
Comparison of Evolutionary Algorithms on the
Minimax Sensor Location Problem

Whitney Conner
The Pennsylvania State University

310 Leonhard Building
University Park, PA 16802

wac129@psu.edu

ABSTRACT
The Minimax Sensor Location Problem (SELP) is a nonlinear,
nonconvex programming problem which aims to locate sensors to
monitor a planar region. The objective is to determine the
locations that will minimize the maximum probability of
“missing” an event in the region. Two evolutionary algorithms,
differential evolution (DE) and the co-variance matrix adaptation
evolutionary strategy (CMA-ES), are used to solve the SELP
when 2 to 10 sensors are to be located in the unit square. Several
variants of each algorithm were tested and results show that the
DE/best/2/bin variant of DE and the weighted recombination
variant of CMA-ES yield the best performance. A comparison of
DE and CMA-ES, in terms of the objective value obtained,
reveals that the algorithms obtain comparable solutions. However,
CMA-ES requires approximately half as many function
evaluations as DE.

Categories and Subject Descriptors
G.4 [Mathematics of Computing]: MATLAB

General Terms
Algorithms, Performance, Reliability, Experimentation

Keywords
Sensor location, Differential Evolution, Co-variance Matrix
Adaptation Evolutionary Strategy

1. INTRODUCTION
Sensor and detection systems pervade our daily lives, ranging
from smoke alarms in our bedrooms to cellular base stations used
in wireless communication systems. As technology and
innovation progress, sensors are becoming smaller and cheaper
while their capabilities are expanding. Krishnamachari [11] notes
that wireless sensor networks (WSNs) have potential applications
in “ecological habitat monitoring, structure health monitoring,
environmental contaminant detection, industrial process control,
and military target tracking.” With such a wide range of
applications and obvious societal impact, the need to study and
optimize these systems is of growing importance.
Research in the field of WSNs has focused on several areas
including network security and energy management but few have
focused on sensor deployment. In light of this, consider the
following problem: Suppose a planar region, S, is to be monitored
by a system of sensors which detect events (e.g. hazardous
material spills or someone placing a cell phone call) occurring in
the region. Each sensor detects an event with a certain probability

which depends only on the distance between the event and the
sensor. The object of the Minimax Sensor Location Problem
(SELP) is to determine the locations of sensors which will
minimize the maximum probability of missing an event (a.k.a.
the probability of non-detection). Because the sensor system is
only as strong as its weakest point, the goal of the problem is to
optimize the worst-case scenario.
SELP is a nonlinear, nonconvex programming problem and as
such, is challenging for traditional math programming techniques.
Instead, this paper will employ evolutionary optimization
techniques to solve the SELP. Evolutionary algorithms (EAs) are
direct search techniques based on the ideas of natural selection to
“evolve” good solutions to problems. This paper investigates the
use of Differential Evolution (DE) and the Co-variance Matrix
Adaptation Evolutionary Strategy (CMA-ES) to solve the
problem when 2 to 10 sensors are to be located in a square region.
Section 2 will review relevant literature on the SELP and present
the mathematical formulation of the problem. Section 3 will
discuss the method used to parameterize the EAs. Section 4 will
introduce Differential Evolution and describe the procedure used
to parameterize the algorithm. Section 5 will do the same with
respect to CMA-ES. Section 6 will compare results of DE and
CMA-ES to the SELP problem. Section 7 will summarize the
findings of the paper and suggest future work. All algorithms
were implemented in the MATLAB environment. The appendix
contains parameter settings for the CMA-ES algorithm and
contour plots of the solutions obtained for the 10 sensor problem.

2. SENSOR LOCATION PROBLEMS
2.1 Literature Review
Dhillon et al. [3][4] addressed a discrete version of a closely
related problem. Their objective was to minimize the number of
sensors required to satisfy a threshold value on the probability of
non-detection. Dhillon et al. suggest two greedy heuristics which
sequentially add sensors to the region being monitored.
Recent work by Drezner and Wesolowsky [5] and Cavalier et al.
[2] has addressed the continuous SELP problem. Drezner and
Wesolowsky considered locating sensors on both the unit line and
within the unit square. For the planar problem, Drezner and
Wesolowsky discretized the event locations using a grid and then
solved the problem by univariate search, math programming,
simulated annealing, and a Demjanov algorithm. They found the
Demjanov method provided the best solutions with reasonable
computation times.
Cavalier et al.[2], extended the work by Drezner and Wesolowsky
to consider locating identical sensors in arbitrary convex planar

regions. Instead of using standard math programming approaches
to the problem, they used the computational geometry of the
problem to develop a heuristic solution to the continuous problem.
Their solution algorithm, called Towards the Largest Peak (TLP),
uses Voronoi Diagrams to identify “peaks,” or points of high
probability of non-detection and moves sensors towards these
peaks. TLP was compared with MATLAB’s built-in fminimax
solver, which uses a sequential quadratic programming (SQP)
method, and shown to give comparable and often superior results
with significantly faster computation times.
It is important to note that the SELP model is based on several
assumptions which may not be applicable in real scenarios.
However, insight can still be gained by solving the simplified
version of the problem.

∗ Identical Sensors: All sensors in the system can be
described by the same detection probability function.

∗ Events occur with equal probability throughout the
region

∗ There are no existing sensors in the region
∗ The probability of detection by each sensor is

independent of other sensors
∗ Sensors are ideal in the sense that there is no risk of a

false alarm

Relaxation of these assumptions will be the topic of future
research. Since traditional nonlinear programming techniques like
SQP were shown to be inferior on the basic SELP, other solution
methods should be explored. Also, because TLP relies on the
geometry of the SELP, the method will fail when complications,
such as non-identical sensors, are introduced. The purpose of this
paper is to explore the viability of EAs as reliable solvers for the
SELP, in hopes that they will also be appropriate when some of
the simplifying assumptions are relaxed. As in the previous two
papers, this study will consider the continuous problem with
events occurring within a square.

2.2 Problem Formulation
By assumption, the performance of a sensor depends only on the
distance between the event and the sensor. As such, the detection
capability of a single sensor can be modeled by a detection
probability function (dpf) such as a gravity decay function of the

form
ndked /1)(−−=π , or an exponential decay function of the

form
nkded −=)(π , where k>0 and n>0 are parameters of the

sensor and d is the Euclidean distance between the event and the
sensor. Using these functions, we can now consider the capability
of an entire sensor system. The joint probability of non-detection
by the system for an event located at z is the product of the

individual probabilities of non-detection:))),((1(
1

∏ −
=

m

i
id zxπ ,

where xi is the location of sensor i,),(zxid is the Euclidean
distance between sensor i and the event, and m is the number of
sensors in the system. Then the objective function is:

))),((1(maxmin
1 ,,,
∏ −
=

m

i
id

m

zx
zxx x 21

π
L

The only constraint on the problem is that the sensors remain
within the region, S. For the specific case where S is a square, this
can be written as xi ∈ S where

⎭⎬
⎫

⎩⎨
⎧ ≤≤≤≤== uyiylyuxixlxiyixiS ,|),(x for all i=1, 2,…, m

and xl and xu and yl and yu are the lower and upper bounds, on the
x-coordinate and y-coordinate respectively, which define the
square.
Within DE, a simple feasibility check was performed on each
sensor location. If a sensor fell outside the region, it was repaired
by forcing violated constraints to be tight. That is, the infeasible
coordinate was set to the closest boundary. For example, if a
sensor has coordinates),(uil yyyuxixi ≤≤>=x , it was repaired

with the following coordinates:),(uil yyyuxi ≤≤=′x This

Lamarckian approach of repair and replace was chosen for its
simplicity and ease of implementation. Lamarckian approaches
can lead to a lack of diversity within EAs, but preliminary testing
revealed that DE worked well with this implementation. Thus,
more complicated strategies were not explored.
When the above mentioned Lamarckian approach was
implemented in CMA-ES, the algorithm failed to reliably solve
the SELP. Variance in the best objective value (fitness) and the
number of function evaluations were high. As a result, the
implementation in CMA-ES uses a Baldwinian adaptive penalty
method as recommended in [6]. In this method, the repaired
solution is used to evaluate the fitness of the individual and then
the “repaired fitness” is penalized by adding a weighted distance
between the population member and the repaired individual. Note
the key difference is that the repaired individual does not replace
the infeasible population member. It is only used in evaluating the
fitness of the individual. This boundary handling method was
already coded in version 2.50 of CMA-ES, which was used for
this study. For more details on the boundary handling, see [6].

2.3 Test Problems
This paper considers locating 2 to 10 sensors in the unit square, as
studied by Drezner and Wesolowsky [5]. They considered sensor
capabilities modeled by the following exponential decay detection
probability function ded −=)(π . For simplicity, this will be
referred to as the Drezner problem. As in their study, in order to
approximate the continuous objective function, the event
locations were discretized using a 10 by 10 grid, but sensor
locations remain continuous decision variables. Figure 1 shows
the probability of non-detection of a single sensor for the Drezner
problem.

0
0.2

0.4
0.6

0.8
1

0

0.2
0.4

0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

Drezner's Unit Square Problem

P
ro

ba
bi

lit
y

of
 N

on
-d

et
ec

tio
n

Figure 1: Exponential Decay for Drezner's problem

3. PARAMETERIZING EAs
Often, EAs have a sweet spot, or range, of parameter settings
within which the algorithm can solve a particular problem well.
This is because the EA must balance the need to explore the
search space and exploit good solutions. If too much exploration
is done with low selective pressure, the algorithm will follow a
random walk, also known as drift. The algorithm will eventually
converge but not necessarily to a good solution. On the other
hand, if selective pressure is high, even if mutation and crossover
are high, the solutions converge quickly and innovation will be
impossible. Thus finding the right balance to parameterize
evolutionary algorithms is important, but can be a time-
consuming process.
In a 2004 paper, Reed and Yamaguchi [12] suggest a three-step
method to avoid the trial-and-error approach of parameter setting.
The three steps are 1.) consider the time constraints of your
problem, 2.) automatically set mating/mutation parameters based
on available literature, and 3.) implement adaptive population
sizing. Adaptive population sizing means that initially, an
arbitrarily small population is used. After certain intermediate
stopping criteria are met, the population size is doubled and the
algorithm is implemented again with the larger population. In
addition, the best solution found in the previous run is injected
into the larger population. This process repeats until there is little
or no improvement in the objective value or a maximum time or
number of function evaluations is reached. Reed and Yamaguchi
implemented their method using DE.
Similarly, in [1], Auger and Hansen suggest an adaptive
population sizing approach for CMA-ES. Like the Reed and
Yamaguchi approach, default parameters settings are chosen
based on suggestions in the literature. Then the algorithm is
implemented with a small population size. After certain stopping
criteria, based on convergence, are satisfied, the population size is
doubled and the process is repeated until a pre-defined number of
function evaluations is reached. However, because CMA-ES is
not an elitist EA, in the Auger and Hansen implementation, no
information from the small population runs were injected into the
larger populations.
Because of the time involved in finding the optimal parameter
settings for EAs and the fact that several variants of each
algorithm are implemented, a similar adaptive population sizing
was used in this paper. It is important to note that using this
approach implicitly assumes that population size is the parameter
with the largest impact on EA performance. Evidence from [1]
and [12] support this assumption for both DE and CMA-ES.

3.1.1 Preliminary Analysis
On a Dell XPS MXC051 PC with a 2 GHz Pentium M processor,
using a 10 by 10 grid to evaluate the probability of non-detection
for one configuration of 10 sensors requires approximately 0.0012
seconds. The maximum acceptable run time is determined to be 5
minutes ≈ 250,000 evaluations, since multiple variations of each
EA will be solved for many random seeds. Because each
algorithm will require different computation time, the maximum
number of function evaluations was used to stop each algorithm
instead of a maximum cpu time. Note that this limit exceeds the
overall stopping criteria set for CMA-ES in [1], which was 104D
function evaluations, where D is the problem dimension.

Because the optimal solution to the SELP is unknown, the search
was terminated when doubling the population size no longer
improved the objective value or 250,000 function evaluations had
elapsed. Improvement is measured by a greater than 1% decrease
in the objective function value between runs, where “run” refers
to the process of doubling the population size. The arbitrarily
small initial population size was chosen to be 10. This is the value
used in [12] and is also the recommended default population size
for a 10 dimensional problem in CMA-ES [8].

The overall stopping criteria of 250,000 function evaluations or
no improvement in the objective value was implemented for both
DE and CMA-ES, but the internal stopping criteria was specific to
each algorithm. The specific implementations will be discussed in
the respective sections for each algorithm. Also note that time
continuation was used in both algorithms. In the case of DE, the
best population member from the previous run was injected into
the initial population of the next run. In CMA-ES, the “best ever”
solution was tracked in each run and used as the mean of the
initial population in subsequent runs.

4. DIFFERENTIAL EVOLUTION (DE)
4.1 Description
Differential Evolution is a search algorithm developed by Storn
and Price [13] used to solve continuous space minimization
problems. Decision variables are represented as real-valued
vectors with dimension D. Like most EAs, Differential Evolution
uses mutation and recombination operators to explore the search
space and a tournament selection operator to exploit strong
population members. The details of the algorithm follow, using
the notation and terminology of Storn and Price.
Begin by generating a parent population with μ=NP members of
D-dimensional vectors by random sampling from a uniform
distribution in the feasible decision space. Each parent, also called
a target vector, is denote ,,Gix where i=1, 2,..., NP and G denotes

the generation. A child population of size λ=NP is created through
mutation and crossover. Mutation involves adding the weighted
difference of two randomly chosen population members to a third
randomly chosen individual (called the base of the mutation),
where all of the individuals involved are different. The weight is
called a scaling factor, denoted F ∈ (0,2]. Next, uniform
crossover occurs between the mutant vector and a parent from
generation G, but with one randomly chosen parameter forced to
be chosen from the mutant vector. Thus the parent and the child
differ by at least one decision. Cross-over is controlled by CR, the
probability that the jth parameter (decision variable) will be
drawn from the mutant vector as opposed to the parent vector.
The resulting child, called the trial vector, competes with the
parent to determine which individual moves on to the next
generation. The process is repeated until the population converges
or a maximum number of generations is reached. The MATLAB
code for DE provided at [14] was modified as necessary to solve
the SELP. The mathematical representation of the mutation.
crossover, and selection operators follow:

4.1.1 DE’s Mutation
The mutant vector denoted ,1, +Giv is determined by:

)(,3,2,11, GrGrGrGi xxFxv −+=+

where 3 ,2 ,1 rrr are distinct, randomly chosen indices from (1, 2,
…, NP).

4.1.2 DE’s Cross-over
The trial vector, or child, is denoted by 1, +Giu and each element
(decision) of the vector is determined by:

⎩
⎨
⎧

≠>
=≤

=
+

+
+)(and)(if,

)(or)(if ,

1,

1,
1, irandindexjCRrand(j)x

irandindexjCRrand(j)v
u

Gji

Gji
Gji

where CR ∈[0,1], rand(j) is a random number from U[0,1], and
randindex(i) is a random index in (1, 2, .., D) so that at least one
of the mutated parameters is present in the trial vector.

4.1.3 DE’s Selection
Selection occurs via binary tournaments between the target
vector, or parent, Gix , and the trial vector, or child,

1, +Giu . If

fitness(1, +Giu) < fitness(Gix ,), then in generation G+1,

1,1, ++ = GiGi ux . Otherwise, GiGi xx ,1, =+ . Note that this approach is
elitist.

4.2 Methodology
4.2.1 Default Parameter Settings
After testing DE on three different suites of test functions, Storn
and Price [13] suggest F=0.5 as a good first choice for the scaling
factor and CR = 0.9 for the probability of cross-over when
possible. Since the population size will be adaptive, NP is no
longer a parameter set by the user. The initial population will be
drawn from a uniform distribution within S.

4.2.2 Adaptive Population Sizing
Again, following the suggestions of Reed and Yamaguchi [12],
the dynamic population sizing was implemented as follows:
1. Set i=0 (run 0)
2. Set the population size to NP0=10
3. Allow the population to mate and mutate until 3.a. or 3.b.

occur
3.a. The population converges, as measured by:

1
||*100
≤

−

Best

WorstBest
Fitness

FitnessFitness

3.b. At least tmin = NPi*D,, where D is the problem
dimension, generations have passed and there is less
than 1% improvement in the objective between
generations

4. Double the population size (NPi+1 = 2NPi). Include the best
population member from run i in the new population of run
i+1. Set i= i+1. Return to step 3.

The search was terminated when doubling the population size did
not result in at least a 1% improvement of the objective function
or the function evaluation limit (250,000) was reached.

4.2.3 Reliability
To ensure that the three-step implementation would reliably solve
the SELP, 50 trial runs (random seeds) of the Drezner problem

were investigated when locating 2, 5, and 10 sensors. The results
are presented in Figures 2 and 3 and Table 1. Figure 2 plots the
progression of the best fitness value versus number of function
evaluations for the 2, 5, and 10 sensor problems. Note that the
scales, in terms of objective value and number of function
evaluations, vary with problem dimension. Figure 3 plots the
frequency, over the 50 random seeds, of the maximum population
size required under adaptive population sizing.

As can be seen by examining Table 1, over 50 trials, the percent
difference between the best and worst solutions, calculated as

AverageBestWorst)(*100 − , was less than 5% for all three
problems. Because this measure relies on the entire range of
objective values, it can be thought of as a worst case performance
metric. The standard deviation as a percent of the average fitness
is less than 2% for all three problems. Thus DE with adaptive
population sizing yields reliable results for the SELP. The
maximum population size reached was 160 for the 10 sensor
problem.

Table 1: DE Reliability Results for the Drezner Problem

Sensors
Average
Fitness

(std. dev.)

Range of
Fitness Values

Average
Function

Evaluations
(std. dev.)

2 0.255243
(0.000642)

(0.254342,
0.256989)

1625.4
(931.0)

5 0.017525
(0.000034)

(0.017477,
0.017633)

23224.8
(21816.3)

10 0.000232
(0.000003)

(0.000229,
0.000240)

191638.4
(74264.5)

4.3 Variants of DE
Using the implementation described in section 3.2, eight variants
of DE were studied to determine whether a significant
improvement in solution quality and/or function evaluations could
be obtained over the basic form of DE. Table 2 lists the 8 variants
under consideration, where “Pairs” indicates crossover according
to coordinate pairs rather than individual parameters. See section
4.3.2 for more details.

Pairs, DE/best/1/bin DE/best/1/bin

Pairs, DE/rand/1/bin DE/rand/1/bin

Pairs, DE/best/2/bin DE/best/2/bin

Pairs, DE/rand/2/bin DE/rand/2/bin

Table 2: Table of DE Variants

4.3.1 Common DE Variants
In addition to the basic DE presented earlier, several variations
exist. The basic version of DE is denoted DE/rand/1/bin which is
read as Differential Evolution with a randomly chosen base for
mutation, one difference vector involved in mutation, and binary
experiments during crossover.

The other variants tested in this study are: DE/best/1/bin,
DE/rand/2/bin, and DE/best/2/bin. Best indicates that the most fit
individual from the previous generation will be chosen for the

2 Sensors 5 Sensors 10 Sensors

0 1000 2000 3000 4000 5000
0.24

0.26

0.28

0.3

0.32

0.34

0.36

P
ro

ba
bi

lit
y

of
 N

on
-D

et
ec

tio
n

Number of Function Evaluations
0 0.5 1 1.5 2

x 105

0.01

0.02

0.03

0.04

0.05

0.06

P
ro

ba
bi

lit
y

of
 N

on
-D

et
ec

tio
n

Number of Function Evaluations
0 0.5 1 1.5 2 2.5 3

x 105

0

0.5

1

1.5

2
x 10-3

P
ro

ba
bi

lit
y

of
 N

on
-D

et
ec

tio
n

Number of Function Evaluations
Figure 2: DE Dynamics Plots of Objective Value versus Function Evaluations over all random seeds for 2, 5, and 10 sensors

2 Sensors 5 Sensors 10 Sensors

5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45
Historgram of Population Size over 50 trials

Maximum Population Size

Fr
eq

ue
nc

y:
 N

um
be

r o
f R

un
s

R
eq

ui
rin

g
M

ax
. P

op
ul

at
io

n
S

iz
e

0 20 40 60 80 100 120 140 160 180

0

5

10

15

20

25
Historgram of Population Size over 50 trials

Maximum Population Size

Fr
eq

ue
nc

y:
 N

um
be

r o
f R

un
s

R
eq

ui
rin

g
M

ax
. P

op
ul

at
io

n
S

iz
e

0 20 40 60 80 100 120 140 160 180

0

5

10

15

20

25

30
Historgram of Population Size over 50 trials

Maximum Population Size

Fr
eq

ue
nc

y:
 N

um
be

r o
f R

un
s

R
eq

ui
rin

g
M

ax
. P

op
ul

at
io

n
S

iz
e

Figure 3: Frequency of Random Seeds and Maximum Population Size Required for 2, 5, and 10 sensors

base of the mutation in the next generation. The 2 indicates that
two difference vectors will be involved in mutation as follows:

)(,5,4,3,2,11, GrGrGrGrGrGi xxxxFxv −−++=+

4.3.2 Pair-wise Cross-over
In addition to the four variants mentioned, a variation in the cross-
over mechanism, specific to the SELP, is considered. Note that in
the usual implementation of DE, each individual parameter
undergoes a binary experiment to determine whether the
parameter will come from the parent vector or the mutated vector.
But in the SELP, individual parameters are actually part of a
coordinate pair which together form a sensor location. Thus,
intuition suggests that crossover should be done according to
sensor locations (coordinate pairs) rather than individual
parameters. Thus for each variant listed above, crossover will be
performed two ways: 1.) cross-over using individual parameters
(as usual) and 2.) cross-over as coordinate pairs. The
mathematical representation of cross-over in pairs follows:

The trial vector, or child, is denoted by 1, +Giu and each sensor

location),(1,11, +++ GijGji uu of the vector is determined by:

⎩
⎨
⎧

≠+>
=+≤

+++

+++

)(1, and)(if),(
)(1or or)(if),(

1,11,

1,11,
irandindjjCRrand(j)xx
irandindjjCRrand(j)vv

GijGji

GijGji

where CR ∈[0,1], rand(j) is a random number from U[0,1], and
randindex(i) is a random index in (1, 2, …, D) so that at least one
of the mutated sensor locations is present in the trial vector.

4.3.3 Results
Each variant was run over 50 random seeds for the 2, 5, and 10
sensor Drezner problem. The results of the DE variant testing are
summarized in Figure 4. The left column plots the mean objective
value attained by each variant, along with the 95% confidence
interval around the mean, calculated as

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±

edsNumberOfSe
DeviationStMean .96.1 . The right column plots the mean

number of function evaluations and the 95% confidence interval
around the mean. The dashed bars indicate the variant which
achieved the minimum function value in the minimum number of
function evaluations. The DE/best/2/bin variants outperformed
other variants, in terms of fitness value, when function
evaluations are used to break “statistical” ties between the means.
However, no determination could be made as to whether “pair-
wise” crossover was beneficial. In all three problems, the
DE/best/2/bin and Paired-DE/best/2/bin performed the same in
terms of function evaluations and objective value. This is likely
due to the high value of the crossover parameter (CR=0.9). At this
setting, most of the offspring’s elements are chosen from the
mutant vector rather than the parent vector. Therefore the high
probability of choosing parameters from the mutant vector as
opposed to the parent vector may mask the effect of the pair-wise
cross-over mechanism. The recommended variant of DE is
DE/best/2/bin with crossover according to individual decision
variables.

5. COVARIANCE MATRIX ADAPTATION
5.1 Description
Co-variance Matrix Adaptation is a (μ, λ) evolutionary strategy
developed by Hansen and Ostermeier [9]. As suggested by the (μ,
λ) notation, this ES is non-elitist and uses truncation selection.
Like typical ESs, CMA-ES’s recombination operator consists of
calculating the weighted mean of μ best parents. An unbounded
mutation operator is used, which means that a random vector is
drawn from a multivariate normal distribution with zero mean and
added to the centroid of the parents. CMA-ES dynamically adapts
the normal mutation distribution throughout its search and the
standard deviation, or step size, of the normal distribution
represents the strength of the mutation operator. The method is
appropriate for non-linear, non-separable objective functions and
because of its adaptive step size, is unlikely to pre-converge [7].
The main components of the algorithm are described below, using
the notation and terminology of Hansen and Ostermeier [9].

The algorithm begins by sampling a new population as described
in secion 5.1.2. Next, selection and recombination take place.
Based on the selected individuals, the evolution paths for the
covariance matrix and the step size are updated. Finally, the
covariance matrix, C, and the step size, σ are adapted as
described in sections 5.1.4 and 5.1.5. CMA-ES was implemented
in MATLAB using version 2.50 of the code available at [15].
Note that while CMA-ES is not elitist, the best solution ever
found was tracked in an archive and used for all comparisons.

5.1.1 CMA-ES Mutation
The offspring population is generated according to the following
relationship:

λσ .., 2, 1,for),(~)()()()1(=++ kNgg
k

gg C0mx

Where m(g) is the mean vector as calculated in 5.1.3, σ(g) is the
adapted step size, and C(g) is the adapted covariance matrix.

Mean Performance and 95% Confidence Intervals
Two Sensors

0.2544

0.2548

0.2552

0.2556

0.256

Pair
s, D

E/be
st/

1/b
in

DE/be
st/

1/b
in

Pair
s, D

E/ra
nd

/1/
bin

DE/ra
nd

/1/
bin

Pair
s, D

E/be
st/

2/b
in

DE/be
st/

2/b
in

Pair
s, D

E/ra
nd

/2/
bin

DE/ra
nd

/2/
bin

Pr
ob

ab
ili

ty
 o

f N
on

-D
et

ec
tio

n

Mean Function Evals and 95% Confidence Interval
Two Sensors

0

1000

2000

3000

4000

5000

6000

7000

Pair
s, D

E/be
st/

1/b
in

DE/be
st/

1/b
in

Pair
s, D

E/ra
nd

/1/
bin

DE/
ran

d/1
/bi

n

Pa
irs

, D
E/b

est
/2/

bin

DE/
be

st/
2/b

in

Pa
irs

, D
E/r

an
d/2

/bi
n

DE/ra
nd

/2/
bin

Fu
nc

tio
n

Ev
al

ua
tio

ns

Mean Performance and 95% Confidence Interval
Five Sensors

0.016
0.0165

0.017
0.0175

0.018
0.0185

0.019
0.0195

0.02

Pa
irs

, D
E/b

est
/1/

bin

DE/b
est

/1/
bin

Pair
s, D

E/r
an

d/1
/bi

n

DE/ra
nd

/1/
bin

Pair
s, D

E/be
st/

2/b
in

DE/b
est

/2/
bin

Pair
s, D

E/r
an

d/2
/bi

n

DE/r
an

d/2
/bi

n

Pr
ob

ab
ili

ty
 o

f N
on

-D
et

ec
tio

n

Mean Function Evals and 95% Confidence Interval
Five Sensors

0

10000

20000

30000

40000

50000

60000

Pa
irs

, D
E/

be
st/

1/b
in

DE/
be

st/
1/b

in

Pa
irs

, D
E/

ran
d/1

/bi
n

DE/r
an

d/1
/bi

n

Pa
irs

, D
E/

be
st/

2/b
in

DE/
be

st/
2/b

in

Pa
irs

, D
E/

ran
d/2

/bi
n

DE/r
an

d/2
/bi

n
Fu

nc
tio

n
Ev

al
ua

tio
ns

Mean Performance and 95% Confidence Interval
Ten Sensors

0

0.00005
0.0001

0.00015
0.0002

0.00025

0.0003
0.00035

0.0004

Pa
irs

, D
E/

be
st/

1/b
in

DE/be
st/

1/b
in

Pair
s,

DE/
ran

d/1
/bi

n

DE/
ran

d/1
/bi

n

Pa
irs

, D
E/

be
st/

2/b
in

DE/
be

st/
2/b

in

Pa
irs

, D
E/

ran
d/2

/bi
n

DE/
ran

d/2
/bi

n

Pr
ob

ab
ili

ty
 o

f N
on

-D
et

ec
tio

n

Mean Function Evals and 95% Confidence Interval
Ten Sensors

0

50000

100000

150000

200000

250000

Pa
irs

, D
E/

be
st/

1/b
in

DE/
be

st/
1/b

in

Pair
s,

DE/ra
nd

/1/
bin

DE/
ran

d/1
/bi

n

Pa
irs

, D
E/

be
st/

2/b
in

DE/
be

st/
2/b

in

Pa
irs

, D
E/

ran
d/2

/bi
n

DE/
ran

d/2
/bi

n

Fu
nc

tio
n

Ev
al

ua
tio

ns

 Figure 4: DE Variants. Mean Objective Value with 95% CI and Mean Function Evaluations with 95% CI for 2, 5, and 10 sensors

5.1.2 CMA-ES Selection and Recombination
The mean vector is calculated as the weighted sum of the μ best
population members according to:

∑

∑

=

=

>≥≥≥=

=

μ

μ

μ

1
21

1

)()(

0... and , 1 where
i

i

i

g
ii

wwww

w xm g

When the weights are equal, i.e. w1= w2=… wμ = 1/μ, the operator
is called “intermediate” recombination, denoted (μI, λ). When
more fit individuals receive a higher weight than less fit
individuals, the operator is termed “weighted recombination,”
denoted (μW, λ).

5.1.3 CMA-ES Covariance Matrix Adaptation
The basic assumption behind adapting the mutation distribution is
that steps which were successful in the past are likely to be
successful in the future. In light of this intuitive assumption, the
covariance matrix is built using the cumulation (sum) of mutation
steps from previous generations, also called a covariance
evolution path, in order to increase the odds of reproducing the
previous successful steps. The adaptation of the covariance matrix
is similar to the updating of the Hessian matrix in quasi-Newton
methods [9]. That is, the covariance matrix can be thought of as
an empirically calculated Hessian, which uses information about
the gradient of the objective function to adapt the search. See [7]
for implementation details.

5.1.4 CMA-ES Cumulation Step Size Adaptation
In order to adapt the mutation step size, CMA-ES tracks the
cumulation (sum) of successive steps, called the step size
evolution path, and compares its length to the expected length of
the path under random selection. When the actual path length
exceeds the expected path length, the step size is increased.
Otherwise, the step size is decreased. The rationale behind this
process follows: If successive steps are parallel correlated (i.e.
point in the same direction), then fewer but longer steps could
have reached the same point faster. The resulting cumulation path
will be longer than expected, indicating that the step length should
be increased. If successive steps are anti-parallel correlated (i.e.
point in opposite directions), then the steps counteract one another
and smaller steps would have been more efficient. Similarly, the
cumulation path will be shorter than expected, indicating that the
step size should be decreased. Implementation details of this
process can be found in [7].

5.2 Methodology
5.2.1 Default Parameter Settings
CMA-ES has several parameters which must be specified by the
user, including μ, λ, and several parameters related to the
adaptation of the normal mutation distribution. These were set
using the default parameter values listed in [8], with the exception
that the initial population size is set to λ = 10 (regardless of
problem dimension) because of the adaptive population sizing.
Table A in the Appendix lists these parameter settings. Similar to
the initialization of DE, the mean was drawn from a uniform
distribution on [0,1]D, where D is the problem dimension, and the
initial step size was set, as suggested in [1], at)(

2
1)0(ab −=σ ,

where (a,b) = (0,1) for the unit square problem.

5.2.2 Adaptive Population Sizing
Again, following the suggestions of Reed and Yamaguchi [12],
dynamic population sizing with time continuation was
implemented. However, the intra-run convergence criteria were
expanded to include the criteria suggested in [1]. These criteria
are specific to CMA-ES and all were used, except the criteria that
the range of function values in a generation remain above 10-12.
Instead, this criterion was replaced with the convergence measure
listed in the implementation scheme below.
 Thus, the adaptive population sizing was implemented as:
1. Set i=0 (run 0)
2. Set the population size to λ0=10
3. Allow the population to mate and mutate until 3.a. or 3.b.

occur
3.a. The population converges, as measured by:

1
||*100
≤

−

Best

WorstBest
Fitness

FitnessFitness or one of the intra-run

convergence criteria in [1] are met.
3.b. At least tmin = λ i*D , where D is the problem

dimension, generations have passed and there is less
than 1% improvement in the objective between
generations

4. Double the population size (λ i+1 = 2 λ i). Set the mean of the
new population in run i+1 equal to the best known solution
from previous runs. Return to step 3.

The search was terminated when doubling the population size did
not result in at least a 1% improvement of the objective function
or the function evaluation limit (250,000) was reached.

5.2.3 Reliability
To ensure that the adaptive population sizing of CMA-ES would
reliably solve the SELP, 50 trial runs (random seeds) of the
Drezner problem were investigated when locating 2, 5, and 10
sensors. The reliability results are based on the weighted
recombination variant of the algorithm and are presented in
Figures 5 and 6 and Table 3. Figure 5 plots the progression of the
best fitness value versus number of function evaluations for the 2,
5, and 10 sensor problems. Note that the scales, in terms of
objective value and number of function evaluations, vary with
problem dimension. Figure 6 plots the frequency, over the 50
random seeds, of the maximum population size required under
adaptive population sizing.

Table 3: CMA-ES Reliability Results for the Drezner Problem

Sensors
Average
Fitness

(std. dev.)

Range of
Fitness Values

Average
Function

Evaluations
(std. dev.)

2 0.255484
(0.000899)

(0.254303,
0.25715)

891.16
(422.2)

5 0.017515
(0.0001)

(0.017447,
0.017962)

4888.8
(1863.0)

10 0.000235
(0.000005)

(0.000227,
0.000252)

20400.76
(20026.5)

2 Sensors 5 Sensors 10 Sensors

0 1000 2000 3000 4000
0.25

0.3

0.35

0.4

0.45

P
ro

ba
bi

lit
y

of
 N

on
-D

et
ec

tio
n

B
es

t E
ve

r

Number of Function Evaluations
0 2000 4000 6000 8000 10000 12000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

ba
bi

lit
y

of
 N

on
-D

et
ec

tio
n

B
es

t E
ve

r

Number of Function Evaluations
0 2 4 6 8 10 12

x 104

0

0.5

1

1.5

2

2.5
x 10-3

P
ro

ba
bi

lit
y

of
 N

on
-D

et
ec

tio
n

B
es

t E
ve

r

Number of Function Evaluations
Figure 5: CMA-ES Dynamics Plots of Objective Value versus Function Evaluations over all random seeds for 2, 5, and 10 sensors

2 Sensors 5 Sensors 10 Sensors

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50
Historgram of Population Size over 50 trials

Maximum Population Size

Fr
eq

ue
nc

y:
 N

um
be

r o
f S

ee
ds

 R
eq

ui
rin

g
M

ax
. P

op
ul

at
io

n
S

iz
e

0 10 20 30 40 50 60 70 80 90

0

5

10

15

20

25

30

35
Historgram of Population Size over 50 trials

Maximum Population Size

Fr
eq

ue
nc

y:
 N

um
be

r o
f S

ee
ds

 R
eq

ui
rin

g
M

ax
. P

op
ul

at
io

n
S

iz
e

0 50 100 150 200 250 300 350

0

2

4

6

8

10

12

14

16

18

20
Historgram of Population Size over 50 trials

Maximum Population Size

Fr
eq

ue
nc

y:
 N

um
be

r o
f S

ee
ds

 R
eq

ui
rin

g
M

ax
. P

op
ul

at
io

n
S

iz
e

Figure 6: Frequency of Random Seeds and Maximum Population Size required for 2, 5, and 10 sensors

As can be seen by examining Table 3, over 50 trials, the percent
difference between the best and worst solutions, calculated as

AverageBestWorst)(*100 − , was less than 11% for all three
problems. Recall again that this measure relies on the entire range
of objective values and therefore can be thought of as a worst case
performance metric. The standard deviation as a percent of the
average fitness is less than 3% for all three problems. Thus, while
not as reliable as DE, CMA-ES with adaptive population sizing
still yields reliable results for the SELP. The maximum
populations size required by CMA-ES was 320 for the 10 sensor
problem.

5.3 Variants of CMA-ES
As described in section 5.1.3, both the intermediate recombination
and weighted recombination variations of CMA-ES were
implemented on the Drezner Problem. For (μI, λ) CMA-ES, the
weights are given by: .1...21 μμ ==== www For (μW, λ) CMA-ES,

the weights are given by:
.

)ln()1ln(

)ln()1ln(

1

i
j

iw

j

i ∀
∑ −+

−+
=

=

μ
μ

μ

5.3.1 Results
Both variants were run over 50 random seeds for the 2, 5, and 10
sensor Drezner problem. The results of the CMA-ES variant
testing are summarized in Figure 7 and Table 4. Figure 7 plots the
mean objective value attained by each variant, along with the
95% confidence interval around the mean, calculated as

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±

edsNumberOfSe
DeviationStMean .96.1 . Table 4 shows the 95% confidence

interval on the difference of the mean objective value and the
mean function evaluations of the two variants, calculated as

()
##

96.1
2

2
2

1

2
1

21
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+±−

OfSeed
nStDeviatio

OfSeeds
nStDeviatio

MeanMean . As can be seen

from Figure 7 and Table 4, the difference in the means of the
objective value is not statistically different than zero. However,
the .difference in the means of the function evaluations is
statistically significant. This means that in terms of the objective
value, both variants work equally well. But, the weighted
recombination variant requires significantly fewer function
evaluations when compared with the intermediate recombination
variant. The recommended variant of CMA-ES is the weighted
recombination variant.
Table 4: 95% Confidence Intervals on the Difference in Mean

Performance for Intermediate versus Weighted
Recombination

Sensors
CI on the Difference:

Mean Objective Value

CI on the Difference:
Mean Function

Evaluations

2 (-6.91 E-04, 3.17 E-05) (-454.37, -140.18)

5 (-4.94 E-05, 5.94 E-05) (-6744.35, -4430.68)

10 (-1.64 E-07, 4.16 E-06) (-55872.07, -26181.28)

2 Sensors

Mean Performance and 95% Confidence Intervals

0.25

0.251

0.252

0.253

0.254

0.255

0.256

0.257

0.258

Tw o Sensors

Pr
ob

ab
ili

ty
 o

f N
on

-D
et

ec
tio

n

Weighted Recombination

Intermediate Recombination

5 Sensors

Mean Performance and 95% Confidence Intervals

0.0172

0.01725

0.0173

0.01735

0.0174

0.01745

0.0175

0.01755

0.0176

0.01765

Five Sensors

Pr
ob

ab
ili

ty
 o

f N
on

-D
et

ec
tio

n

Weighted Recombination

Intermediate Recombination

10 Sensors

Mean Performance and 95% Confidence Intervals

0.00022

0.000222

0.000224

0.000226

0.000228

0.00023

0.000232

0.000234

0.000236

0.000238

0.00024

Ten Sensors

Pr
ob

ab
ili

ty
 o

f N
on

-D
et

ec
tio

n

Weighted Recombination

Intermediate Recombination

Figure 7: Mean Objective and 95% CI for CMA-ES variants

6. COMPARISON

6.1 Methodology
Using the DE/best/2/bin variant of DE and the weighted
recombination variant of CMA-ES, the random seed analysis
from the previous sections was employed to determine whether
one algorithm outperformed the other both in terms of quality of
the objective value and the number of function evaluations.

6.2 Results
Figure 8 and Table 5 summarize the comparison of DE and CMA-
ES. The left column of Figure 8 shows the mean objective value
obtained by each algorithm, along with the 95% confidence
interval on the mean. The right column shows the same
information with respect to the mean number of function
evaluations required. Table 5 lists the 95% confidence interval on
the difference in the mean objective value and number of function
evaluations from the two algorithms.
In terms of statistical significance, Table 5 reveals that for the 2
and 10 sensor problems, DE, on average, finds solutions with
better objective values than CMA-ES. For the 5 sensor problem,
no difference in the mean objective values could be distinguished.
However, depending on the exact application and the desired

level of precision in the probability of non-detection, the
difference in the objective value found by CMA-ES versus DE
may not have any practical significance. For example, in the two
sensor problem, the average probability of non-detection found by
DE was 0.255049, and the average found by CMA-ES was
0.255484. These values are different in terms of statistical
significance, but if the application only requires a probability to
the thousandths, i.e. 0.255, then the solutions are not different in
terms of “practical significance.”
Table 5: 95% Confidence Intervals on the Difference in Mean

Performance for best variants of DE and CMA-ES

Sensors
CI on the Difference:

Mean Objective Value

CI on the Difference:
Mean Function

Evaluations

2 (-7.63 E04, -1.07 E04) (-23.79, 352.27)

5 (-3.15 E06, 1.47 E04) (2102.75, 4572.45)

10 (-3.96 E06, -4.00 E08) (50927.67, 90899.61)

Figure 8 and Table 5 also reveal that for the 5 and 10 sensor
problems, CMA-ES requires significantly fewer function
evaluations than DE. And, as problem dimension increases, this
difference becomes more pronounced. This can be explained by
noting that the SELP is a highly non-separable problem since 1.)
each parameter is part of a coordinate pair of a single sensor
location and 2.) each sensor has some degree of detection
capability in the vicinity of other sensors. According to [7],
CMA-ES can improve performance on non-separable problems
by orders of magnitude because it uses information from the
covariance matrix, a technique akin to using the Hessian matrix of
a quasi-Newton method, to guide search. Note that for more
difficult problems, when a better-quality estimate of the
probability of non-detection requires a finer grid in discretizing
event locations, computation time of the function evaluations will
increase. In this case, CMA-ES will be more advantageous
because it saves functional evaluations.

7. CONCLUSIONS AND FUTURE WORK
This paper applied CMA-ES and DE to the minimax sensor
location problem. Of the variants tested, the DE/best/2/bin and
weighted recombination variants performed the best in terms of
objective value and/or number of function evaluations. Statistical
significance and practical significance should be considered when
determining whether DE and CMA-ES yield different results in
terms of the objective value. If a high degree of precision is
required, DE will yield better solutions in terms of the objective
value. But, if precision after the thousandth decimal is irrelevant,
then CMA-ES can give equivalent results in fewer function
evaluations.
Future work will investigate solving higher dimensional problems
with 20, 50, or even more sensors, modeled with different
detection probability functions. As problem dimension increases
and/or the grid used to estimate the probability of non-detection
becomes finer, CMA-ES is expected to become more
advantageous because it uses fewer function evaluations. Futurer
work will also investigate problems in which previous heuristics,
like TLP, will fail. (e.g. problems with non-identical sensors).

Mean Fitness and 95% Confidence Intervals

0.2542

0.2544

0.2546

0.2548

0.255

0.2552

0.2554

0.2556

0.2558

0.256

2
Number of Sensors

Pr
ob

ab
ili

ty
 o

f N
on

-D
et

ec
tio

n DE
CMA-ES

Mean Function Evals and 95% Confidence Intervals

0

200

400

600

800

1000

1200

1400

2
Number of Sensors

Fu
nc

tio
n

Ev
al

ua
tio

ns

DE
CMA-ES

Mean Fitness and 95% Confidence Intervals

0.0174

0.01745

0.0175

0.01755

0.0176

0.01765

0.0177

5
Number of Sensors

Pr
ob

ab
ili

ty
 o

f N
on

-D
et

ec
tio

n DE
CMA-ES

Mean Function Evals and 95% Confidence Intervals

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

5
Number of Sensors

Fu
nc

tio
n

Ev
al
ua

tio
ns

DE
CMA-ES

Mean Fitness and 95% Confidence Intervals

0.000229

0.00023

0.000231

0.000232

0.000233

0.000234

0.000235

0.000236

0.000237

10
Number of Sensors

Pr
ob

ab
ili

ty
 o

f N
on

-D
et

ec
tio

n DE
CMA-ES

Mean Function Evals and 95% Confidence Intervals

0

20000

40000

60000

80000

100000

120000

10
Number of Sensors

Fu
nc

tio
n

Ev
al

ua
tio

ns

DE
CMA-ES

Figure 8: Mean Objective and Mean Function Evaluations with 95% CIs for the best variants of DE and CMA-ES

8. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
under Grant No. 0400140. Thanks to Dr. Reed for his lectures on
Evolutionary Algorithms.

9. REFERENCES
[1] Auger, A. and Hansen, N.; “A Restart CMA Evolution

Strategy With Increasing Population Size,” Proc. of the
IEEE International Conference on Evolutionary
Computation, 2005, 1769-1776.

[2] Cavalier, T.; Conner, W.; del Castillo, E.; Brown, S.;
“A Heuristic Algorithm for Minimax Sensor Location in
the Plane,” European Journal of Operations Research,
accepted 2006.

[3] Dhillon, S.; and Chakrabarty, K.; “Sensor placement for
effective coverage and surveillance in distributed sensor
networks,” Wireless Commuications and Networking,
2003, 1609-1614.

[4] Dhillon, S.; Chakrabarty, K.; and Iyengar, S.; “Sensor
placement for grid coverage under imprecise detection,”
International Conference on Information Fusion, 2002,
2, 1581-1587.

[5] Drezner, Z. and Wesolowsky, G.; “On the best location
of signal detectors,” IIE Transactions, 1997, 29, 1007-
1015.

[6] Erni, Dominik; “Boundary Handling Methods for CMA
Evolution Strategy and PSO Algorithm,” Semester
Thesis, Institute of Computational Science, February
21, 2005.

[7] Hansen, Nickolas, “The CMA Evolution Strategy: A
Tutorial”, November 11, 2005, http://lautaro.bionik.tu-
berlin.de/user/niko/cmatutorial.pdf

[8] Hansen, N. and Kern, S.; “Evaluating the CMA
Evolution Strategy on Multimodal Test Functions,”
Parallel Problem Solving from Nature, 2004, 1-10.

[9] Hansen, N. and Ostermeier, A.; “Adapting Arbitrary
Normal Mutation Distributions in Evolution Strategies:
The Covariance Matrix Adaptation,” Evolutionary
Computation, 2001, 9(2), 159-195.

[10] Hansen, N. and Ostermeier, A.; “Completely
derandomized self-adaptation in evolutionary
strategies,” Proc. of the IEEE International Conference
on Evolutionary Computation, 1996, 312-317.

[11] Krishnamachari, Bhaskar; Networking Wireless
Sensors, Cambridge University Press 2005.

[12] Reed, P. and Yamaguchi, S.; “Simplifying the
Paramterization of Real-Coded Evoluationary
Algorithms,” ASCE World Water and Environmental
Resources Congress, Salt Lake City, Utah, June 2004.

[13] Storn, R. and Price, K., “Differential Evolution- A
Simple and Efficient Heuristic for Global Optimization
over Continuous Spaces,” Journal of Global
Optimization, 1997, 11, 341-359.

[14] http://www.icsi.berkeley.edu/~storn/code.html#matl
[15] http://www.bionik.tu-

berlin.de/user/niko/cmaes_inmatlab.html
[16] Handbook of Evolutionary Computation, 1997, IOP

Publishing Ltd. and Oxford University Press.

10. APPENDIX

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x-cooridnate

y-
co

or
di

na
te

Contour Plot of Probability of Non-Detection
Best Solution by CMA-ES for 10 sensor problem

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
-4

Figure 7: Contour of Best Solution by CMA-ES for 10 Sensors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x-coordinate

y-
co

or
di

na
te

Contour Plot of Probability of Non-Detection
Best Solution by DE for 10 sensor problem

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10-4

Figure 8: Contour of Best Solution by DE for 10 sensors

Table A: Parameter Settings for CMA-ES

Parameter Setting

λ 10 (Initially, doubled as necessary)

μ ⎣ ⎦2/λ

covc ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+ eff

eff

DD μ

μ
μμ 2

cov
2

cov)2(

12
,1min11

)2(
21

σd σ
μ

c
D
eff +⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+

−
+ 1

1
1

,0max21

σc

3
2
++

+

eff

eff

D μ
μ

cc
4

4
+D

covμ
∑=
=

μ
μ

1

2/1
i

iceff w

iw see Section 5.3

