
Investigating the Application of Genetic Programming to Function
Approximation

Jeremy E. Emch

Computer Science Dept.
Penn State University

University Park, PA 16802

Abstract

When analyzing a data set it is often useful and
necessary to determine, or compute, a
predictably reliable function approximation to
aid in future and / or prior behavioral analysis.
This work investigates the application of Genetic
Programming (GP) to the problem domain of
function approximation. We start by introducing
GP and its basic operations and procedures,
followed by a discussion of results obtained from
developing an original application and various
test data sets. Solutions to function
approximation problems have previously been
obtained by using classical techniques that
require knowledge of the size and shape of the
solution (regression, splines, etc.). Preliminary
results support the notion that GP can be used to
effectively solve function approximation
problems where the size and shape of the
solution space is unknown; a distinct advantage
over classical techniques.

1 INTRODUCTION

As a branch of Genetic Algorithms (GA’s) and
Evolutionary Strategies (ES’s), Genetic Programming
(GP) has been applied successfully in a wide range of
sciences and engineering areas. Unlike GA’s or ES’s, GP
seeks to produce an executable program to solve the
problem as the solution, rather than a solution of the
problem. GA’s are generally used as an optimization
technique to search for the global optima of a function.
While GA’s typically operate on fixed-length coded
strings, they are not suitable for problems where the size
and shape of the solution are unknown (Koza 1989).
Similar to GA’s, GP works by emulating natural
evolution, “survival of the fittest”, to generate a model
structure that maximizes (or minimizes) the objective
function involving an appropriate measure of the level of

agreement between the model and system response (Koza
1992). Drawing basic theories from GA’s and ES’s, GP
seeks to produce executable source code to solve the
problem described by the state of the application.

2 GENETIC PROGRAMMING

Genetic Programming is a technique that allows
computers to solve problems without being explicitly
programmed. Fundamentally, Genetic Programming
applies Genetic Algorithms to a population of programs.
As such, there are five primary steps in a simple GP
algorithm:

1. Generate an initial population;
This is a random process which depends on the
specific type of representation scheme being
used.

2. Calculate a score for each individual based on
some fitness criteria;
This is analogous to an individual’s lifetime.

3. Create next generation;
This step involves selection, mutation, and
recombination.

4. Repeat steps 2 and 3 until some stopping criteria
has been met;
i.e.: Convergence, time, tolerance, generation
limit, etc.

5. Repeat steps 1 through 4 for N runs.
GA’s are rarely run once.

2.1 REPRESENTATION OF STRUCTURES

In GA’s, solutions are represented by binary coded strings
or real numbers. However, solutions in GP are computer
programs consisting of terminals and functions, selected
from some set of enumerated functions and terminals.

Essentially, GP is programming a computer to program
itself. Initially, a simple approach of breeding machine
code and FORTRAN code, ignoring syntax was used.
However, as noted in (De Jong 1987), this approach fails

because programs are not likely to compile and run, much
less produce correct results. When GP was applied using
the LISP language some success was reported. Later it
would be realized that the natural structure of LISP
objects (that is, everything is represented as a pre-order
list) emulates a compiler parse tree. Additionally, LISP is
not a compiled language; the development environment
contains a run-time emulator that requires no compilation
to execute code. Therefore, run-time execution of
genetically evolved source code was natural.

Both linear and tree structures have been used. However,
the normal terminology of genetic programming suggests
that the data structures being evolved be able to be
executed. As such, generally in GP, a computer program
is depicted as a parse tree: Functions are denoted as roots
or inner nodes of parse trees, and terminals are denoted as
leaves of parse trees (see Figure 1). Additionally, other
abstract data types could be used; such as Grids and
neural networks.

Figure 1: Simple Tree Structure

2.2 FUNCTIONS AND TERMINALS

A function set could include basic arithmetic operations,
conditional operators or user-defined operators. A
terminal set includes arguments for functions. (Banzhaf
1998) gives formal definitions for these nodes:

n Def. 1.1 “The terminal set is comprised of the
 inputs to the GP program, the constants
 supplied to the GP program, and the
 zero-argument functions with side-

effects executed by the GP program”

n Def. 1.2 “The function set is composed of the
 statements, operators, and functions

available to the GP system”

An illuminating and intimidating property of genetic
programming should now be crystallizing; that is, in GP,
the solution space is the enormous space comprised of all
possible, syntactically correct, executable programs
derived from the enumerated function and terminal sets.
Thus, the decision for what functions and terminals will
be available in your GP application must be taken with
great care.

2.3 POPULATION GENERATION

For GP, the initial population generation is highly
dependent upon the representation structure. As such, we
will discuss this task by considering it in the context of
structure.

Tree structures feature three popular techniques for initial
population generation:

• Grow;
• Full; and
• Ramped Half-and-Half.

In the Grow technique, nodes are chosen randomly from
the function and terminal sets. Once a terminal has been
chosen for a branch, that branch has ended; even if the
maximum depth has not been reached. Therefore, this
technique produces trees of, possibly highly, irregular
shape. This fact may have consequences in terms of
memory and search speed later on. The Full technique,
on the other hand, produces perfect trees. That is, trees
which are “fully resident” and perfectly balanced. This
method proceeds by only choosing functions until the
maximum depth is reached, whereby it then chooses
terminals. This technique relieves much in terms of
search because the balanced nature of the structure will
guarantee maximum efficiency. However, your memory
woes may be just beginning. Recognizing that diversity is
valuable, the Ramped Half-and-Half method proceeds as
follows:

• First, a maximum depth K is specified;
• Then, the population is divided equally among

individuals to be initialized with trees having
depths 2 to K.

• For each depth group, half of the population is
initialized with the Grow method, and half of the
population is initialized with the Full method.

For linear structures the procedure is surprisingly simpler:

• Randomly choose length between 2 and the
maximum length;

• Copy predefined headers;

• Initialize and add instructions until the chosen
length is reached;

• Copy predefined footers;
• Copy predefined return instructions.

See Figure 2 for examples of these structures. It should
be noted, however, that these techniques are not
exhaustive and that other techniques may be applied.

Figure 2: (from top to bottom) Grown Structure; Full
Structure; Linear Structure.

2.4 ASSESSING FITNESS

The fitness function is that part of the GP that determines
how well an individual performs related to the population
given the same input. There are three primary types of
fitness functions:

n Continuous: any function which exhibits a
correspondence between improvements
in how well the individual assimilates
the training data and improvements in
fitness.

n Standardized: zero is the value assigned to the

fittest individual

n Normalized: when fitness is always between one
and zero

The actual implementation of a fitness function, however,
may be fuzzy and is application specific. For example,
you may want the number of matching pixels in an image
matching application, or deviation in fitting, or an error
fitness: å|pi – oi|, or a squared error fitness: å(pi – oi)

2

(Banzhaf 1998).

2.5 OPERATIONS

In GP, the basic genetic operations of GA’s and ES’s are
available: selection, mutation, and recombination. We
will now explore each of these in turn.

2.5.1 Selection

There are two scenarios for selection: a GA scenario,
where individuals are selected for variation after
evaluation; and an ES scenario, where individuals are
varied then selected. The underlying algorithms,
however, from GA’s and ES’s remain. Primarily, (m, l),
(m + l), Rank based, Tournament based, Fitness-
Proportional, etc.

2.5.2 Mutation

Mutation proceeds based on structure. Tree structures are
mutated by randomly selecting a node, other than the root,
and replacing the subtree with a new randomly generated
subtree. Linear structures, however, proceed by randomly
choosing an instruction, then randomly choosing the type
of change. This change is usually an instruction
replacement, constant replacement, or register (location)
change. Although (Koza 1992) suggested that in general,
mutation only plays a minor role in GP and can be
omitted in most cases; other researchers (Luke and
Spector 1997) found that mutation is useful and crossover
does not have considerable advantage over mutation in
the case of small populations and large generations.

2.5.3 Recombination / Mating

Recombination is another operator that proceeds based on
structure. Tree structures first choose the parents by some
predefined mating policy. Then randomly selected
subtrees in each parent are swapped with one another (see
figures 3 and 4). For linear structures, the parents are
selected in the same manner. Then, however, randomly
selected linear segments of code are swapped between
parents. It should be noted here, in the linear case, that
this procedure leads to a breakdown of our GP
assumption; that is, all generated structures need be
executable. This could possibly be avoided by extending

the GP engine towards compilation, but this is an
unreasonable task that would require and add massive
increases in complexity.

2.6 CONTROL AND TERMINATION

Control over, and termination of, the GP application is
basically the same as in other GA’s or ES’s. Control is
exerted through the operators and variables available, and
termination is forced through conditional operators (i.e.:
maximum number of generations, clock time, tolerance,
etc.). However, one must be aware of their computing
environment. Functions and terminals must be chosen
carefully to minimize the search space. GP structures are
unfathomably powerful, yet are harder to search through
and more costly in memory. Not only do they consume
more space, but also consider search time. Blocks of
memory are not necessarily contiguous, and may need to
be loaded from secondary memory to primary memory to
be operated on. This adds considerable computation time.

Figure 3: Two Parents Selected For Mating; Chosen
Subtrees Are Highlighted.

Figure 4: Newly Created Individuals Resulting From
Recombination of Figure 3.

3 FUNCTION APPROXIMATION
When analyzing a data set it is often useful and necessary
to determine, or compute, a predictably reliable function
approximation to aid in future and / or prior behavioral
analysis. Previously, we have used techniques such as
regression, divided differences, polynomial, Lagrange or
spline interpolation. These techniques have been proven
to be accurate within some error defined by the chosen
function representation and whether the function is known
at many or few points. Unfortunately, some notion of the
size and shape of the solution is necessary for determining
which technique to employ for that particular problem; as
the problem may not be suitable, or possibly completely
intractable for the method. It is the purpose of this paper
to investigate the application of Genetic Programming
(GP) to the problem domain of function approximation.
As such, a GP application was developed using a highly
object-oriented approach utilizing all the features of GP
discussed thus far (i.e.: selection, mutation,
recombination, etc).

3.1 APPLICATION PARAMETERS

The application employs a steady-state methodology,
following the ES scenario previously described. Ramped
Half-and-Half initialization is used for the following
examples, though no performance metrics were taken
with respect to the available initialization procedures.
Tournament selection is the method of choice; where four
members of the population are randomly selected to take
place in the tournament. The individual with the best
fitness is retained for recombination (with another
randomly selected individual from the base population)
and mutation. After the genetic operators are employed
on the selected individuals another fitness evaluation is
performed on the offspring. If the fitness of the offspring
is better than the two losers of the tournament (the two
individuals with lowest fitness), the offspring replace
them in the base population. The probability of mutation
was 0.05, and the probability of recombination was 0.75.
No analysis of these probabilities was performed due to
time constraints; however, these values are generally
regarded as acceptable within the GP community. It is
completely feasible that better results may be obtained
with further analysis of these parameters. The
termination criteria was a combination of maximum
function evaluations (0.5 million) and tolerance (0.01).
Finally, the function set was comprised of all the
mathematical functions available in the standard C header
<math.h>, and the terminal set was comprised of the
variable ‘x’ and randomly generated constants.

3.2 EXAMPLE 1

Table 1: Training Set For Example 1.

Table 1 shows the training data input to the GP
application. The GP was executed for 100 unique seeds
with a population size of 40 individuals. The application
successfully evolved an optimal solution (that is, fitness =
0, or the evolved function passed through all points in the
training data set) in all 100 cases, with an average of
10,072 function evaluations and an average time of 0.3
seconds (CPU time).

This example was included to illustrate an important
drawback of GP; that is, there is no way to guarantee the
simplicity of the evolved solution. For example, in one
run the GP evolved the following equation: (((x * x) - ((x
- x) + (atan((10369 * x)) ^ (x - x)))) + (((10369 * x) + x) ^
(x - x))) (see figure 5), which simplifies to the optimal
function x2.

Figure 5: A Complicated Structure Which Reduces To
The Much Simpler Function x2.

3.3 EXAMPLE 2

Table 2: Training Set For Example 2

X 0.1 0.4 0.5 0.8
Y 2.08153 1.87932 1.90439 1.7758

X 1 1.1 1.4 1.7
Y 1.33804 0.7934 0.27794 -0.0297

X 1.8 2 2.1 2.6
Y 0.65020 -0.4715 -0.4321 0

Table 2 shows the training data input to the GP
application. The GP was executed for 100 unique seeds
with a population size of 40 individuals. The application
successfully evolved an optimal solution (that is, fitness =
0, or the evolved function passed through all points in the
training data set) in only 8% of the cases, with an average
of 125,556 function evaluations and an average time of
25.699 seconds (CPU time). However, 98% of seeds
found an approximate solution within a 0.01 error
tolerance.

After examining the solution set of the 100 seeds it was
evident that the best solutions of a majority of the test
cases included only base trigonometric functions.
Subsequently, the function set was adjusted to include
only the basic trigonometric functions that appeared in the
solution set (sin, cos, tan), and the GP application was
again run for 100 random seeds. The application then
obtained an optimal solution for all 100 cases, with an
average run-time of 10.2 seconds (CPU time). This
analysis provided significant insight into the GP
application. Principally, that the GP is very sensitive to
the function and terminal sets available. This suggests
that an adaptive procedure for reducing the complexity
(size) of said sets during the runs of the GP application
would significantly enhance the application and its
results. Figure 6 shows a plot of the optimal solution, and
figure 7 shows the simplest equation evolved for this
example. The figures correspond to the function:

.

X 0 1 2 3 5

Y 0 1 4 9 25

Figure 6: Optimal Solution For Example 2.

Figure 7: Simplest Optimal Solution Evolved For
Example 2.

3.4 EXAMPLE 3

As a final example, an error versus generation plot (figure
8) has been included with multiple functions, varying in
degree and difficulty. This plot illustrates the
applicability of GP to function approximation, as well as
the underlying principle of GP – evolution. The plot
shows the evolution of the solution over time, with eras of
little solution progression and generations that

significantly improve the solution quality. This data was
obtained without altering the application parameters
previously discussed, thus showing the generality allowed
by the GP implementation.

Figure 8: Error vs. Generation for a small suite of
functions.

4 CONCLUSIONS
The results of this investigation confirm that Genetic
Programming is indeed a powerful tool; more so than
GA’s or ES’s in that GP seeks to evolve an executable
program as the solution of the problem, rather than simply
a solution to the problem. Additionally, unlike GA’s and
ES’s, the GP operation of recombination can produce
different offspring from identical parents. In fact, when
depth is greater than two with at least one full parent, the
probability that random recombination will produce new
offspring is greater than not. Unfortunately, GP is also
considerably more complex than GA’s or ES’s. The test
suite applied to the GP application shows that GP can be
used as a tool for function approximation and that it is
especially effective when the size and shape of the
solution space is unknown. However, the test suite also
showed that GP has considerable difficulty finding a
simple program that also produces high precision. The
complexity of the best solution is also affected by the pre-
selected function and terminal sets. The complexity
(size) of the function and terminal sets are directly related
to the generality and search speed of the GP application.
When increasing said sets to improve generality, and thus

the search space of the application, complexity (in time
and space) is also increased. Additionally, it must be
noted that the GP application is tool that is subject to
significant constraints that must be accounted for when
used. Among them is the fact that the output is only as
good as its training set. If used in predictive analysis one
should expect that the more training data employed, the
more accurate the predictions. Although, increasing the
training data set size also adds computation time.

The examples contained within this paper were initialized
with a tree depth of 4, and were allowed to evolve
unconstrained. The premise was that code bloat would be
easily distinguished among the runs and analysis could be
performed. However, this did not occur. The
unconfirmed reason for this is probably due to the nature
of the recombination procedure. Recombination of tree
data structures can be viewed as not only additive, but
also as destructive (contributing to the confinement of
code bloat). Also, since the application was written in
C++ (a compiled language) it contains a function parser
as part of the fitness evaluation module. Recalling the
aforementioned issues related to memory, processing
time, and tree structures; the GP application seems
particularly well suited for parallelization. Specifically, a
hierarchical approach, combining the master-slave and
multi-population approaches, would increase the search
space and diversity of the application.

5 FUTURE WORK

A simplification procedure (to effectively collapse the
tree representation) would be an interesting exercis e
extending this work. This would not only be beneficial in
reducing complexity but also as a way of facilitating
diversity within the population. Also, an adaptive
procedure to reduce the complexity of the function and
terminal sets at run-time would enhance the performance
and accuracy of the application across unknown function
training sets. Additionally, a procedure that would offer
the user several optimal functions, with varying degrees
of complexity, could be useful in the analysis of large
training sets. Also, further analysis of the application
needs to be performed. This would include behavioral
analysis of the application with respect to code bloat,
diversity loss, and initialization requirements. Also, the
performance of the application with respect to tree depth
needs to be assessed.

References

Box, G. E. and Jenkins, G. M., (1970). Time Series
Analysis: Forecasting and Control, Holden-Day, San
Francisco, CA.

Banzhaf, W., Nordin, P., Keller, R.E., and Francone, F.D.
(1998). Genetic Programming: An Introduction . Morgan
Kaufmann Publ., San Francisco, CA.

De Jong, K, (1987). On Using Genetic Algorithms to
Search Program Spaces. In Proceedings of the Second
International Conference on Genetic Algorithms and
Their Application, 210-216, Lawrence Erlbaum
Associates, Inc. Mahwah, NJ.

Cheney, W. and Kincaid, David, (2002). Numerical
Analysis: Mathematics of Scientific Computing,
Brooks/Cole, Pacific Grove, CA.

Koza, John R. (1989). Hierarchical Genetic Algorithms
Operating on Populations of Computer Programs. In
Proceedings of the 11th International Joint Conference
on Artificial Intelligence. San Mateo: Morgan Kaufman.

Koza, J. R., (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge MA, 162-169.

Luke , S. and Spector, L., (1997). A Comparison of
Crossover and Mutation in Genetic Programming. In
Genetic Programming 1997: Proceedings of the Second
Annual Conference (GP97) . J. Koza et al, eds. San
Francisco: Morgan Kaufmann, 240–248.

