-single-stock 
environment, where stocks with the largest derivatives are 
bought and sold on a day to day basis. 
The implementation of a multi-option-single-stock 
environment would be a fairly straightforward step in 
extending the program, requiring only the addition of 
tracking variables in the XCS environment. This 
implementation may even be possible by training XCS in 
a single stock environment and then implementing the 
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optimal classifier in a multi-option-single-stock 
environment. 
Expanding the market environment to manage a portfolio 
is a more ambitious task than the extension of the multi-
option-single-stock environment. This extension is the 
most complex of the two being proposed here and would 
require large modifications to XCS. It would be the 
simplest to execute in an object oriented program where a 
stock class could be implemented and used in a portfolio 
environment. 
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