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Abstract

The current landscape of second gener-
ation Multi-Objective Evolutionary Algo-
rithms (MOEASs) counts numerous success-
ful approaches, each exhibiting its own dis-
tinctive style. This class of algorithms rep-
resents a Pareto front in the most canonical
sense: no algorithm outperforms all the oth-
ers under all evaluation criteria, and each is
advantageous over the others for a certain
class of test problems. A legitimate ques-
tion is then whether it is possible to gener-
ate other members of this Pareto front via
the crossover of successful traits from differ-
ent algorithms. A step in this direction is
already represented by e—NSGAII, which im-
plements e~MOEA’s (see Deb et al. (2003))
archiving (e-archiving) within the framework
of the standard NSGAIL In this paper, we
present the result of the implementation of
SPEA’s and MIDEA’s clustering reduction in
lieu of the crowded tournament selection of
€—NSGAIIL. We test the new algorithm over
a set of optimization problems that are par-
ticularly challenging to e—NSGAII.

1 OVERVIEW OF MOEAs

The field of multiobjective optimization via Evolution-
ary Algorithms (EAs) presents today a vast spectrum
of approaches and methodologies.

The mere existence of conflicting objectives calls for a
redefinition of the concept of optimization, which can
no longer be defined as the extremization of a single
function, but should rather be viewed as the search
for the class of solutions that are optimal tradeoffs for
a given problem, i.e. represent the best result of the

optimization of one of the objectives for a given value
of all the others. This is the classical notion of Pareto
dominance (see, e.g., Deb (2001)), and the class of such
solutions is usually referred to as the Pareto front.

The lack of a unique fitness estimate for the solutions
carries over to the algorithms themselves, whose per-
formance is represented by several -often conflicting-
factors. In particular, two ingredients have been sin-
gled out as the most relevant indicators of an algo-
rithm’s proficiency in reproducing a Pareto front: the
prozimity of the algorithm’s final approximation set to
the actual Pareto front, and the diversity of such set,
represented by the fraction of the Pareto front that is
covered by the set (see Bosman & Thierens (2003)).
In the past ten years, several different approaches to
ensure convergence and spread have been employed,
and each algorithm represents a different balance in
the achievement of these two goals.

The task of quantifying each particular tradeoff in-
volves, as a first step, the choice of some performance
metrics. If the Pareto front is known, two traditional
indicators can be used:

1. The convergence of each algorithm can be esti-
mated by calculating the average Euclidean dis-
tance of the points in the approximation set to
the points in the Pareto front.

2. The diversity can be similarly evaluated by cal-
culating the fraction of the Pareto front that is
covered by the algorithm’s approximation set.

A third indicator, usually referred as e-performance,
gives a flavor of both the convergence and the diversity
of an approximation set. In a nutshell, for each point
in the Pareto front a bounding box of dimension €; -
€2 - - - €)1, where M is the number of objectives, is built.
The e-performance indicator is then represented by the
fraction of such boxes that contain at least one point



from the approximation set.

The experiments presented in this paper intend to ex-
plore how the convergence and diversity properties
of eNSGAII are modified when the SPEA-like and
MIDEA-like elitism replace the current type of envi-
ronmental selection. We are going to give a more in-
depth presentation of the types of environmental selec-
tion in the next section, and we will present the detail
of the replacement, along with the results of our tests,
in section 3.

2 ELITISM: CROWDED
TOURNAMENT VS.
CLUSTERING

Drawing from the lesson of single objective optimiza-
tion, elitism (the inclusion of the best individuals in
the parent population right on to the child popula-
tion) is applied to enhance the convergence properties
of the algorithms. Since now it is the convergence to
a (hyper)surface, rather than to a single point, that
has to be achieved, the selection of the class of indi-
viduals to carry over from one generation to the next
is based not only on its proximity to the surface, but
also on the amount of spread in the class, i.e. on how
representative the class is of the entire tradeoff spec-
trum. The means by which such a class is obtained are
referred to as environmental selection, as opposed to
mating selection, the choice of the individuals that will
partake in the reproductive step. While a clear pop-
ulation ranking can be established in single objective
problems, for MOEASs we are again faced with the con-
cept of non-domination. If two solutions are such that
neither dominates the other one, there is no univocal
way of establishing whether one would be preferrable
over the other, and a different criterion needs to be
introduced in order to determine which solution to re-
tain and which one to discard (unless, of course, both
can be retained).

In the two following subsections, we will analyze the
elitist approach of three current MOEAs, namely the
e—dominance Non-dominated Sorting Genetic Algo-
rithm IT (e—NSGAII), the Strength Pareto Evolu-
tionary Algorithm (SPEA) and the Mixture-based
multi-objective Iterated Density-estimation Evolution-
ary Algorithm (MIDEA).

Two strategies to replace e—NSGAII’s elitism ap-
proach with SPEA’s and MIDEA’s paradigm will be
illustrated in section 3, along with their implementa-
tion and the corresponding results.

2.1 Elitism in e~ NSGAII

Elitism in e—NSGAII takes place through crowded
tournament selection. Starting with a population of
size N, the (mating) selection and mutation opera-
tors are applied to generate N children. The cumu-
lative 2N individuals are ranked based on their non-
domination sorting; following, the first front is copied
into the new population, up to size N. If any space is
left, the second front is copied, and so on, until size N
is reached. If a front is too big to be included in the
new population in its entirety, it will be reduced to size
N by means of crowding distance ranking. First, all in-
dividuals in the front are ranked according to the value
of the first objective. Ties are resolved by resorting to
the second objective, and so on. Once the ordering is
completed, a crowding distance is assigned to each in-
dividual equal to the sum of the objective differences of
its two nearest neighbors, in each direction. The front
is then ordered according to the crowding distance,
the individuals with the larger values being selected
for inclusion in the new population. Summarizing this
procedure in a pseudocode:

e For each generation:

— Get population of size N from
previous generation;

— Selection, mating and mutation
generate N extra individuals;

— The 2N individuals are sorted into

fronts according to their

nondomination;

Set a = 0.

front (starting with the first one):
* If k <N - a include all k

individuals in new population;

For each nondominated

* Else rank individuals according to
their crowding distance, include
the first N - a individuals in the
new population and break;

*x a += k;

— Copy the new population into the old
population and move on to next
generation.

2.2 Elitism in SPEA

The SPEA algorithm implements elitism through an
external population, or archive P; of a predefined size
N. The algorithm is initialized with a random pop-
ulation Py, whose first non-dominated front is copied
into Py. If the front size exceeds N, it will be trun-

cated to size N using a k-means clustering strategy



(i.e., the final number of clusters N is specified a pri-
ori). The N individuals now constitute the external
population P, for the next generation. After archiv-
ing is completed, tournament selection, mating and
mutation are applied to both Py and Py to generate
the new population P;. This procedure is repeated for
each following generation. Since P; will be non-empty
for ¢ > 0, a preliminary nondomination reduction will
be performed after the first nondominated front of P,
is copied into P; and before clustering is applied.

Clustering selection proceeds along the following lines:
all distances between individuals in the front are cal-
culated, and the two individuals with the shortest rel-
ative distance are selected and merged into a cluster.
The procedure is repeated until the desired number
of clusters is reached; then, for each cluster, the in-
dividual closest to the cluster centroid is selected for
propagation into the new population.

In pseudocode:

e For each generation:

— Get population of size N from
previous generation;

— Merge nondominated solutions in
population and archive, recalculate
nondominated;

— If the nondominated set exceeds the
archive size;

* Create a cluster for each
individual;

% While the number of clusters
exceeds the archive size:

- Calculate distances between
clusters, merge the two closest
ones and calculate new cluster
centroid;

* In each cluster, select the
individual closest to the centroid
and copy it into the archive;

Several different definitions of distance are reported in
the literature, ranging from a simple euclidean metric
to more elaborate, covariance matrix based expressions
(Bosman (2003)). It is also possible to choose whether
to cluster in decision or objective space. In this pa-
per, we have used a normalized euclidean distance in
objective space:

M
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dij =

where M is the number of objectives, f,gi) is the k-
th objective value of individual ¢, and A is the set of
individuals that is being reduced.

2.3 Elitism in MIDEA

The truncation method in MIDEA is a variant of
clustering reduction implementing the leader parti-
tioning algorithm. This represents a more sophisti-
cated clustering procedure, allowing for the specifica-
tion of the maximum cluster extension. Essentially,
one individual is randomly picked (becoming the clus-
ter “leader”), and all the individuals within a certain
distance d are clustered with it. The procedure is re-
peated until all the individuals belong to exactly one
cluster. Finally, each cluster’s leader is chosen as a rep-
resentative (remember that since the maximum size of
the clusters is controlled, the specific way a represen-
tative is chosen is not expected to have a large impact
on the reduction result).

Unlike the k-means method, the number of selected in-
dividuals in this case is not fixed. If the set needs any
further reduction, a crowding distance ranking trun-
cation is applied, making this approach a combination
of the two previously described.

We again resort to a normalized euclidean distance.
This expression is here furtherly divided by the maxi-
mum distance between two elements in the set, leading
to what is usually referred to as the Bounding Box Eu-
clidean Normalized Distance, or BEND. This scaled
quantity seem to be more universal than the simple
normalized euclidean distance, and a prescription of
0.3 for the upper bound to impose during the clus-
tering routine is reported in the literature (Bosman
(2003)). This is the value we used in our study.

A schematic representation of the the clustering and
the crowded tournament types of reduction is provided
in Figure 1 and 2 from Deb et al. (2003).

3 CROWDED TOURNAMENT VS.
CLUSTERING IN NSGAII

3.1 NSGAII STRUCTURE

The main loop can be synthesized as follows:

1. First run: the initial population of size N is ini-
tialized, and its members are ranked based on
non-domination and crowding distance;

2. The first nondominated rank is copied into an of-
fline archive of size A (after, possibly, e-dominance
reduction);
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Figure 1: Clustering reduction of a nondominated

front (Deb et al. (2003)).
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Figure 2: Crowded tournament reduction of a non-
dominated front (Deb et al. (2003)).

3. Selection, mating and mutation produce N off-
springs, which are merged with the N parent to
form a size 2N mixed population;

4. The mixed population is truncated to size N by
means of crowded tournament selection;

5. Steps 2 through 4 are repeated until some termi-
nation criterion is met;

6. Steps 1 through 5 are repeated with a popula-
tion of size 44, comprising the A solutions in the
archive from the previous run and 3A randomly
generated individuals;

7. The population injection is repeated until one of
the termination criteria is satisfied.

A more in-depth introduction to the structure of e-
NSGALII is provided in Kollat & Reed (2006).

We have added the two clustering-based archive trun-
cation methods alternative to the crowded tournament
selection in Step 4. The result of these substitutions
and the comparison to the crowded tournament per-
formance are described in the next section.

3.2 THE TEST PROBLEMS

A salient issue in the comparison of MOEAs is the
design of test problems that are capable to probe the
evolutionary dynamics of each algorithm, highlighting
its advantages and its shortcomings. We have com-
pared the new environmental selection to the old one
over a number of challenging test functions drawn from
two different classes.

The first is the ZDT family (Deb (2001)), which con-
sists in the minimization of two objectives in the fol-
lowing general form:

fi(x)
f2(x) = g(x)h(f1(x), 9(x))

The family contains six cases, corresponding to six
choices of the functions f;(x), g(x) and h(f1(x), g(x)),
and of the length and range of the decision vector x.
For our tests, we have selected ZDT4 and ZDT6. The
first is a 10 variable problem, with the first component
of x being restrained to the [0, 1] interval, while all the
others lie in [—5,5]. The three functions are given by:

fix) = =
10
g(x) = 91+ Z(zf — 10 cos(4mx;))
MAG.g) = 1- /2

ZDT6 is also a 10 variable problem, with all the com-
ponents of x in [0,1]. The three functions are given
by:

fi(x) = 1—exp(—4x;)sin®(6rz)
10
9(x) = 149 =z)/9'*
=2
MAG.g0) = 1= (22

The second family is constituted by the so called DTLZ
test functions (Deb (2002)), from which we have se-
lected problem 1 and 6. DTLZ1 is a 7 variable prob-
lem involving the minimization of the following three
objectives:

H(x) = (1 +g(x)z122

DN | =



f(x) =
f3(x) =

with z; € [0,1] and

S0+ g(x)an (1 - 22)

S0+ g(x)(1 — )

7
9(x) =100(5+ > _(z; — 0.5)* — cos(20m(z; — 0.5)))
=3

Similarly, DTLZ6 is a 22 variable problem (again with
z; € [0,1]) involving the minimization of the three
objectives:

) = %(1+g(x))cos(7rar1/2)cos(02)
fo(x) = %(1+g(x))cos(7ra:1/2) sin(6)
[0 = S(1+g(x)sin(ra/2)

2
with 6y = m(1 + 2g(x)z2)/4(1 + g(x)) and

22
g(x) = al!
=3

We have run each test case for the two archive trun-
cation methods and for ten random seeds. The con-
vergence, diversity and e-performance indicators are
shown in Figures 3-6. Other primary details about e-
NSGAII’s configuration for all the runs are reported
in Table 1.

Table 1: Main e-NSGAII parameter values used for
the runs.

Generic
Initial population size 12
Sizing scheme Injection (25%)
e-archiving value 0.0075
A 10%
é 10%
SBX Crossover
P, 1.0
e 15
Polynomial Mutation
P, 0.0333
e 20
Performance Metrics
e-value 0.0075

Diversity grid specification 133

The data show that the clustered e-NSGAII’s average
performance is comparable with that of the original
algorithm.

4 CONCLUSIONS

A quick analysis of the performance plots shows that
the clustered e-NSGAII does not sensibly perform bet-
ter than the crowded tournament counterpart. The
three variants show comparable dynamics on the four
test cases we have considered, leading to two possible
conclusions:

e Additional improvements are needed in order to
construct a competent clustering algorithm capa-
ble of tackling complex problems. Covariance ma-
trix approaches seem very promising in this sense,
but they are also more computationally demand-
Ing;

e The greed of e-NSGAII is only marginally af-
fected by the type of environmental selection im-
plemented. This conclusion is partially supported
by our results showing a minimal departure of the
performance metrics from the original version of
the algorithm. This may indicate that other di-
rections for improvement are to be pursued. Re-
cent results obtained with a parallel version of
e-NSGAII seem to confirm that the existence of
more promising sources of improvement (P. Reed,
private communication).
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Figure 3: Performance metrics for ZDT4 (one curve per seed).
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Figure 4: Performance metrics for ZDT6 (one curve per seed).
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Figure 6: Performance metrics for DTLZ6 (one curve per seed).



