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Abstract

This paper develops a hybrid evolutionary 
algorithm combining the Covariance Matrix 
Adaptation evolutionary strategy (CMA-ES) 
with Matlab’s fsolve local gradient search 
algorithm to robustly solve the low-thrust 
rendezvous problem.  The nonlinear equations 
of relative motion govern spacecraft trajectory 
instead of the more common, linearized 
Clohessey-Wiltshire equations.  The hybrid 
algorithm solved the unconstrained problem 
with a reliability of 99% and demonstrated the 
ability to converge to a solution faster than 
using either the evolutionary strategy or the 
local gradient search method alone.  

1 INTRODUCTION

Traditional maneuver design using impulsive burns is 
not applicable to low-thrust applications, which utilize 
low-power, continuously thrusting engines.  Low thrust 
propulsion systems are characterized by variable 
exhaust velocity and limited power, imposing 
additional constraints upon guidance maneuvers.  One 
of the most common guidance maneuvers is 
rendezvous, where one object in space approaches 
another object until the final position and velocity of 
one relative to the other is zero.   

Lembeck and Prussing (1993) studied unbounded, low-
thrust rendezvous to return to an initial point after an 
impulsive burn carried the spacecraft away from its 
initial orbit.  The low-thrust return minimized fuel 
consumption.  The bounded rendezvous problem, with 
upper and lower bounds on thrust acceleration 
magnitude, was analyzed by Carter and Pardis (1996), 
who used Newton’s method to numerically solve the 
nonlinear equations.  Guelman and Aleshin (2001) 
further constrained the problem by specifying a final 
approach direction.   

Standard numerical approaches have been applied to 
solving the nonlinear equations of motion describing 
the rendezvous problem.  Igarashi (2004) applied both 

an evolutionary strategy and a simple genetic algorithm 
to the optimal continuous thrust orbit transfer problem, 
but did not assess reliability of the algorithms.   

This research proposes the use of a hybrid evolutionary 
strategy to solve both the unconstrained and the 
constrained minimum fuel, continuous thrust 
rendezvous maneuver.   

2 PROBLEM FORMULATION 

2.1 LINEARIZED EQUATIONS OF 

RELATIVE MOTION 

Generally, rendezvous is performed from a state close 
to the final state and the familiar Clohessey-Wiltshire 
(CW) equations of relative motion are used to describe 
the motion of one spacecraft relative to another.  These 
are simplified, linearized equations of motion 
formulated by assuming circular reference orbits and 
small separations between the 'chase' vehicle and the 
reference spacecraft (Schaub and Junkins, 2003).  The 
linearized equations of relative motion for a chaser 
spacecraft approaching a target spacecraft are shown 
below 

where x is the radial component of the chaser spacecraft 
position relative to the reference craft, z is the out-of-
plane component, and y is the along-track component 
which completes the right handed coordinate system.  
The thrust acceleration vector is represented by  and n 
is the mean motion of the chief satellite.  The 
performance index for minimizing fuel is given by 

where t0 and tf are fixed initial and final times.   

(2.1.1)

(2.1.2)
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Using classical optimal control theory, it can be shown 
that for unbounded thrust acceleration, the state and 
adjoint equations are linear and the adjoint equations 
are uncoupled from the state equations.  Solving these 
equations yields an optimal thrust control vector of 

where      is the adjoint initial condition vector and v

is a submatrix of the adjoint transition matrix.  The 
solution for the state vector resulting from the optimal 
thrust acceleration vector is given by 

where  is the state transition matrix and  is the 
convolution integral for the state vector, x , due to the 
optimal thrust acceleration vector.  The initial adjoint 
vector is defined such that the boundary conditions are 
fulfilled: 

Note that the final state ftx  is equal to the zero 
vector for docking type rendezvous, but it may also be 
some other user specified final relative state.  For more 
details, refer to Guelman and Aleshin (2001). 

These linear equations provide theoretical insight, yet 
are of limited use in real-world applications.  Therefore, 
one of the goals of this study is to find a reliable way to 
solve for the costates in the nonlinear problem. 

2.2 NONLINEAR EQUATIONS OF RELATIVE 

MOTION 

The linearized equations of motion are only accurate for 
small separation distances between the reference and 
chaser satellites and circular reference orbits.  Most real 
world applications require the greater accuracy of the 
nonlinear equations of relative motion from which the 
linearized equations are derived.   

Assuming there are no disturbances acting on the 
satellites and a circular reference orbit, the deputy 
satellite orbital equations in the rotating relative 
reference frame used in Section 2.1 are 

where rc is the radius of the reference orbit.  The radius 
of the chaser satellite orbit is designated rd and is equal 
to:  

in the relative frame.  These equations can be simplified 
by working in canonical units.  Normalizing the 
distances so that rc = 1 and defining the gravitational 
constant such that µ = 1 yields the following nonlinear 
equations of motion 

where 

              

                                                                      

These equations are not subject to the constraint of 
small separations between the reference and chaser 
satellite.  If the same cost function as that in Section 1.1 
is still used, the Hamiltonian for the nonlinear system is 

where  is the thrust vector.  The six costate equations 
are therefore 

It can be easily seen that, for the nonlinear equations of 
relative motion, the state and costate (adjoint) equations 

(2.1.3)

(2.14)

(2.1.5)

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)
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are coupled and must be solved simultaneously.  The 
optimal thrust vector is then given by: 

Thus, given an initial state for the chaser spacecraft 

and the final conditions for rendezvous (i.e. relative 
position and velocity of the chase vehicle are zero), it is 
possible to calculate the thrust vector profile by solving 
the two point boundary value problem, where the initial 
costate is unknown.

Due to the highly nonlinear nature of the equations, it is 
hypothesized that traditional solvers will be quite 
unreliable for this problem. 

2.3 CONSTRAINTS 

The unconstrained problems formulated in the previous 
sections assume the thrusters on the chaser spacecraft 
are capable of outputting an infinite amount of thrust.  
In reality, maximum (and sometimes minimum) limits 
for thrust exist, with the limits set by the specifications 
of the spacecraft.  This paper will consider only a 
maximum bound on thrust acceleration, i.e. thrust 
acceleration vector magnitude is constrained to be 
below some maximum allowable level. 

For both the linear and nonlinear constrained problem, 
then relationship of equation 2.2.5 holds if the 
magnitude of the thrust vector is less than max.
However, an additional condition on thrust is needed 
for the constrained problem, and the optimal thrust can 
be expressed as 

                                               

where 

                                                               . 

The equations of motion for the constrained linear and 
nonlinear problem must use equation 2.3.2 to calculate 
the value of the thrust acceleration vector at each time 
step.   

In general, the constrained rendezvous problem is 
difficult to solve and there is no guarantee a solution 

exists.  Once a maximum bound is placed upon the 
thrust acceleration magnitude, the chaser spacecraft 
may not be able to reach the target spacecraft within the 
given amount of time. 

One goal of this paper is to ascertain whether it is 
possible to solve the constrained rendezvous problem 
more reliably using heuristic algorithms.   

3 ALGORITHMS

The standard approach for finding the thrust vector 
profile during rendezvous maneuvers is to use the 
analytical solution to the linear problem.  If more 
accuracy is desired, the nonlinear problem can be 
solved numerically using numerical integrators and 
local nonlinear optimization techniques.   This paper 
evaluates the use of an evolutionary strategy (ES) to 
solve for the six initial costates.  The objective function 
to be minimized is the norm of the final state of the 
chaser spacecraft.  

This is a simple, accurate measure of whether or not the 
chaser spacecraft achieves rendezvous with the target 
spacecraft for a given initial state since the desired final 
state is the zero vector. 

The final step of the analysis is to use a hybrid ES 
incorporating both the chosen ES and local 
optimization techniques available in Matlab to reliably 
and quickly solve for the costate.   

3.1 LOCAL OPTIMIZATION METHODS 

The dogleg method is an example of a trust-region 
method for a nonlinear minimization problem.  If the 
goal is to minimize some function F, the algorithm 
locally approximates it with another function p.  The 
function that approximates the local neighborhood, 
known as the trust region, is tested by taking some trial 
step q.  Therefore, the local problem can be written as 
follows 

where T defines the subspace that makes up the trust 
region. If )()( xFqxF , the current point is updated 
to gx .  If not, the current point is retained and the 
size of the trust region is decreased for the next 
iteration. 

The fsolve algorithm used for this study uses a 
quadratic approximation of the local neighborhood. 

Here H is the Hessian matrix, g is the gradient, D is a 
diagonal scaling matrix, and  is some positive 

(2.2.5)
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constant.  The algorithm used in fsolve uses a method 
that reduces this problem into a 2-dimensional 
subspace. 

Both the Gauss-Newton and Levenberg-Marquardt 
methods use least squares to solve for search directions.  
In the Gauss-Newton method, the search direction dk is 
obtained by solving 

where J is the Jacobian.  The Levenberg-Marquardt 
method uses a variation of Gauss-Newton method that 
increases the robustness of the algorithm.  The search 
direction is determined by solving a linear set of 
equations 

where  is a controlled parameter.  (See Matlab help 
files for further information and references.) 

Fsolve will not optimize a scalar value, so the desired 
final state minus the actual final state achieved was 
used as the objective function within fsolve. 

3.2 COVARIANCE MATRIX ADAPTATION 

EVOLUTIONARY STRATEGY (CMA-ES) 

The CMA-ES is a robust algorithm for solving non-
linear optimization problems when traditional methods 
fail due to badly scaled, highly non-separable objective 
functions.  It requires relatively small population sizes 
and utilizes step size control to prevent preconvergence, 
although it does not guarantee the search will not result 
in a local optimum (Hanson, 2001). 

The CMA-ES is based upon updating a covariance 
matrix at each generation.  The covariance matrix, C,
describes the correlations between the n state variables.  
Geometrically, it can be defined as a hyper-ellipsoid 
whose surface defines an equal density of the 
population.  The eigenvalues of C are the squared 
lengths of the principle axes of the hyper-ellipsoid, and 
the eigenvectors of C correspond to the principle axes.  
The purpose of adapting the covariance matrix is to 
approximate the inverse Hessian matrix, thus rotating 
and rescaling the hyper-ellipsoid so that the search 
distribution fits the contour lines of the objective 
function.   

A population of  new search points is generated by 
sampling a multivariate normal distribution given an 
overall mean, standard deviation, and the covariance 
matrix defining the correlations between variables 

for k = 1,…, .  The new population is denoted xk
(g+1),

m(g) is the mean of the current population, (g) is the 
overall standard deviation of the population, and C(g) is 
the covariance matrix.  The mean of the next generation 

is a weighted average of the µ selected points from the 
randomly generated sample 

where 

               = 1, w1 > w2 > …> w , wi > 0, and 

               indicates the i-th best individual out of x(g+1).

Thus selection is implemented by choosing µ <  and 
applying the weighting factors wi so that the best 
solution of the current generation is weighted most 
heavily when generating the next generation, the 
second-best solution next heavily, and so on.  
Recombination is implemented through using µ > 1 
‘parents’ to produce the next generation according to  
equation (3.2.1). 

The covariance matrix, C(g), is updated by combining 
rank-µ updating and rank-one updating, the latter of 
which uses an evolution path to exploit correlations 
between successive steps.  In the CMA-ES, a step is the 
normalized distance between the best individual in the 
next population and the mean of the current population.  
With each successive step, the covariance matrix 
evolves, thus the hyper-ellipsoid defined by the matrix 
rotates and the lengths of the principle axes change.  
Rank- µ updating efficiently uses the information in the 
current population, while the rank-one updating uses 
the information of correlations between steps to update 
the covariance matrix.  Rank-µ updating is important 
for large populations, while rank-one updating is 
especially pertinent in small populations. 

CMA-ES also applies step-size control through (g).
Step-size refers to the distance in objective space the 
strategy moves between successive generations.  Step 
size control is beneficial since the overall step length 
cannot be well approximated by the formula for 
updating the covariance matrix, and because the largest 
reliable learning rate for the covariance matrix update is 
too slow to achieve competitive change rates for the 
overall step length.  Again, an evolution path, which is 
the sum of successive steps, is utilized.  If selection 
biases the evolution path to be longer than expected, 
then the standard deviation is increased; if the path is 
biased by selection to be shorter than expected,  is 
decreased.  The expected length of the evolution path is 
the expected value of the multivariate normal 
distribution N(0,I).

To use the CMA-ES, several parameters affecting the 
update of the mean, overall standard deviation, and 
covariance matrix must be set.  The default strategy 
parameters suggested by the authors of CMA-ES 
provide robust performance and work well for most 
objective functions. 

(3.1.3)

(3.1.4)

(3.2.1)



For a detailed description of the algorithm and explicit 
derivation of the update equations, refer to Hanson 
(2001, 2005).   

3.3 HYBRIDIZATION 

The hybrid approach to solving this problem combines 
the Covariance Matrix Adaptation evolutionary strategy 
for global search with the traditional numerical methods 
integrated into the fsolve function in Matlab as a local 
search tool. This method builds on the strengths of each 
algorithm to robustly converge to an acceptable 
solution for the unconstrained two-point boundary 
value problem corresponding to spacecraft rendezvous. 

As has been previously discussed, the CMA-ES 
algorithm is capable of searching a large parameter 
space without extreme effects on its ability to find 
regions of interest for multimodal topographies. 
Although the ability of the evolutionary strategy to treat 
all of the parameter space as a potential solution allows 
for a robust algorithm, this aspect of its design can also 
lead to long computation times in order to obtain high 
levels of precision in the solution. To circumvent this 
negative aspect of CMA-ES, a local search algorithm is 
used in conjunction with the evolutionary strategy to 
maximize the search space and minimize the time 
required for convergence to the specified tolerances. 

One of the most convenient local search tools available 
is the fsolve function built into the Matlab optimization 
toolbox. As previously discussed, this function is 
capable of using several different algorithms to 
minimize a problem. Although fsolve is much faster 
computationally than CMA-ES, its algorithms are 
highly dependent on the initial guess passed to them for 
convergence. It is predicted that allowing the CMA-ES 
algorithm to pre-condition this initial guess to a 
reasonable degree of precision will increase the 
convergence rate for fsolve.

The pseudocode for the hybrid algorithm is as follows: 

Compute the solution to the linearized problem; 

Initialize CMA-ES with the linearized solution; 

while generations < max generations 

Run CMA-ES for one generation; 

if Error of Best Member (CMA-ES) < Loop-

Break Tolerance (LBT) 

run fsolve with best solution from CMA-ES; 

if fsolve converges 

save solution; 

break loop; 

else

LBT = gap factor*LBT 

end;

end;

end;

The hybrid algorithm performed robustly when either 
the CMA-ES or fsolve algorithms failed individually. It 
was decided not to inject the best value determined by 
fsolve back into CMA-ES when fsolve failed to 
converge.  Injection of the best value obtained by the 
local search could skew the data in favor of this value 
and reduce the benefit of the evolutionary strategy – 
mainly a large search space. 

Throughout experimentation it was not possible to 
achieve 100% reliability for 100 random seeds using 
the hybrid algorithm. In an attempt to increase 
reliability, an additional loop of code was added to the 
end of the original hybrid algorithm. This loop attempts 
to solve the divergent seeds by relaxing the transfer 
time parameter. Shorter transfer times are more 
accurately predicted by the linearized equations and are 
more readily solved than problems with longer transfer 
times. By keeping the initial state variable constant and 
reducing the transfer time, a solution can be found for 
the more easily solved problem. The transfer time can 
be incremented to be closer to the desired length of 
time, and the previous transfer time solution can then be 
used to initialize the search space for the new problem. 
This approach improves the performance of the hybrid 
algorithm because for small changes in transfer time 
there are only small changes in the trajectory. The 
pseudocode for this new loop is as follows:  

dT = transfer time/number of loops; 

transfer time = loop number*dT; 

for i = 1:number of loops 

Run Hybrid Algorithm; 

if Hybrid converges 

save solution; 

transfer time = transfer time + dT; 

else

break; 

end;

end;

The final loop corresponds to the total desired transfer 
time, but the initial search space is now much different 
than it was for the standard hybrid loop. Implementing 
this method increased the reliability during random 
seed analysis at the cost of longer iteration time. Using 
this technique for most seeds is unnecessary, but the 
authors feel that the increase in reliability far outweighs 
the additional function evaluations required to 
implement this extra code. 

4 UNCONSTRAINED RENDEZVOUS 

PROBLEM RESULTS 

4.1 FSOLVE

It is of considerable advantage to use a traditional 
solver whenever possible to avoid unnecessary 
computation. Therefore, some tests were performed in 
order to gauge the efficacy of the solvers used by the 



fsolve function in Matlab.  A random seed test for 100 
seeds was performed for transfer times of /2 time units 
(TU) and initial state vectors drawn from a uniform 
distribution from -.001 to .001.  The final state vector 
was chosen to correspond to rendezvous with the chief 
satellite.  The initial hypercube used in the search was 
based on the magnitude of the costate found using the 
linear equations of motion.  The tolerance was set to  
10-10.

Using the trust-region dogleg method for the same 
initial and final conditions and similar stopping criteria 
yielded 100% reliability with a mean of 21 function 
evaluations.  Here, an initial guess for the costate vector 
was taken from the linear approximation (Eqn. 2.1.5).  
Similarly, the Gauss-Newton and Levenberg-Marquardt
based solvers also gave 100% reliability with an 
average of 28 function evaluations for each algorithm. 

For short transfer times it appears that a traditional 
solver will handle the problem efficiently and reliably.  
To gauge when the nonlinear effects cause the solver to 
fail, a range of transfer times was selected to study 
reliability, shown in Tables 4.1.1, 4.1.2, and 4.1.3.  
Here a failure means that either the maximum number 
of function evaluations was reached (in this case 1,000 
function evaluations) or the code converged to local 
minimum.  The choice of 1,000 function evaluations is 
reasonable since, in cases where the traditional methods 
do converge, they are much less than this number. 

Table 4.1.1: Mean Function Evaluations and Reliability 
for Dogleg method 

Transfer

time (TU) 

Mean func. Evals. 

(when successful) 

%

Reliability 

/2 21 100 

28 100 

3 /2 70 100 

2 NA 0 

Table 4.1.2: Mean Function Evaluations and Reliability 
for Gauss-Newton method 

Transfer

Time (TU) 

Mean func. Evals. 

(when successful) 

%

Reliability 

/2 28 100 

39 100 

3 /2 151 100 

2 646 5 

Table 4.1.3: Mean Function Evaluations and Reliability 
for Levenberg-Marquardt method 

Transfer

Time (TU) 

Mean func. Evals. 

(when successful) 

%

Reliability 

/2 28 100 

40 100 

3 /2 138 100 

2 NA 0 

All three methods consistently failed to converge for 
transfer times of one orbital period, 2  TU.  It should 
be noted that in most cases the dogleg method did come 
close, but due to internal parameters the algorithm 
stopped before meeting the convergence criteria.  Most 
often the algorithm converged to a local minimum, 
which provides evidence of the multimodality of the 
problem.   

4.2 CMA-ES 

During random seed analysis, the CMA-ES algorithm 
performed with 90% reliability using a transfer time of 
one orbital period, a tolerance of 1e-10, and a 
maximum allowance of 14,400 function evaluations. 
Table 4.2.1 summarizes the statistical data from a 
random seed analysis using only the CMA-ES 
algorithm to solve the problem. 

Table 4.2.1: Function Evaluations for 100 
Pseudorandom Seeds using the CMA-ES Algorithm 

Avg. Function 

Evaluations

Standard

Deviation

CMA-ES 8428.4 2712.4 

It was found during experimentation that the integrator 
could become trapped in an infinite loop; the ODE87 
Matlab function was modified to prevent this problem 
by exiting the integrator after a specified number of 
iterations. The CMA-ES code was able to handle these 
‘bad’ data points by assigning a large fitness value to 
parameter strings that showed this instability in the 
integrator. The ability of the algorithm to discount these 
points allowed the code to remain stable and reliable 
over a large number of poorly conditioned parameter 
strings. This robust quality is extremely important 
because it allowed the authors to continue to use their 
integrator without further modifications. 

4.3 HYBRID ALGORITHM 

To improve the reliability of the ES beyond 90%, the 
hybrid approach was designed.  Implementing the 
hybrid algorithm for 100 random seeds provided 



promising results for robustness and quality of 
solutions. Table 4.3.1 shows the statistical information 
from random seed analysis using the hybrid algorithm. 

Table 4.3.1: Function Evaluations for 100 
Pseudorandom Seeds using the Hybrid Algorithm 

Avg. Function 

Evaluations

Standard

Deviation

CMA-ES 7530.2 2922.7 

Fsolve 1993.3 434.75 

Total 9379.5 3034.2 

The hybrid algorithm converged with 94% reliability 
using a transfer time of one period, a tolerance of 1e-10, 
a maximum allowance of 14,400 function evaluations 
for CMA-ES, and a maximum allowance of 4,000 
function evaluations1 for fsolve. The precision required 
to remain within the CMA-ES loop (before transferring 
to the local solver) is referred to as the loop-break 
tolerance (LBT), and was set intentionally low at 1e-3 
for this random seed analysis. Using a low value for the 
loop break tolerance provided high reliability, but also 
increased the total number of function evaluations from 
the hybrid method because it was unlikely that fsolve
would be able to converge at these low-precision initial 
guesses. 

As a point of comparison, using fsolve by itself resulted 
in 5% reliability with these same problem settings, even 
when it was allowed to use 1,000 function evaluations 
per seed. As discussed in section 3.1, increasing the 
number of function calls past 1,000 for the fsolve
algorithm did not increase its reliability. 

When comparing the hybrid results to the CMA-ES 
results shown in Table 3.2.1, it can be seen that the 
hybrid algorithm has a larger total number of function 
evaluations, but the CMA-ES section of the hybrid 
approach has a lower number of function evaluations 
than using the ES alone. This is an important 
characteristic because the time required to compute a 
function call using CMA-ES averaged 14.4 ms, while 
the time required to compute a function call for fsolve
averaged 8.2 ms. This adds credence to the concept that 
faster solution times may be achieved with the hybrid 
approach, although they were not achieved during the 
preliminary random seed analysis. 

These preliminary results suggested that decreasing the 
initial CMA-ES loop-break tolerance value to 1e-5 
would reduce the overall number of function 
evaluations but could also reduce reliability. This 
conclusion was drawn from noting that the local 

                                                          
1  500 function evaluations per local search, with a maximum of 8 
local searches allowed 

searcher was called an average of 4.91 times for each 
seed with a standard deviation of 2.37, showing that an 
increase in the precision for the loop-break tolerance of 
2 to 3 orders of magnitude would solve this problem 
more effectively. 

A parametric study was performed using a variety of 
LBT values to determine any trends in reliability based 
on this parameter setting. A complete random seed 
analysis of 100 seeds was performed for each loop-
break tolerance. The best results were found when the 
loop-break tolerance was set to 1e-5, and the results of 
this run are shown in Table 4.3.2. 

Table 4.3.2: Function Evaluations for 100 
Pseudorandom Seeds, LBT = 1e-5 

LBT = 1.00E-05 

 Mean 
Standard
Deviation

CMA-ES 7896.50 2420.40 

fsolve 709.68 181.92 

Total 8606.20 2345.40 

Subloops 13.80 3.61 

Reliability 95/100 

This parametric study was performed with a transfer 
time of one orbital period, a tolerance of 1e-10, a 
maximum allowance of 14,400 function evaluations for 
CMA-ES, and a maximum allowance of 850 function 
evaluations for fsolve over 17 subloops2. The small 
increase in reliability to 95% over the previous hybrid 
settings is important because reliability was the primary 
goal of this study. 

Adding in the secondary loop described in Section 3.3 
showed significant improvement concerning reliability. 
The results of the entire parametric study and the effect 
of this additional code can be seen graphically in Figure 
4.3.1. 

                                                          
2 With a gap-factor of 0.5 and a LBT of 1e-5, the local searcher can 
be called a maximum of 17 times before CMA-ES must converge 
past the problem tolerance or fail. Each fsolve call is allowed to run 
for 50 iterations. See Section 3.3 for the pseudocode explanation of 
this process. 
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Figure 4.3.1: Algorithm Reliability for Varying LBT 

It is plain that the transfer time iteration loop is able to 
converge for several of the worst seeds used in this 
study. Throughout the parametric study only seed 72 
was unable to achieve convergence. The authors feel 
that decreasing the size of the transfer time increment 
will increase the reliability of this code at the cost of 
increased function evaluations. It is entirely possible to 
allow the code to adjust this increment automatically 
rather than hard coding it; this modification will be 
considered for future work. 

5 CONSTRAINED PROBLEM 

RESULTS

Once the hybrid algorithm demonstrated reliability in 
solving the unconstrained nonlinear problem, it was 
applied to the constrained nonlinear problem.   

Although none of the seeds converged when thrust was 
constrained to be less than or equal to 95% of its 
maximum value for the unconstrained rendezvous 
problem, initial results indicate that allowing more 
function calls and longer computation time could result 
in convergence.  This topic will be pursued in future 
research. 

6 CONCLUSIONS 

The studies performed for this paper have shown that 
the reliability of the fsolve algorithms is not acceptable 
for the nonlinear continuous-thrust rendezvous problem 
for the range of transfer times that are of interest. 
Similarly, the CMA-ES algorithm demonstrated a 
robust operation for this problem at all transfer times 
considered, but the operational overhead of the 
algorithm led to long times for convergence and an 
unacceptable failure rate when used alone. 

The hybrid approach used the CMA-ES algorithm to 
reduce the search space and approximate the final 
solution, which was then passed into the fsolve function 
for final convergence. This method demonstrated the 
highest reliability of all the tested methods, and showed 
that it was capable of decreasing the overall 
convergence time and number of function evaluations 
for this problem for longer transfer times. 

The addition of the incrementally increasing transfer 
time loop demonstrated its ability to solve initial 
conditions that the hybrid was unable to solve for this 
problem. Reducing the transfer time increment in this 
loop is likely to show extremely high reliability when 
convergence time is not the paramount constraint.  

The success of the hybrid algorithm in solving the 
unconstrained nonlinear rendezvous problem provides 
ample motivation for application of the algorithm to the 
constrained problem.  Further work on this topic is in 
progress.  Analysis of the initial data sets should 
provide insight into the reasons the algorithm failed to 
converge and future work will focus on successfully 
applying the hybrid algorithm to the constrained 
problem.   
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