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ABSTRACT
In this paper the evolutionary strategy (ES) of differential
evolution (DE) is expanded upon through the use of modi-
fied speciation and crowding operators to thoroughly explore
a trade space. Typically, an evolutionary strategy such as
differential evolution will either converge to a single point
or to a set of Pareto optimal points (in the case of multi-
objective optimization). However, with the proposed mod-
ifications to DE, not only will it allow for multiple optima
to be located (converged to), an entire trade space can be
explored; species will move towards user-specified attrac-
tors (a way to bias the exploration) in the trade space, yet
individuals will still be created elsewhere. This gives the
decision maker the necessary information to determine their
preferences a posteriori.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Optimization; E.2 [Data Stor-
age Representations]; F.2.1 [Analysis of Algorithms
and Problem Complexity]: Numerical Algorithms and
Problems

General Terms
Algorithms

Keywords
Evolutionary Computation, Differential Evolution, Visual-
ization, Speciation, Trade Space Exploration

1. INTRODUCTION
Evolutionary Strategies have been traditionally used to lo-
cate optimal solutions in an objective space. However, sim-
ply attempting to optimize a problem is not always the best
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course of action. The underlying reason being that often-
times no optimal solution to a problem can exist that will
satisfy everyone when a decision is being reached by a large
number of decision makers [2].

Traditional multiobjective optimization techniques require
the decision-maker (DM) to quantify their preferences a pri-
ori. These preferences drive the algorithm to define a Pareto
Frontier of non-dominated solutions that the DM can eval-
uate. However, sometimes the DMs do not fully understand
their preferences a priori [1]. In order to address this prob-
lem, the ARL Trade Space Visualizer (ATSV) has been de-
veloped to allow for thorough exploration of a trade space
[9]. This research describes a tool DMs will be able to utilize
in ATSV to steer the exploration of that trade space.

The overall goal is to be able to populate a multiobjective
trade space using differential evolution based upon an at-
tractor (a way to bias the exploration) on a reduced dimen-
sional subset of the objective space. By using a combination
of modified forms of speciation and crowding, the algorithm
can effectively explore the unconstrained dimensions about
this user-specified attractor, which could be located in either
the decision or objective space, instead of merely converging
to a single solution. This allows the DM to properly evaluate
the complex interactions between decision variables in order
to determine their preferences a posteriori. This exploration
provides additional information regarding other areas of the
trade space which may affect the DMs preference. This is the
key distinction between the Design by Shopping paradigm
and traditional multiobjective optimization.

In general, the objective function is:

Minimize |~f(X)− ~Φ|
s.t.

ai ≤ Xi ≤ bi

where X ∈ Rd is a d-dimensional decision with a support

[ai, bi] which maps to ~f(X) ∈ Rm, an m-dimensional ob-

jective space. ~Φ ∈ Rk is a k-dimensional attractor location
where k ≤ m. Note that if k = m then the problem is a mul-
tiobjective optimization problem with a goal of converging
to a specified point in the trade space.

Let us consider, for example, an n-dimensional input vec-
tor X ∈ Rn which maps to a 2-dimensional objective space



{f(X), g(X)}. If an attractor ΦL is placed on f(X) such
that the objective function becomes:

Minimize|f(X)− fΦL |, (1)

where fΦL is the location of the attractor. Then the goal
is to populate the line f(X) = fΦL while allowing g(X) to
freely vary. This attractor fΦL is then referred to as a line
attractor.

With a 3-dimensional objective space {f(X), g(X), h(X)},
if an attractor ΦP is placed on {f(X), g(X)}, the objective
function becomes:

Minimize|{f(X), g(X)} − fΦP | (2)

where {f(X), g(X)} is the point location of the attractor.
Then the goal is to populate the line {f(X), g(X)} = {f, g}
while allowing h(X) to freely vary. This attractor ΦP is then
referred to as a point attractor because of its 2-D represen-
tation, but in reality ΦP is just the 3-D representation of
the line attractor ΦL described in the first example. This
process effectively “paints” the trade space around the at-
tractor, allowing preference to be specified only in a limited
subset of the decision space while allowing the unspecified
objectives to be explored.

The next section gives some background information for
the ATSV, differential evolution, and multimodal optimiza-
tion techniques such as speciation and crowding, which will
be adapted for multiobjective use. Section 3 discusses the
modifications to DE required to achieve the aforementioned
goals. Section 4 investigates the effects of parameter selec-
tion and provides two test cases to demonstrate the imple-
mentation of this algorithm; yielding insight into the ob-
tained results. Finally, Section 5 summarizes the key find-
ings of this work.

2. BACKGROUND
Multimodal and multiobjective optimization share similar
goals. The process of locating multiple local optima of a
multimodal function and defining a Pareto Frontier both
require extensitve exploration. In both cases the algorithm
must resist the natural desire to converge to a single solution.
Both techniques share some commonality with the desired
goals of this research (to explore a trade space). This section
provides an overview of the current literature pertaining to
trade space exploration, differential evolution and the evolu-
tionary exploration techniques of speciation and crowding.
The goal is to provide a motivation for the proposed work.

2.1 Design by Shopping
The ATSV is essentially an implementation of the Design
by Shopping paradigm proposed by Balling [1]. The Design
by Shopping paradigm is an idea where decision-makers are
presented with a large number of designs in a trade space
and then choose an optimal solution (in their eyes) from
this set. The major advantage of this is that it allows the
decision-makers to form their design preferences after visu-
alizing the entire design space a posteriori and then choose
an optimal based upon those preferences [9].

ATSV is a data visualization interface which allows users to
visualize complex design spaces through the use of multi-
dimensional visualization techniques such as customizable

glyph plots, parallel coordinates, linked views, brushing, and
histograms. In addition the user can specify upper and lower
bounds on the design space variables, assign variables to
glyph axes and parallel coordinate plots, and dynamically
brush variables. Also, preference shading to help in visual-
izing a user’s preference structure and algorithms for visu-
alizing the Pareto frontier have been added to the interface
to help in shaping a decision-maker’s preference [9].

2.2 Differential Evolution
Differential evolution was developed by Storn and Price [7].
Like other evolutionary algorithms it incorporates operators
of mutations, crossover, and selection. It uses a population
NP of d -dimensional vectors to minimize an objective func-
tion. The population size NP does not change during the
run from generation to generation. The initial population is
randomly generated with the hope of covering the entire de-
cision space. Mutation is performed by adding a weighted
difference between two random population members to a
third random member. Crossover then occurs by mixing this
mutated member’s parameters with another predetermined
target population member. Selection then occurs between
the target and trial member by comparing their fitness val-
ues. The member with the better fitness survives. Each
population member serves as the target member during a
generation so that in a generation there are NP competi-
tions.

Differential evolution was chosen for this work because it
requires few parameter settings, is a real-coded algorithm,
and is separable. This separability is desirable in a sam-
pling algorithm because it allows variables to be decoupled
from each other, which fosters diversity about unconstrained
dimensions of the trade space.

2.2.1 Operators
This section discusses the Evolutionary Operators that are
employed in DE that are relevant to this work.

Mutation. There are many DE mutation schemes in the
literature, refer to [5] for a detailed comparison of the op-
tions. For this report, the strategy DE/rand/1/exp is uti-
lized. This strategy works by selecting 3 random parents
and recombining them in various fashions in order to gen-
erate a child. Eq. 3 demonstrates this approach, with a
mutant vector ~Vi,g [5]:

~Vi,g = ~xr0,g + F × (~xr1,g − ~xr2,g) (3)

where F ∈ (0, 1+) is the user defined scale factor parameter
and ~xri,g where i ∈ (1, 2) is the randomly selected individual
from the current species.

Mating. After a mutated vector ~Vi,g is generated, it is mated
with a sequentially-determined “parent” population member
~xi through a cross-over strategy. A starting point, i mod d,
is selected and the probability of cross-over is the user-
defined parameter CR. If cross-over is successful, the ith

gene of the mutated vector ~xi is swapped with the ith gene
of parent vector ~xi. Then, i is indexed and the process is



repeated until the cross-over is unsuccessful. If cross-over is
unsuccessful, the mating process stops.

Selection. After a child is generated by the mutation/mating
operators, it competes for survival with the originating par-
ent. Only the individual with the best fitness survives to
the next generation.

2.3 Multiobjective/Multimodal Optimization
Both multiobjective and multimodal optimization force di-
versity and delay convergence of the sampling set in order
to meet their stated objectives. This section will discuss two
tools which can be used to achieve the desired results.

2.3.1 Speciation
One technique to locate multiple optima is the idea of speci-
ation used by Li in the development of his species-based DE
(SDE)[3]. Speciation is a niching method where the algo-
rithm’s population is grouped based on Euclidean distance.
In DE, it keeps the randomly chosen members used for cross-
over and mutation to those within the species. This effec-
tively limits the algorithms step-size to the neighborhood of
each individual species, therefore reducing selection pressure
for the global population. This distance calculation is

|~xi, ~xj | =

vuut dX
k=1

(xi,k − xj,k)2, (4)

where ~xi = {xi,1, xi,2, . . . , xi,d} and ~xj = {xj,1, xj,2, . . . , xj,d}
are d-dimensional decision vectors which represent two indi-
viduals i and j from the population. A radius parameter rs,
which represents the distance from the center of a species to
its boundary, must be user specified.

At the beginning of each iteration the entire population µ:

µ =

NSX
i=1

NPi, (5)

where NS is the number of species and NPi is the popula-
tion of species i, is sorted based on fitness and the fittest
member is selected to be a species seed. The next individ-
ual’s distance to the seed is checked and if it falls within a
specified radius rs from the seed it is considered to be part
of that species; otherwise it is set to be another species seed.

This is done for all NP individuals in the population. Once
the species are established, a check is done to ensure that
each species has at least M individuals. In DE, M is usu-
ally set to a number greater than or equal to 3 because DE
requires 3 or more individuals within each species to imple-
ment its mutation and cross-over operators. If the species
does not contain enough individuals then new individuals
are randomly created within the species radius until at least
M individuals exist. After the DE is run for each species,
the entire population is resorted based on fitness.

Adding individuals to the species could potentially create a
population larger than µ, but if this is the case, only µ indi-
viduals total are selected to be species seeds and members
of a species. Another potential problem is that some species

may converge more quickly than others. When this hap-
pens, some individuals may become redundant. To combat
this problem, whenever an individual is created it is checked
against the other individuals within the current species. If
it is a copy, it is replaced by a new random individual [3].

2.3.2 Crowding
Another multimodal optimization technique of interest for
this work is that of crowding [10]. The concept of crowding is
used to maintain diversity in the population, which encour-
ages exploration and increases the probability of converg-
ing to multiple optima. It achieves this by only allowing a
newly generated offspring po to compete with the individual
pi that is most similar to it. Thomsen defined similarity by
Euclidean distance in the genotypic space, but a phenotypic-
based implementation can also be employed. This offspring
will then replace pi in the next generation if it has a better
fitness. The pool of individuals that pi is chosen from is a
random subset (crowd) of the population with a crowd size
set by the crowding factor (CF ); usually taken to be a small
number such as 2 or 3.

Due to the CF usually being set to a low number, crowding
has been known to experience a problem called replacement
error, where the offspring replaces an individual which is not
similar to it [10]. One way to combat this is to set the CF
equal to the population size, guaranteeing that it replaces
the most similar individual in the population. This has the
drawback of a longer runtime, but this increase in runtime
is usually insignificant when compared to fitness evaluation
times.

3. METHODOLOGY
This paper presents a new methodology hereby referred to
as Adaptive Sampling Differential Evolution (ASDE). The
foundation of this algorithm is based upon the traditional
DE operators coupled with a speciation strategy presented
by Li [3] and a crowding strategy presented by Thomsen [10]
but tailored for the Design by Shopping Paradigm [1]. This
section presents the ASDE algorithm, describes its key op-
erators and discusses strategies to set parameters for specific
applications within the Design by Shopping Paradigm.

3.1 Problem Formulation
The objective of this algorithm is to bias samples of a d-
dimensional decision space, which maps to a an m-dimensional
objective space, towards a k-dimensional attractor ~Φ while
exploring the non-preferenced dimensions of the trade space.
Fitness is defined as the Euclidean distance to the attractor,
which may be located in either the decision (genotypic) or
objective (phenotypic) space.

For this study, the decision space is constrained to a sub-
set of R, requiring a modification of the mutation operators
to ensure feasibility. To address scaling issues, each dimen-
sion is transformed to a 0-1 scale. The user must specify
a dimensional tolerance parameter ε, for each dimension,
which represents how distinguishable the user requires each
dimension to be. Any vector where all genes fall within ε of
another vector will be considered identical to that vector.

3.2 Operators



This section details the modifications from the traditional
DE for use with ASDE.

3.2.1 Mutation
For ASDE, the mutation approach is similar to that from
DE, but an additional feasibility check is added, which is
discussed in the mating section.

3.2.2 Mating
After a cross-over decision is made over each dimension, the
feasibility of the generated child (candidate) is required. If
the child is not feasible, the mutation and mating process is
repeated up to NP times, where at that time a randomly-
generated candidate is created to compete against the parent
individual. This candidate is guaranteed to be feasible in the
decision space based upon the criteria for random number
generation. This feasibility cycle is derived from Storn [6]
and was modified for ASDE to incorporate the randomly-
generated alternatives.

3.2.3 Selection
In ASDE, crowding is used to modify the selection operator.
This crowding is implemented similar to Thomsen [10], the
key difference being the usage of speciation. This crowd-
ing strategy is implemented without the requirement of any
additional user-defined parameters, since CR = NP . This
guarantees that the candidate individual competes against
the closest member (within the species). Li [3] argued against
Thomsen’s crowding scheme because of the computational
expense of searching for the nearest neighbor of a candidate.
However, by incorporating crowding into a species-based al-
gorithm this search is limited to within the species, thus
reducing its cost.

3.2.4 Speciation
While the general idea of speciation is appealing for this
work, a few aspects of it need to be considered more care-
fully; the fact that even though the species converge to dif-
ferent locations, they still converge, and the implications of
having to specify a radius. With respect to the first con-
cern, ways to prevent the entire population from converging
need to be considered since the goal is to populate the whole
trade space instead of just having multiple species converge
to the attractor.

A speciation strategy similar to Li [3] is implemented, with
two key differences. First, the radius parameter rs is elim-
inated in an effort to improve problem scalability. Second,
the speciation strategy is combined with the previously men-
tioned crowding strategy.

The main concern regarding Li’s speciation strategy pertains
to the use of rs. Specifying the radius rs requires problem
specific knowledge which can greatly impact performance
and can be difficult to interpret from an operator perspec-
tive. If the number is too small, each population member
will become its own seed, generating a total of NP total
species. Each species will then need to be increased to M
members by to ensure that the DE strategy can perform. Li
suggests that these extra members be generated randomly
which can lead to a random-walk condition, as (M − 1)
randomly-generated individuals compete with the species

seed (worst-case). This leads to a total of (M − 1) × NP
randomly-generated individuals in a generation. The next
section discusses how ASDE addresses these issues.

3.3 Identifying Species
ASDE eliminates rs, and replaces the parameter by a species
parameter, NS. This parameter is more intuitive to the user,
as it directly corresponds to the desired amount of diversity
in the search space. By specifying NS and the population
size NP , the user is generating a total of µ parents in each
generation, where µ = NS × NP . This also eliminates the
need for the parameter M , as all species have NP members.

3.4 Generating Species
For ASDE, the defining member of each species is a species
seed. By definition, the species seed will have the highest
fitness of a given species, and the membership of each in-
dividual is determined solely on that individual’s location
with respect to the species seed. Figure 1 describes the lay-
out of the algorithm. This algorithm begins with a empty

input : L-a list of all individuals
output: S-a list of all dominating individuals identified

as species seeds
ϕ-a list of all species θ

begin
ϕ ∈ {∅};
while not reaching the end of L do

Lfit ← SORT(L,FITNESS);
pseed ← p0 ∈ Lfit;
θ ← pseed Remove p0 from LIndividuals;
Ldist ← SORT(L,DISTANCE);
for i = 1 : NP − 1 do

θ ← pi;
Remove pi from L;

end
Let ϕ← θ

end

end

Figure 1: ASDE Algorithm for Determining Species

set of species ϕ. It takes L as an input, which is a compila-
tion of surviving individuals from all species in the previous
generation. L is sorted by fitness and placed in Lfit. The
individual with highest fitness (p0), as determined by Lfit,
is removed from L and becomes the first species seed pseed.
The list L is then sorted by Euclidean distance to p0 and be-
comes Ldist. At this time, the NP − 1 closest individuals to
p0 are inserted into species θ that has seed pseed, while being
removed from L. Species θ is added to the set of species ϕ,
Lfit is resorted from the remaining members of L, and the
process is completed until there are NS total species in ϕ,
each consisting of NP individuals.

While in SDE the species radius rs is a user specified pa-
rameter, this strategy calculates an average species radius
vector ~rs, which is the d-dimensional vector which repre-
sents the average distance of all NP − 1 individuals from
the species seed pseed. This ~rs addresses the scaling issue of
rs by allowing each dimension to maintain its influence over
the domain.



While SDE uses rs for determining number and contents of
the species, ASDE only uses ~rs for a boundary of randomly
generated individuals. These randomly generated individu-
als occur either when the mating/mutation process gener-
ates either an infeasible point or a duplicate of a previously-
generated parent. The next section will discuss the tracking
of duplicate individuals through the use of a tabu-list.

3.5 Tabu List
Since the primary objective of ASDE is to efficiently sam-
ple points on the trade space for computationally expensive
functions, there may be benefit in ensuring that a specific
decision point is never sampled twice. In order to eliminate
the risk of redundant calculations, each individual can be
tested against a tabu list to ensure that it has not already
been evaluated. When a tabu list is incorporated into an
ES, the following decisions are required:

• Are duplicates deleted, or do they just inherit the
matching solution’s fitness?

• What precision is required to declare a duplicate (see
discussion below on ε)?

• If a duplicate is deleted, how is it replaced?

Each of these questions have an effect on the balance of ex-
ploration and exploitation of the algorithm. For this paper,
a tabu list in which duplicates are deleted and replaced by a
randomly-generated member located within the species ra-
dius is used. These randomly-generated members help to
explore the trade space.

The definition of a duplicate in relation to a continuous vari-
able is critical, since by measure theory the probability of
randomly selecting a specific point in space for a continuous
variable is 0 (P (X = x) = 0, ∀X ∈ Rd). Of course, a com-
puter representation of a continuous number is finite, but
the probability of selecting a specific point is effectively 0.
The concept of ε allows the DM to specify a level of differ-
entiation for each decision variable. It is assumed that the
DM knows the critical resolution of each decision variable
a priori and can specify an ε where further differentiation
is insignificant. This allows the algorithm to effectively em-
ploy fitness-sharing, so that individuals within a specified ε
for each dimension will not be evaluated again.

3.6 Convergence
Since the purpose of this strategy is to sample a decision
space vs. specifically target a set of optimal solutions, the
evaluation of convergence is left to the DM. From an algo-
rithm perspective, the goal is to maintain the balance be-
tween exploration and exploitation with the goal of intel-
ligently sampling the trade space. Mechanisms to address
species pre-convergence must be addressed in future work.

One mechanism to ensure diversity is to replace a species at
each generation with randomly-generated individuals to ex-
plore different regions of the trade space. In ASDE, this con-
cept was implemented by dropping the last species (which
contains the set of worst-performing individuals) and re-
placing the entire species with a set of random individuals,

seeded by the best overall individual from the previous gen-
eration. This strategy is promising as it injects a significant
number of new candidate solutions, but these solutions do
not compete with the best known solutions until the follow-
ing generation because they are located in a different species
(for the next generation)

A strategy to increase convergence to the attractor is in al-
lowing each species to run for more than a single generation
between resorting the species. This strategy will cause each
species to “hone-in” on locally-optimal solutions prior to
reintegration and re-speciation. For this study, new species
are determined after each generation, similar to SDE [3].

3.7 Parameters for ASDE
The new parameters/decisions of interest are:

• NP : Species Population Size

• NS: Number of Species

• F : Scale factor parameter for mutation

• CR: Cross-Over Ratio for Mating

• εi: The level of differentiation for input i

• RANDOM?: An option that replaces the individuals
from the last species of a generation with randomly
generated individuals.

3.8 Complexity
The computational complexity of this algorithm is deter-
mined by the number of sorting operations and the total
population size. For each generation, there is one sort by
fitness (Lfit) and NS sorts by distance (Ldist). For each
Ldist calculation, a total of µ − 1 distance calculations are
required. This gives a computational complexity for specia-
tion of O(NS× (µ−1)) which is similar to the results found
by Li, but with a fixed number of species which makes the
run-time in the control of the DM, based upon the user
specified parameters NP and NS.

For the crowding operator, each individual must be com-
pared against NP individuals in order to determine its clos-
est neighbor. This requires a total of NS × NP 2 which
is identical to NP × µ. Since typically NP > NS, the
overall computational complexity of this algorithm will be
O(NP × (µ−1)) which is smaller than Thomsen’s O(µ2) for
crowding and Li’s O(µ×NS) for speciation.

3.9 Measures
Traditional optimization algorithms measure performance
based upon measures such as the number of functional eval-
uations (FEs) and reliability. On the other hand, an appro-
priate set of measures for comparing a sampling algorithm is
the first 4 standardized moments of the distribution of sam-
ples (mean, variance, skewness and kurtosis). In particular,
the kurtosis of the sample is a key performance measure.
The sample kurtosis measures the bias of the sampling to-
wards an attractor. A kurtosis of −1.2 indicates no selection
pressure, or a uniform distribution across the dimension. A
kurtosis of 0 indicates a normal distribution while a kurto-
sis approaching inf indicates a degenerate condition with all



mass existing at a point [8]. For this investigation, all four
of these measures are used to judge the effectiveness of the
algorithm’s parameter settings.

4. EXPERIMENTATION
The test cases that will be modeled in this study were chosen
to demonstrate the effectiveness of the ASDE algorithm to
thoroughly explore the trade space.

4.1 2-D Simple Example
This example involves a direct mapping of the decision vari-
ables to the objective variables in 2-dimensions.

f(x, y) = x

g(x, y) = y

Φf = 0

where Φf is an attractor on the objective variable f(x, y).
This scheme is d = 2 for the decision space, m = 2 for the
objective space and k = 1 for the attractor. The goal of this
experiment is to demonstrate the effectiveness of ASDE to
explore the line f(x, y) = 0 throughout the range of g(x, y).
A visualization of this trade space is shown in Figure 2.

4.1.1 Parameter Investigation
An experiment was conducted in order to understand the
underlying dynamics of the algorithm and sensitivity of its
parameters on the 2-D Simple Test Function. The factors
of interest with their tested values were:

• NP : Species Population Size (10, 20)

• NS: Number of Species (3, 5)

• CR: Cross-Over Ratio for Mating (0.6, 0.9) input i

• RANDOM?: Replace Last(lowest fitness) Species with
Randomly-Generated Individuals

The scale factor (F ) was set to 0.5 based upon Price’s guide-
lines [4] and testing by both Li and Thomsen [3, 10]. The
testing ranges for NP and NS were selected based upon the
requirement to limit the FE requirement. While CR = 0.9
was selected by Price, Li and Thomsen, the effect of CR on
exploration was tested by adding CR = 0.6 as a test param-
eter.

A full factorial experiment was run with each combination
of the above parameter settings. For each setting, a set of
10 seeds were selected for random number generation. The
statistics for these 10 runs were averaged for analysis. Each
combination of parameters were run for 1000 functional eval-
uations, based upon the functional requirements set forth by
the ATSV group. The results of this parameter study are
shown in Figure 3.

4.1.2 Key Findings
The results of the parameter study found that for the uncon-
strained variable g(x, y) the settings NS=5, NP=20, CR=0.9
and RANDOM?=Y. Figure 4 demonstrates the progression
of sampling over 1000 FEs for this optimally selected set
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Figure 6: Moving average of kurtosis over FEs (200 FE
Window) for Simple XY Example. This plot compares the
change in kurtosis with respect to the number of functional
evaluations between two extreme parameter settings.

of parameters. In contrast to the optimally selected pa-
rameters for exploration of g(x, y), a time-series comparison
of parameter settings which quickly target Φf is shown in
Figure 5. The key observation from this trial is how the al-
gorithm quickly begins to find and “paint” the attractor in
under 400 FEs. By monitoring the kurtosis of the sampling
population with respect to the number of FEs, a sense of
how quickly the algorithm finds the attractor can be estab-
lished (Figure 6). It is proposed that this measure can be
used to actively adapt ASDE to achieve the DMs sampling
objective; this could be an area of future research.

4.2 Examples
4.2.1 2-D Crossed Example
This example employs a rotation to the previous example,

f(x, y) = x cos(α)− y sin(α)

g(x, y) = x sin(α) + y cos(α)

Φf = 0

where Φf is an attractor on the objective variable f(x, y) and
α = 45◦ is the angle of rotation. This scheme is also d = 2 for
the decision space, m = 2 for the objective space and k = 1
for the attractor. The objective space {f(x, y), g(x, y)} be-
comes dependent on both decision variables, which provides
a more complex example for ASDE to evaluate. Figure 7
visualizes the trade space of the 2-D Crossed Example. Uti-
lizing the information learned from the 2-D Simple Exam-
ple, a smaller set of parameter combinations were run for
this 2-D Crossed Example. The following combinations of
parameters were compared:

• NP : Species Population Size (20)

• NS: Number of Species (3, 5, 8)

• CR: Cross-Over Ratio for Mating (0.9) input i

• RANDOM?: Replace Last(lowest fitness) Species with
Randomly-Generated Individuals

This generated 6 combinations of parameters. Figure 8
demonstrates the progression of sampling over 1250 FEs in
a 3-D Surface Histogram format. The key observation from
this figure can be seen clearly in Figure 8f. Two peaks, which
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Figure 3: Main Effects Plot for the 2D Simple Example of g(x,y). These are the results for the unconstrained objective
variable, g(x, y), averaged of 10 runs. 1000 FEs were computed for each run. The target values for the kurtosis and standard
deviation of a uniform distribution with range [-5,5] are shown in red.
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Figure 4: Time Series Plot of FEs for 2D Simple Example with NS=5, NP=20, CR=0.9 and RANDOM?=Y. Most Recent
Functional Evaluations Shown in Red.
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Figure 5: Time Series Plot of FEs for 2D Simple Example with NS=3, NP=10, CR=0.6 and RANDOM?=N. Most Recent
Functional Evaluations Shown in Red. This plot demonstrates the effect of a greedy selection strategy on sampling.
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Figure 7: Trade Space of 2-D Crossed Example. This example shows the results of 2000 FEs on an example with NS=8,
NP=20, CR=0.9 and RANDOM?=Y.
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Figure 8: Time Series Plot for 2D Crossed Example. This example shows the results of 2000 FEs on an example with NS=8,
NP=20, CR=0.9 and RANDOM?=Y. The peaks that develop as the FEs increase correspond to stable species with decreasing
radii. These peaks lower the kurtosis, making the distribution appear more uniform.

begin to develop ∼ 750 FEs begin to dominate ∼ 1250 FEs.
This indicates that these two species have converged and
no longer contribute to the exploration of the algorithm.
The location and symmetry of these peaks lower the kur-
tosis which makes the overall distribution about g(x, y) to
appear more uniform. However, by examining the standard
deviation in tandem with the kurtosis it is clear that the
distribution has a significantly higher spread than would be
expected for a uniform distribution. Therefore, a DM must
monitor each of the distribution measures discussed earlier
in the paper to ensure sampling is as planned.

5. CONCLUSIONS
The ASDE algorithm proposed in this paper extends DE
through modified speciation and crowding to thoroughly ex-
plore a trade space. This is in contrast to a traditional ES
which seeks to converge to a single optimal solution (sin-
gle objective) or Pareto set (multiobjective). In doing so, it
provides information to the DM, allowing preferences to be
formed a posteriori as apposed to forcing the DM to forming
them a priori.

Two basic examples were demonstrated which provide in-
sight into the potential of this method as an effective guided
sampler. Additional research and refinement is needed to
gauge ASDEs ability to transverse and map more complex
multi-dimensional trade spaces.

For future work, a more thorough examination of parameter
sensitivity is needed. In addition, an investigation into the
real-time monitoring and control of the trade space distribu-
tions of interest via the distribution measures (i.e. kurtosis)
is warranted. Finally, a strategy to monitor and address
species pre-convergence is needed to limit the appearance of
sharp peaks, such as were seen in Figure 8f.
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