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ABSTRACT 
The Minimax Sensor Location Problem (SELP) is a nonlinear, 
nonconvex programming problem which aims to locate sensors to 
monitor a planar region. The objective is to determine the 
locations that will minimize the maximum probability of 
“missing” an event in the region. Two evolutionary algorithms, 
differential evolution (DE) and the co-variance matrix adaptation 
evolutionary strategy (CMA-ES), are used to solve the SELP 
when 2 to 10 sensors are to be located in the unit square. Several 
variants of each algorithm were tested and results show that the 
DE/best/2/bin variant of DE and the weighted recombination 
variant of CMA-ES yield the best performance. A comparison of 
DE and CMA-ES, in terms of the objective value obtained, 
reveals that the algorithms obtain comparable solutions. However, 
CMA-ES requires approximately half as many function 
evaluations as DE.  

Categories and Subject Descriptors 
G.4 [Mathematics of Computing]: MATLAB 

General Terms 
Algorithms, Performance, Reliability, Experimentation 

Keywords 
Sensor location, Differential Evolution, Co-variance Matrix 
Adaptation Evolutionary Strategy 

1. INTRODUCTION 
Sensor and detection systems pervade our daily lives, ranging 
from smoke alarms in our bedrooms to cellular base stations used 
in wireless communication systems. As technology and 
innovation progress, sensors are becoming smaller and cheaper 
while their capabilities are expanding.  Krishnamachari [11] notes 
that wireless sensor networks (WSNs) have potential applications 
in “ecological habitat monitoring, structure health monitoring, 
environmental contaminant detection, industrial process control, 
and military target tracking.” With such a wide range of 
applications and obvious societal impact, the need to study and 
optimize these systems is of growing importance. 
Research in the field of WSNs has focused on several areas 
including network security and energy management but few have 
focused on sensor deployment. In light of this, consider the 
following problem: Suppose a planar region, S, is to be monitored 
by a system of sensors which detect events (e.g. hazardous 
material spills or someone placing a cell phone call) occurring in 
the region. Each sensor detects an event with a certain probability 

which depends only on the distance between the event and the 
sensor. The object of the Minimax Sensor Location Problem 
(SELP) is to determine the locations of sensors which will 
minimize the maximum probability of missing an event (a.k.a.  
the probability of non-detection). Because the sensor system is 
only as strong as its weakest point, the goal of the problem is to 
optimize the worst-case scenario. 
SELP is a nonlinear, nonconvex programming problem and as 
such, is challenging for traditional math programming techniques. 
Instead, this paper will employ evolutionary optimization 
techniques to solve the SELP. Evolutionary algorithms (EAs) are 
direct search techniques based on the ideas of natural selection to 
“evolve” good solutions to problems. This paper investigates the 
use of Differential Evolution (DE) and the Co-variance Matrix 
Adaptation Evolutionary Strategy (CMA-ES) to solve the 
problem when 2 to 10 sensors are to be located in a square region. 
Section 2 will review relevant literature on the SELP and present 
the mathematical formulation of the problem. Section 3 will 
discuss the method used to parameterize the EAs. Section 4 will 
introduce Differential Evolution and describe the procedure used 
to parameterize the algorithm. Section 5 will do the same with 
respect to CMA-ES. Section 6 will compare results of DE and 
CMA-ES to the SELP problem. Section 7 will summarize the 
findings of the paper and suggest future work. All algorithms 
were implemented in the MATLAB environment. The appendix 
contains parameter settings for the CMA-ES algorithm and 
contour plots of the solutions obtained for the 10 sensor problem. 

2. SENSOR LOCATION PROBLEMS 
2.1 Literature Review 
Dhillon et al. [3][4] addressed a discrete version of a closely 
related problem. Their objective was to minimize the number of 
sensors required to satisfy a threshold value on the probability of 
non-detection. Dhillon et al. suggest two greedy heuristics which 
sequentially add sensors to the region being monitored. 
Recent work by Drezner and Wesolowsky [5] and Cavalier et al. 
[2] has addressed the continuous SELP problem. Drezner and 
Wesolowsky considered locating sensors on both the unit line and 
within the unit square. For the planar problem, Drezner and 
Wesolowsky discretized the event locations using a grid and then 
solved the problem by univariate search, math programming, 
simulated annealing, and a Demjanov algorithm. They found the 
Demjanov method provided the best solutions with reasonable 
computation times.  
Cavalier et al.[2], extended the work by Drezner and Wesolowsky 
to consider locating identical sensors in arbitrary convex planar 



regions. Instead of using standard math programming approaches 
to the problem, they used the computational geometry of the 
problem to develop a heuristic solution to the continuous problem. 
Their solution algorithm, called Towards the Largest Peak (TLP), 
uses Voronoi Diagrams to identify “peaks,” or points of high 
probability of non-detection and moves sensors towards these 
peaks. TLP was compared with MATLAB’s built-in fminimax 
solver, which uses a sequential quadratic programming (SQP) 
method, and shown to give comparable and often superior results 
with significantly faster computation times.  
It is important to note that the SELP model is based on several 
assumptions which may not be applicable in real scenarios. 
However, insight can still be gained by solving the simplified 
version of the problem.  

∗ Identical Sensors: All sensors in the system can be 
described by the same detection probability function. 

∗ Events occur with equal probability throughout the 
region 

∗ There are no existing sensors in the region 
∗ The probability of detection by each sensor is 

independent of other sensors 
∗ Sensors are ideal in the sense that there is no risk of a 

false alarm 
 

Relaxation of these assumptions will be the topic of future 
research. Since traditional nonlinear programming techniques like 
SQP were shown to be inferior on the basic SELP, other solution 
methods should be explored. Also, because TLP relies on the 
geometry of the SELP, the method will fail when complications, 
such as non-identical sensors, are introduced. The purpose of this 
paper is to explore the viability of EAs as reliable solvers for the 
SELP, in hopes that they will also be appropriate when some of 
the simplifying assumptions are relaxed. As in the previous two 
papers, this study will consider the continuous problem with 
events occurring within a square.  

2.2 Problem Formulation 
By assumption, the performance of a sensor depends only on the 
distance between the event and the sensor. As such, the detection 
capability of a single sensor can be modeled by a detection 
probability function (dpf) such as a gravity decay function of the 

form 
ndked /1)( −−=π , or an exponential decay function of the 

form 
nkded −=)(π , where k>0 and n>0 are parameters of the 

sensor and d is the Euclidean distance between the event and the 
sensor. Using these functions, we can now consider the capability 
of an entire sensor system. The joint probability of non-detection 
by the system for an event located at z is the product of the 

individual probabilities of non-detection: ))),((1(
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where xi is the location of sensor i, ),( zxid is the Euclidean 
distance between sensor i and the event, and m is the number of 
sensors in the system.  Then the objective function is: 
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The only constraint on the problem is that the sensors remain 
within the region, S. For the specific case where S is a square, this 
can be written as xi ∈ S where 

⎭⎬
⎫

⎩⎨
⎧ ≤≤≤≤== uyiylyuxixlxiyixiS ,|),(x  for all i=1, 2,…, m 

and xl and xu and yl and yu  are the lower and upper bounds, on the 
x-coordinate and y-coordinate respectively, which define the 
square.  
Within DE, a simple feasibility check was performed on each 
sensor location. If a sensor fell outside the region, it was repaired 
by forcing violated constraints to be tight. That is, the infeasible 
coordinate was set to the closest boundary. For example, if a 
sensor has coordinates ),( uil yyyuxixi ≤≤>=x , it was repaired 

with the following coordinates: ),( uil yyyuxi ≤≤=′x This 

Lamarckian approach of repair and replace was chosen for its 
simplicity and ease of implementation. Lamarckian approaches 
can lead to a lack of diversity within EAs, but preliminary testing 
revealed that DE worked well with this implementation. Thus, 
more complicated strategies were not explored.  
When the above mentioned Lamarckian approach was 
implemented in CMA-ES, the algorithm failed to reliably solve 
the SELP. Variance in the best objective value (fitness) and the 
number of function evaluations were high. As a result, the 
implementation in CMA-ES uses a Baldwinian adaptive penalty 
method as recommended in [6]. In this method, the repaired 
solution is used to evaluate the fitness of the individual and then 
the “repaired fitness” is penalized by adding a weighted distance 
between the population member and the repaired individual. Note 
the key difference is that the repaired individual does not replace 
the infeasible population member. It is only used in evaluating the 
fitness of the individual. This boundary handling method was 
already coded in version 2.50 of CMA-ES, which was used for 
this study. For more details on the boundary handling, see [6]. 

 

2.3 Test Problems 
This paper considers locating 2 to 10 sensors in the unit square, as 
studied by Drezner and Wesolowsky [5]. They considered sensor 
capabilities modeled by the following exponential decay detection 
probability function ded −=)(π .  For simplicity, this will be 
referred to as the Drezner problem. As in their study, in order to 
approximate the continuous objective function, the event 
locations were discretized using a 10 by 10 grid, but sensor 
locations remain continuous decision variables. Figure 1 shows 
the probability of non-detection of a single sensor for the Drezner 
problem. 

0
0.2

0.4
0.6

0.8
1

0

0.2
0.4

0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

Drezner's Unit Square Problem

P
ro

ba
bi

lit
y 

of
 N

on
-d

et
ec

tio
n

 
Figure 1: Exponential Decay for Drezner's problem 



3. PARAMETERIZING EAs 
Often, EAs have a sweet spot, or range, of parameter settings 
within which the algorithm can solve a particular problem well. 
This is because the EA must balance the need to explore the 
search space and exploit good solutions. If too much exploration 
is done with low selective pressure, the algorithm will follow a 
random walk, also known as drift. The algorithm will eventually 
converge but not necessarily to a good solution. On the other 
hand, if selective pressure is high, even if mutation and crossover 
are high, the solutions converge quickly and innovation will be 
impossible. Thus finding the right balance to parameterize 
evolutionary algorithms is important, but can be a time-
consuming process.   
In a 2004 paper, Reed and Yamaguchi [12] suggest a three-step 
method to avoid the trial-and-error approach of parameter setting. 
The three steps are 1.) consider the time constraints of your 
problem, 2.) automatically set mating/mutation parameters based 
on available literature, and 3.) implement adaptive population 
sizing. Adaptive population sizing means that initially, an 
arbitrarily small population is used. After certain intermediate 
stopping criteria are met, the population size is doubled and the 
algorithm is implemented again with the larger population. In 
addition, the best solution found in the previous run is injected 
into the larger population. This process repeats until there is little 
or no improvement in the objective value or a maximum time or 
number of function evaluations is reached. Reed and Yamaguchi 
implemented their method using DE.  
Similarly, in [1], Auger and Hansen suggest an adaptive 
population sizing approach for CMA-ES. Like the Reed and 
Yamaguchi approach, default parameters settings are chosen 
based on suggestions in the literature. Then the algorithm is 
implemented with a small population size. After certain stopping 
criteria, based on convergence, are satisfied, the population size is 
doubled and the process is repeated until a pre-defined number of 
function evaluations is reached. However, because CMA-ES is 
not an elitist EA, in the Auger and Hansen implementation, no 
information from the small population runs were injected into the 
larger populations.  
Because of the time involved in finding the optimal parameter 
settings for EAs and the fact that several variants of each 
algorithm are implemented, a similar adaptive population sizing 
was used in this paper. It is important to note that using this 
approach implicitly assumes that population size is the parameter 
with the largest impact on EA performance. Evidence from [1] 
and [12] support this assumption for both DE and CMA-ES.  

3.1.1 Preliminary Analysis 
On a Dell XPS MXC051 PC with a 2 GHz Pentium M processor, 
using a 10 by 10 grid to evaluate the probability of non-detection 
for one configuration of 10 sensors requires approximately 0.0012 
seconds. The maximum acceptable run time is determined to be 5 
minutes ≈ 250,000 evaluations, since multiple variations of each 
EA will be solved for many random seeds. Because each 
algorithm will require different computation time, the maximum 
number of function evaluations was used to stop each algorithm 
instead of a maximum cpu time. Note that this limit exceeds the 
overall stopping criteria set for CMA-ES in [1], which was 104D 
function evaluations, where D is the problem dimension.  

Because the optimal solution to the SELP is unknown, the search 
was terminated when doubling the population size no longer 
improved the objective value or 250,000 function evaluations had 
elapsed. Improvement is measured by a greater than 1% decrease 
in the objective function value between runs, where “run” refers 
to the process of doubling the population size. The arbitrarily 
small initial population size was chosen to be 10. This is the value 
used in [12] and is also the recommended default population size 
for a 10 dimensional problem in CMA-ES [8]. 

The overall stopping criteria of 250,000 function evaluations or 
no improvement in the objective value was implemented for both 
DE and CMA-ES, but the internal stopping criteria was specific to 
each algorithm. The specific implementations will be discussed in 
the respective sections for each algorithm. Also note that time 
continuation was used in both algorithms. In the case of DE, the 
best population member from the previous run was injected into 
the initial population of the next run. In CMA-ES, the “best ever” 
solution was tracked in each run and used as the mean of the 
initial population in subsequent runs. 

4. DIFFERENTIAL EVOLUTION (DE) 
4.1 Description  
Differential Evolution is a search algorithm developed by Storn 
and Price [13] used to solve continuous space minimization 
problems. Decision variables are represented as real-valued 
vectors with dimension D. Like most EAs, Differential Evolution 
uses mutation and recombination operators to explore the search 
space and a tournament selection operator to exploit strong 
population members. The details of the algorithm follow, using 
the notation and terminology of Storn and Price. 
Begin by generating a parent population with μ=NP members of 
D-dimensional vectors by random sampling from a uniform 
distribution in the feasible decision space. Each parent, also called 
a target vector, is denote ,,Gix  where i=1, 2,..., NP and G denotes 

the generation. A child population of size λ=NP is created through 
mutation and crossover. Mutation involves adding the weighted 
difference of two randomly chosen population members to a third 
randomly chosen individual (called the base of the mutation), 
where all of the individuals involved are different. The weight is 
called a scaling factor, denoted F ∈ (0,2]. Next, uniform 
crossover occurs between the mutant vector and a parent from 
generation G, but with one randomly chosen parameter forced to 
be chosen from the mutant vector. Thus the parent and the child 
differ by at least one decision. Cross-over is controlled by CR, the 
probability that the jth parameter (decision variable) will be 
drawn from the mutant vector as opposed to the parent vector. 
The resulting child, called the trial vector, competes with the 
parent to determine which individual moves on to the next 
generation. The process is repeated until the population converges 
or a maximum number of generations is reached. The MATLAB 
code for DE provided at [14] was modified as necessary to solve 
the SELP. The mathematical representation of the mutation. 
crossover, and selection operators follow: 

4.1.1 DE’s Mutation 
The mutant vector denoted ,1, +Giv is determined by: 

)( ,3,2,11, GrGrGrGi xxFxv −+=+  



where 3 ,2 ,1 rrr are distinct, randomly chosen indices from (1, 2, 
…, NP). 

4.1.2 DE’s Cross-over 
The trial vector, or child, is denoted by 1, +Giu and each element 
(decision) of the vector is determined by: 
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where CR ∈[0,1], rand(j) is a random number from U[0,1], and 
randindex(i) is a random index in (1, 2, .., D) so that at least one 
of the mutated parameters is present in the trial vector. 

4.1.3 DE’s Selection 
Selection occurs via binary tournaments between the target 
vector, or parent, Gix ,  and the trial vector, or child, 

1, +Giu . If 

fitness( 1, +Giu ) < fitness( Gix , ), then in generation G+1, 

1,1, ++ = GiGi ux . Otherwise, GiGi xx ,1, =+ . Note that this approach is 
elitist. 

4.2 Methodology 
4.2.1 Default Parameter Settings 
After testing DE on three different suites of test functions, Storn 
and Price [13] suggest F=0.5 as a good first choice for the scaling 
factor and CR = 0.9 for the probability of cross-over when 
possible. Since the population size will be adaptive, NP is no 
longer a parameter set by the user. The initial population will be 
drawn from a uniform distribution within S. 

4.2.2 Adaptive Population Sizing 
Again, following the suggestions of Reed and Yamaguchi [12], 
the dynamic population sizing was implemented as follows: 
1. Set i=0 (run 0) 
2. Set the population size to NP0=10 
3. Allow the population to mate and mutate until 3.a. or 3.b. 

occur 
3.a. The population converges, as measured by:  

1
||*100
≤

−

Best

WorstBest
Fitness

FitnessFitness  

3.b. At least tmin  = NPi*D,, where D is the problem 
dimension,  generations have passed and there is less 
than 1% improvement in the objective between 
generations 

4. Double the population size (NPi+1 = 2NPi).  Include the best 
population member from run i in the new population of run 
i+1. Set i= i+1. Return to step 3. 

The search was terminated when doubling the population size did 
not result in at least a 1% improvement of the objective function 
or the function evaluation limit (250,000) was reached.  

4.2.3 Reliability 
To ensure that the three-step implementation would reliably solve 
the SELP, 50 trial runs (random seeds) of the Drezner problem 

were investigated when locating 2, 5, and 10 sensors. The results 
are presented in Figures 2 and 3 and Table 1. Figure 2 plots the 
progression of the best fitness value versus number of function 
evaluations for the 2, 5, and 10 sensor problems. Note that the 
scales, in terms of objective value and number of function 
evaluations, vary with problem dimension. Figure 3 plots the 
frequency, over the 50 random seeds, of the maximum population 
size required under adaptive population sizing.  

As can be seen by examining Table 1, over 50 trials, the percent 
difference between the best and worst solutions, calculated as 

AverageBestWorst )(*100 − , was less than 5% for all three 
problems. Because this measure relies on the entire range of 
objective values, it can be thought of as a worst case performance 
metric. The standard deviation as a percent of the average fitness 
is less than 2% for all three problems. Thus DE with adaptive 
population sizing yields reliable results for the SELP. The 
maximum population size reached was 160 for the 10 sensor 
problem. 

Table 1: DE Reliability Results for the Drezner Problem 

Sensors 
Average 
Fitness  

(std. dev.) 

Range of 
Fitness Values  

Average 
Function 

Evaluations 
(std. dev.) 

2 0.255243 
(0.000642) 

(0.254342, 
0.256989) 

1625.4  
(931.0) 

5 0.017525 
(0.000034) 

(0.017477, 
0.017633) 

23224.8 
(21816.3) 

10 0.000232 
(0.000003) 

(0.000229, 
0.000240) 

191638.4 
(74264.5) 

4.3 Variants of DE 
Using the implementation described in section 3.2, eight variants 
of DE were studied to determine whether a significant 
improvement in solution quality and/or function evaluations could 
be obtained over the basic form of DE. Table 2 lists the 8 variants 
under consideration, where “Pairs” indicates crossover according 
to coordinate pairs rather than individual parameters. See section 
4.3.2 for more details. 

Pairs, DE/best/1/bin DE/best/1/bin 

Pairs, DE/rand/1/bin DE/rand/1/bin 

Pairs, DE/best/2/bin DE/best/2/bin 

Pairs, DE/rand/2/bin DE/rand/2/bin 

Table 2: Table of DE Variants  

4.3.1 Common DE Variants 
In addition to the basic DE presented earlier, several variations 
exist. The basic version of DE is denoted DE/rand/1/bin which is 
read as Differential Evolution with a randomly chosen base for 
mutation, one difference vector involved in mutation, and binary 
experiments during crossover.  

The other variants tested in this study are: DE/best/1/bin, 
DE/rand/2/bin, and DE/best/2/bin. Best indicates that the most fit 
individual from the previous generation will be chosen for the 



2 Sensors 5 Sensors 10 Sensors 

0 1000 2000 3000 4000 5000
0.24

0.26

0.28

0.3

0.32

0.34

0.36

P
ro

ba
bi

lit
y 

of
 N

on
-D

et
ec

tio
n

Number of Function Evaluations  
0 0.5 1 1.5 2

x 105

0.01

0.02

0.03

0.04

0.05

0.06

P
ro

ba
bi

lit
y 

of
 N

on
-D

et
ec

tio
n

Number of Function Evaluations  
0 0.5 1 1.5 2 2.5 3

x 105

0

0.5

1

1.5

2
x 10-3

P
ro

ba
bi

lit
y 

of
 N

on
-D

et
ec

tio
n

Number of Function Evaluations  
Figure 2: DE Dynamics Plots of Objective Value versus Function Evaluations over all random seeds for 2, 5, and 10 sensors 
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Figure 3: Frequency of Random Seeds and Maximum Population Size Required for 2, 5, and 10 sensors 

base of the mutation in the next generation. The 2 indicates that 
two difference vectors will be involved in mutation as follows: 

)( ,5,4,3,2,11, GrGrGrGrGrGi xxxxFxv −−++=+  

4.3.2 Pair-wise Cross-over 
In addition to the four variants mentioned, a variation in the cross-
over mechanism, specific to the SELP, is considered. Note that in 
the usual implementation of DE, each individual parameter 
undergoes a binary experiment to determine whether the 
parameter will come from the parent vector or the mutated vector. 
But in the SELP, individual parameters are actually part of a 
coordinate pair which together form a sensor location. Thus, 
intuition suggests that crossover should be done according to 
sensor locations (coordinate pairs) rather than individual 
parameters. Thus for each variant listed above, crossover will be 
performed two ways: 1.) cross-over using individual parameters 
(as usual) and 2.) cross-over as coordinate pairs. The 
mathematical representation of cross-over in pairs follows: 

The trial vector, or child, is denoted by 1, +Giu and each sensor 

location ),( 1,11, +++ GijGji uu  of the vector is determined by: 

⎩
⎨
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where CR ∈[0,1], rand(j) is a random number from U[0,1], and 
randindex(i) is a random index in (1, 2, …, D) so that at least one 
of the mutated sensor locations is present in the trial vector. 

4.3.3 Results 
Each variant was run over 50 random seeds for the 2, 5, and 10 
sensor Drezner problem. The results of the DE variant testing are 
summarized in Figure 4. The left column plots the mean objective 
value attained by each variant, along with the 95% confidence 
interval around the mean, calculated as 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±

edsNumberOfSe
DeviationStMean .96.1 . The right column plots the mean 

number of function evaluations and the 95% confidence interval 
around the mean. The dashed bars indicate the variant which 
achieved the minimum function value in the minimum number of 
function evaluations. The DE/best/2/bin variants outperformed 
other variants, in terms of fitness value, when function 
evaluations are used to break “statistical” ties between the means. 
However, no determination could be made as to whether “pair-
wise” crossover was beneficial. In all three problems, the 
DE/best/2/bin and Paired-DE/best/2/bin performed the same in 
terms of function evaluations and objective value. This is likely 
due to the high value of the crossover parameter (CR=0.9). At this 
setting, most of the offspring’s elements are chosen from the 
mutant vector rather than the parent vector. Therefore the high 
probability of choosing parameters from the mutant vector as 
opposed to the parent vector may mask the effect of the pair-wise 
cross-over mechanism. The recommended variant of DE is 
DE/best/2/bin with crossover according to individual decision 
variables.



5. COVARIANCE MATRIX ADAPTATION 
5.1 Description 
Co-variance Matrix Adaptation is a (μ, λ) evolutionary strategy 
developed by Hansen and Ostermeier [9]. As suggested by the (μ, 
λ) notation, this ES is non-elitist and uses truncation selection. 
Like typical ESs, CMA-ES’s recombination operator consists of 
calculating the weighted mean of μ best parents. An unbounded 
mutation operator is used, which means that a random vector is 
drawn from a multivariate normal distribution with zero mean and 
added to the centroid of the parents. CMA-ES dynamically adapts 
the normal mutation distribution throughout its search and the 
standard deviation, or step size, of the normal distribution 
represents the strength of the mutation operator. The method is 
appropriate for non-linear, non-separable objective functions and 
because of its adaptive step size, is unlikely to pre-converge [7]. 
The main components of the algorithm are described below, using 
the notation and terminology of Hansen and Ostermeier [9]. 

The algorithm begins by sampling a new population as described 
in secion 5.1.2. Next, selection and recombination take place. 
Based on the selected individuals, the evolution paths for the 
covariance matrix and the step size are updated. Finally, the 
covariance matrix, C, and the step size, σ are adapted as 
described in sections 5.1.4 and 5.1.5. CMA-ES was implemented 
in MATLAB using version 2.50 of the code available at [15]. 
Note that while CMA-ES is not elitist, the best solution ever 
found was tracked in an archive and used for all comparisons. 

5.1.1 CMA-ES Mutation 
The offspring population is generated according to the following 
relationship: 

λσ  .., 2, 1,for      ),(~ )()()()1( =++ kNgg
k

gg C0mx  

Where m(g) is the mean vector as calculated in 5.1.3, σ(g) is the 
adapted step size, and C(g) is the adapted covariance matrix. 
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Mean Performance and 95% Confidence Interval
Ten Sensors

0

0.00005
0.0001

0.00015
0.0002

0.00025

0.0003
0.00035

0.0004

Pa
irs

, D
E/

be
st/

1/b
in

DE/be
st/

1/b
in

Pair
s, 

DE/
ran

d/1
/bi

n

DE/
ran

d/1
/bi

n

Pa
irs

, D
E/

be
st/

2/b
in

DE/
be

st/
2/b

in

Pa
irs

, D
E/

ran
d/2

/bi
n

DE/
ran

d/2
/bi

n

Pr
ob

ab
ili

ty
 o

f N
on

-D
et

ec
tio

n

 

Mean Function Evals and 95% Confidence Interval
Ten Sensors

0

50000

100000

150000

200000

250000

Pa
irs

, D
E/

be
st/

1/b
in

DE/
be

st/
1/b

in

Pair
s, 

DE/ra
nd

/1/
bin

DE/
ran

d/1
/bi

n

Pa
irs

, D
E/

be
st/

2/b
in

DE/
be

st/
2/b

in

Pa
irs

, D
E/

ran
d/2

/bi
n

DE/
ran

d/2
/bi

n

Fu
nc

tio
n 

Ev
al

ua
tio

ns

 
 Figure 4: DE Variants. Mean Objective Value with 95% CI and Mean Function Evaluations with 95% CI for 2, 5, and 10 sensors



5.1.2 CMA-ES Selection and Recombination 
The mean vector is calculated as the weighted sum of the μ best 
population members according to: 
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When the weights are equal, i.e. w1= w2=… wμ = 1/μ, the operator 
is called “intermediate” recombination, denoted (μI, λ). When 
more fit individuals receive a higher weight than less fit 
individuals, the operator is termed “weighted recombination,” 
denoted (μW, λ).   

5.1.3 CMA-ES Covariance Matrix Adaptation 
The basic assumption behind adapting the mutation distribution is 
that steps which were successful in the past are likely to be 
successful in the future. In light of this intuitive assumption, the 
covariance matrix is built using the cumulation (sum) of mutation 
steps from previous generations, also called a covariance 
evolution path, in order to increase the odds of reproducing the 
previous successful steps. The adaptation of the covariance matrix 
is similar to the updating of the Hessian matrix in quasi-Newton 
methods [9]. That is, the covariance matrix can be thought of as 
an empirically calculated Hessian, which uses information about 
the gradient of the objective function to adapt the search. See [7] 
for implementation details. 

5.1.4 CMA-ES Cumulation Step Size Adaptation 
In order to adapt the mutation step size, CMA-ES tracks the 
cumulation (sum) of successive steps, called the step size 
evolution path, and compares its length to the expected length of 
the path under random selection. When the actual path length 
exceeds the expected path length, the step size is increased. 
Otherwise, the step size is decreased. The rationale behind this 
process follows: If successive steps are parallel correlated (i.e. 
point in the same direction), then fewer but longer steps could 
have reached the same point faster. The resulting cumulation path 
will be longer than expected, indicating that the step length should 
be increased. If successive steps are anti-parallel correlated (i.e. 
point in opposite directions), then the steps counteract one another 
and smaller steps would have been more efficient. Similarly, the 
cumulation path will be shorter than expected, indicating that the 
step size should be decreased. Implementation details of this 
process can be found in [7].  

5.2 Methodology 
5.2.1 Default Parameter Settings 
CMA-ES has several parameters which must be specified by the 
user, including μ, λ, and several parameters related to the 
adaptation of the normal mutation distribution. These were set 
using the default parameter values listed in [8], with the exception 
that the initial population size is set to λ = 10 (regardless of 
problem dimension) because of the adaptive population sizing. 
Table A in the Appendix lists these parameter settings. Similar to 
the initialization of DE, the mean was drawn from a uniform 
distribution on [0,1]D, where D is the problem dimension, and the 
initial step size was set, as suggested in [1], at )(

2
1)0( ab −=σ , 

where (a,b) = (0,1) for the unit square problem.  

5.2.2 Adaptive Population Sizing 
Again, following the suggestions of Reed and Yamaguchi [12], 
dynamic population sizing with time continuation was 
implemented. However, the intra-run convergence criteria were 
expanded to include the criteria suggested in [1]. These criteria 
are specific to CMA-ES and all were used, except the criteria that 
the range of function values in a generation remain above 10-12. 
Instead, this criterion was replaced with the convergence measure 
listed in the implementation scheme below. 
 Thus, the adaptive population sizing was implemented as:  
1. Set i=0 (run 0) 
2. Set the population size to λ0=10 
3. Allow the population to mate and mutate until 3.a. or 3.b. 

occur 
3.a. The population converges, as measured by: 

1
||*100
≤

−

Best

WorstBest
Fitness

FitnessFitness  or one of the intra-run 

convergence criteria in [1] are met. 
3.b. At least tmin  = λ i*D , where D is the problem 

dimension, generations have passed and there is less 
than 1% improvement in the objective between 
generations 

4. Double the population size (λ i+1 = 2 λ i).  Set the mean of the 
new population in run i+1 equal to the best known solution 
from previous runs. Return to step 3. 

The search was terminated when doubling the population size did 
not result in at least a 1% improvement of the objective function 
or the function evaluation limit (250,000) was reached.  

5.2.3 Reliability 
To ensure that the adaptive population sizing of CMA-ES would 
reliably solve the SELP, 50 trial runs (random seeds) of the 
Drezner problem were investigated when locating 2, 5, and 10 
sensors. The reliability results are based on the weighted 
recombination variant of the algorithm and are presented in 
Figures 5 and 6 and Table 3. Figure 5 plots the progression of the 
best fitness value versus number of function evaluations for the 2, 
5, and 10 sensor problems. Note that the scales, in terms of 
objective value and number of function evaluations, vary with 
problem dimension. Figure 6 plots the frequency, over the 50 
random seeds, of the maximum population size required under 
adaptive population sizing.  

Table 3: CMA-ES Reliability Results for the Drezner Problem 

Sensors 
Average 
Fitness  

(std. dev.) 

Range of 
Fitness Values  

Average 
Function 

Evaluations 
(std. dev.) 

2 0.255484 
(0.000899) 

(0.254303, 
0.25715) 

891.16  
(422.2) 

5 0.017515 
(0.0001) 

(0.017447, 
0.017962) 

4888.8 
(1863.0) 

10 0.000235 
(0.000005) 

(0.000227, 
0.000252) 

20400.76 
(20026.5) 
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Figure 5: CMA-ES Dynamics Plots of Objective Value versus Function Evaluations over all random seeds for 2, 5, and 10 sensors 
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Figure 6: Frequency of Random Seeds and Maximum Population Size required for 2, 5, and 10 sensors

As can be seen by examining Table 3, over 50 trials, the percent 
difference between the best and worst solutions, calculated as 

AverageBestWorst )(*100 − , was less than 11% for all three 
problems. Recall again that this measure relies on the entire range 
of objective values and therefore can be thought of as a worst case 
performance metric. The standard deviation as a percent of the 
average fitness is less than 3% for all three problems. Thus, while 
not as reliable as DE, CMA-ES with adaptive population sizing 
still yields reliable results for the SELP. The maximum 
populations size required by CMA-ES was 320 for the 10 sensor 
problem. 

5.3 Variants of CMA-ES 
As described in section 5.1.3, both the intermediate recombination 
and weighted recombination variations of CMA-ES were 
implemented on the Drezner Problem. For (μI, λ) CMA-ES, the 
weights are given by: .1...21 μμ ==== www  For (μW, λ) CMA-ES, 

the weights are given by: 
.

)ln()1ln(

)ln()1ln(

1

i
j

iw

j

i ∀
∑ −+

−+
=

=

μ
μ

μ   

5.3.1 Results 
Both variants were run over 50 random seeds for the 2, 5, and 10 
sensor Drezner problem. The results of the CMA-ES variant 
testing are summarized in Figure 7 and Table 4. Figure 7 plots the 
mean objective value attained by each variant, along with the 
95% confidence interval around the mean, calculated as 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±

edsNumberOfSe
DeviationStMean .96.1 . Table 4 shows the 95% confidence 

interval on the difference of the mean objective value and the 
mean function evaluations of the two variants, calculated as 

( )   
##

96.1
2

2
2
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2
1
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⎞

⎜⎜
⎜

⎝

⎛
+±−

OfSeed
nStDeviatio

OfSeeds
nStDeviatio

MeanMean . As can be seen 

from Figure 7 and Table 4, the difference in the means of the 
objective value is not statistically different than zero. However, 
the .difference in the means of the function evaluations is 
statistically significant. This means that in terms of the objective 
value, both variants work equally well. But, the weighted 
recombination variant requires significantly fewer function 
evaluations when compared with the intermediate recombination 
variant. The recommended variant of CMA-ES is the weighted 
recombination variant. 
Table 4: 95% Confidence Intervals on the Difference in Mean 

Performance for Intermediate versus Weighted 
Recombination 

Sensors 
CI on the Difference: 

Mean Objective Value 

CI on the Difference:  
Mean Function 

Evaluations 

2 (-6.91 E-04, 3.17 E-05) (-454.37, -140.18) 

5 (-4.94 E-05, 5.94 E-05) (-6744.35, -4430.68) 

10 (-1.64 E-07, 4.16 E-06) (-55872.07, -26181.28) 
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Figure 7: Mean Objective and 95% CI for CMA-ES variants 

6. COMPARISON 

6.1 Methodology 
Using the DE/best/2/bin variant of DE and the weighted 
recombination variant of CMA-ES, the random seed analysis 
from the previous sections was employed to determine whether 
one algorithm outperformed the other both in terms of quality of 
the objective value and the number of function evaluations.  

6.2 Results 
Figure 8 and Table 5 summarize the comparison of DE and CMA-
ES. The left column of Figure 8 shows the mean objective value 
obtained by each algorithm, along with the 95% confidence 
interval on the mean. The right column shows the same 
information with respect to the mean number of function 
evaluations required. Table 5 lists the 95% confidence interval on 
the difference in the mean objective value and number of function 
evaluations from the two algorithms.  
In terms of statistical significance, Table 5 reveals that for the 2 
and 10 sensor problems, DE, on average, finds solutions with 
better objective values than CMA-ES. For the 5 sensor problem, 
no difference in the mean objective values could be distinguished. 
However, depending on the exact application and the desired 

level of precision in the probability of non-detection, the 
difference in the objective value found by CMA-ES versus DE 
may not have any practical significance. For example, in the two 
sensor problem, the average probability of non-detection found by 
DE was 0.255049, and the average found by CMA-ES was 
0.255484. These values are different in terms of statistical 
significance, but if the application only requires a probability to 
the thousandths, i.e. 0.255, then the solutions are not different in 
terms of “practical significance.”  
Table 5: 95% Confidence Intervals on the Difference in Mean 

Performance for best variants of DE and CMA-ES 

Sensors 
CI on the Difference: 

Mean Objective Value 

CI on the Difference:  
Mean Function 

Evaluations 

2 (-7.63 E04, -1.07 E04) (-23.79, 352.27) 

5 (-3.15 E06, 1.47 E04) (2102.75, 4572.45) 

10 (-3.96 E06, -4.00 E08) (50927.67, 90899.61) 

 
Figure 8 and Table 5 also reveal that for the 5 and 10 sensor 
problems, CMA-ES requires significantly fewer function 
evaluations than DE. And, as problem dimension increases, this 
difference becomes more pronounced. This can be explained by 
noting that the SELP is a highly non-separable problem since 1.) 
each parameter is part of a coordinate pair of a single sensor 
location and 2.) each sensor has some degree of detection 
capability in the vicinity of other sensors. According to [7], 
CMA-ES can improve performance on non-separable problems 
by orders of magnitude because it uses information from the 
covariance matrix, a technique akin to using the Hessian matrix of 
a quasi-Newton method, to guide search. Note that for more 
difficult problems, when a better-quality estimate of the 
probability of non-detection requires a finer grid in discretizing 
event locations, computation time of the function evaluations will 
increase. In this case, CMA-ES will be more advantageous 
because it saves functional evaluations. 

7. CONCLUSIONS AND FUTURE WORK 
This paper applied CMA-ES and DE to the minimax sensor 
location problem. Of the variants tested, the DE/best/2/bin and 
weighted recombination variants performed the best in terms of 
objective value and/or number of function evaluations. Statistical 
significance and practical significance should be considered when 
determining whether DE and CMA-ES yield different results in 
terms of the objective value. If a high degree of precision is 
required, DE will yield better solutions in terms of the objective 
value. But, if precision after the thousandth decimal is irrelevant, 
then CMA-ES can give equivalent results in fewer function 
evaluations.  
Future work will investigate solving higher dimensional problems 
with 20, 50, or even more sensors, modeled with different 
detection probability functions. As problem dimension increases 
and/or the grid used to estimate the probability of non-detection 
becomes finer, CMA-ES is expected to become more 
advantageous because it uses fewer function evaluations. Futurer 
work will also investigate problems in which previous heuristics, 
like TLP, will fail. (e.g. problems with non-identical sensors). 
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Figure 8: Mean Objective and Mean Function Evaluations with 95% CIs for the best variants of DE and CMA-ES 
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Figure 7: Contour of Best Solution by CMA-ES for 10 Sensors  
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Figure 8: Contour of Best Solution by DE for 10 sensors 

 
 

Table A: Parameter Settings for CMA-ES 

Parameter Setting 

λ 10 (Initially, doubled as necessary) 
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