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Abstract 
 

 

When analyzing a data set it is often useful and 
necessary to determine, or compute, a 
predictably reliable function approximation to 
aid in future and / or prior behavioral analysis.  
This work investigates the application of Genetic 
Programming (GP) to the problem domain of 
function approximation.  We start by introducing 
GP and its basic operations and procedures, 
followed by a discussion of results obtained from 
developing an original application and various 
test data sets.  Solutions to function 
approximation problems have previously been 
obtained by using classical techniques that 
require knowledge of the size and shape of the 
solution (regression, splines, etc.).  Preliminary 
results support the notion that GP can be used to 
effectively solve function approximation 
problems where the size and shape of the 
solution space is unknown; a distinct advantage 
over classical techniques. 

1 INTRODUCTION 

As a branch of Genetic Algorithms (GA’s) and 
Evolutionary Strategies (ES’s), Genetic Programming 
(GP) has been applied successfully in a wide range of 
sciences and engineering areas.  Unlike GA’s or ES’s, GP 
seeks to produce an executable program to solve the 
problem as the solution, rather than a solution of the 
problem.  GA’s are generally used as an optimization 
technique to search for the global optima of a function.  
While GA’s typically operate on fixed-length coded 
strings, they are not suitable for problems where the size 
and shape of the solution are unknown (Koza 1989).  
Similar to GA’s, GP works by emulating natural 
evolution, “survival of the fittest”, to generate a model 
structure that maximizes (or minimizes) the objective 
function involving an appropriate measure of the level of 

agreement between the model and system response (Koza 
1992).  Drawing basic theories from GA’s and ES’s, GP 
seeks to produce executable source code to solve the 
problem described by the state of the application.  

2 GENETIC PROGRAMMING 

Genetic Programming is a technique that allows 
computers to solve problems without being explicitly 
programmed.  Fundamentally, Genetic Programming 
applies Genetic Algorithms to a population of programs.  
As such, there are five primary steps in a simple GP 
algorithm: 

1. Generate an initial population; 
This is a random process which depends on the 
specific type of representation scheme being 
used. 

2. Calculate a score for each individual based on 
some fitness criteria; 
This is analogous to an individual’s lifetime. 

3. Create next generation; 
This step involves selection, mutation, and 
recombination. 

4. Repeat steps 2 and 3 until some stopping criteria 
has been met; 
i.e.: Convergence, time, tolerance, generation 
limit, etc. 

5. Repeat steps 1 through 4 for N runs. 
GA’s are rarely run once.  

2.1 REPRESENTATION OF STRUCTURES 

In GA’s, solutions are represented by binary coded strings 
or real numbers.  However, solutions in GP are computer 
programs consisting of terminals and functions, selected 
from some set of enumerated functions and terminals.   

Essentially, GP is programming a computer to program 
itself.  Initially, a simple approach of breeding machine 
code and FORTRAN code, ignoring syntax was used.  
However, as noted in (De Jong 1987), this approach fails 



because programs are not likely to compile and run, much 
less produce correct results.  When GP was applied using 
the LISP language some success was reported.  Later it 
would be realized that the natural structure of LISP 
objects (that is, everything is represented as a pre-order 
list) emulates a compiler parse tree.  Additionally, LISP is 
not a compiled language; the development environment 
contains a run-time emulator that requires no compilation 
to execute code.  Therefore, run-time execution of 
genetically evolved source code was natural.  

Both linear and tree structures have been used.  However, 
the normal terminology of genetic programming suggests 
that the data structures being evolved be able to be 
executed.  As such, generally in GP, a computer program 
is depicted as a parse tree:  Functions are denoted as roots 
or inner nodes of parse trees, and terminals are denoted as 
leaves of parse trees (see Figure 1).  Additionally, other 
abstract data types could be used; such as Grids and 
neural networks. 

 

 

 
 

 

Figure 1: Simple Tree Structure 

 

2.2 FUNCTIONS AND TERMINALS 

A function set could include basic arithmetic operations, 
conditional operators or user-defined operators.  A 
terminal set includes arguments for functions.  (Banzhaf 
1998) gives formal definitions for these nodes: 

 

n Def. 1.1 “The terminal set is comprised of the 
 inputs to the GP program, the constants 
 supplied to the GP program, and the 
 zero-argument functions with side-   

effects executed by the GP program”  
 
 

n Def. 1.2 “The function set is composed of the 
 statements, operators, and functions  

available to the GP system” 
 

An illuminating and intimidating property of genetic 
programming should now be crystallizing; that is, in GP, 
the solution space is the enormous space comprised of all 
possible, syntactically correct, executable programs 
derived from the enumerated function and terminal sets.  
Thus, the decision for what functions and terminals will 
be available in your GP application must be taken with 
great care. 

2.3 POPULATION GENERATION 

For GP, the initial population generation is highly 
dependent upon the representation structure.  As such, we 
will discuss this task by considering it in the context of 
structure. 

Tree structures feature three popular techniques for initial 
population generation: 

• Grow; 
• Full; and 
• Ramped Half-and-Half. 
 

In the Grow technique, nodes are chosen randomly from 
the function and terminal sets.  Once a terminal has been 
chosen for a branch, that branch has ended; even if the 
maximum depth has not been reached.  Therefore, this 
technique produces trees of, possibly highly, irregular 
shape.  This fact may have consequences in terms of 
memory and search speed later on.  The Full technique, 
on the other hand, produces perfect trees.  That is, trees 
which are “fully resident” and perfectly balanced.  This 
method proceeds by only choosing functions until the 
maximum depth is reached, whereby it then chooses 
terminals.  This technique relieves much in terms of 
search because the balanced nature of the structure will 
guarantee maximum efficiency.  However, your memory 
woes may be just beginning.  Recognizing that diversity is 
valuable, the Ramped Half-and-Half method proceeds as 
follows: 

• First, a maximum depth K is specified; 
• Then, the population is divided equally among 

individuals to be initialized with trees having 
depths 2 to K. 

• For each depth group, half of the population is 
initialized with the Grow method, and half of the 
population is initialized with the Full method. 

 

For linear structures the procedure is surprisingly simpler: 

• Randomly choose length between 2 and the 
maximum length; 

• Copy predefined headers; 



• Initialize and add instructions until the chosen 
length is reached; 

• Copy predefined footers; 
• Copy predefined return instructions. 

 

See Figure 2 for examples of these structures.  It should 
be noted, however, that these techniques are not 
exhaustive and that other techniques may be applied. 

 

 

 
 

 

Figure 2: (from top to bottom) Grown Structure; Full 
Structure; Linear Structure. 

 

2.4 ASSESSING FITNESS 

The fitness function is that part of the GP that determines 
how well an individual performs related to the population 
given the same input.  There are three primary types of 
fitness functions: 

n Continuous: any function which exhibits a  
correspondence between improvements 
in how well the individual assimilates 
the training data and improvements in 
fitness. 
 
 

n Standardized: zero is the value assigned to the  

fittest individual 
 
 

n Normalized: when fitness is always between one  
and zero 

 

The actual implementation of a fitness function, however, 
may be fuzzy and is application specific.  For example, 
you may want the number of matching pixels in an image 
matching application, or deviation in fitting, or an error 
fitness:  å|pi – oi|, or a squared error fitness:  å(pi – oi)

2 

(Banzhaf 1998). 

2.5 OPERATIONS 

In GP, the basic genetic operations of GA’s and ES’s are 
available: selection, mutation, and recombination.  We 
will now explore each of these in turn. 

2.5.1 Selection  

There are two scenarios for selection: a GA scenario, 
where individuals are selected for variation after 
evaluation; and an ES scenario, where individuals are 
varied then selected.  The underlying algorithms, 
however, from GA’s and ES’s remain.  Primarily, (m, l), 
(m + l), Rank based, Tournament based, Fitness-
Proportional, etc. 

2.5.2 Mutation  

Mutation proceeds based on structure.  Tree structures are 
mutated by randomly selecting a node, other than the root, 
and replacing the subtree with a new randomly generated 
subtree.  Linear structures, however, proceed by randomly 
choosing an instruction, then randomly choosing the type 
of change.  This change is usually an instruction 
replacement, constant replacement, or register (location) 
change.  Although (Koza 1992) suggested that in general, 
mutation only plays a minor role in GP and can be 
omitted in most cases; other researchers (Luke and 
Spector 1997) found that mutation is useful and crossover 
does not have considerable advantage over mutation in 
the case of small populations and large generations. 

2.5.3 Recombination / Mating  

Recombination is another operator that proceeds based on 
structure.  Tree structures first choose the parents by some 
predefined mating policy.  Then randomly selected 
subtrees in each parent are swapped with one another (see 
figures 3 and 4).  For linear structures, the parents are 
selected in the same manner.  Then, however, randomly 
selected linear segments of code are swapped between 
parents.  It should be noted here, in the linear case, that 
this procedure leads to a breakdown of our GP 
assumption; that is, all generated structures need be 
executable.  This could possibly be avoided by extending 



the GP engine towards compilation, but this is an 
unreasonable task that would require and add massive 
increases in complexity. 

2.6 CONTROL AND TERMINATION 

Control over, and termination of, the GP application is 
basically the same as in other GA’s or ES’s.  Control is 
exerted through the operators and variables available, and 
termination is forced through conditional operators (i.e.: 
maximum number of generations, clock time, tolerance, 
etc.).   However, one must be aware of their computing 
environment.  Functions and terminals must be chosen 
carefully to minimize the search space.  GP structures are 
unfathomably powerful, yet are harder to search through 
and more costly in memory.  Not only do they consume 
more space, but also consider search time.  Blocks of 
memory are not necessarily contiguous, and may need to 
be loaded from secondary memory to primary memory to 
be operated on.  This adds considerable computation time. 

 

 

 
 

Figure 3: Two Parents Selected For Mating; Chosen 
Subtrees Are Highlighted. 

 

 

 
 

Figure 4: Newly Created Individuals Resulting From 
Recombination of Figure 3. 

 

 

3 FUNCTION APPROXIMATION 
When analyzing a data set it is often useful and necessary 
to determine, or compute, a predictably reliable function 
approximation to aid in future and / or prior behavioral 
analysis.  Previously, we have used techniques such as 
regression, divided differences, polynomial, Lagrange or 
spline interpolation.  These techniques have been proven 
to be accurate within some error defined by the chosen 
function representation and whether the function is known 
at many or few points.  Unfortunately, some notion of the 
size and shape of the solution is necessary for determining 
which technique to employ for that particular problem; as 
the problem may not be suitable, or possibly completely 
intractable for the method.  It is the purpose of this paper 
to investigate the application of Genetic Programming 
(GP) to the problem domain of function approximation.  
As such, a GP application was developed using a highly 
object-oriented approach utilizing all the features of GP 
discussed thus far (i.e.: selection, mutation, 
recombination, etc).  

 

3.1 APPLICATION PARAMETERS 

The application employs a steady-state methodology, 
following the ES scenario previously described.  Ramped 
Half-and-Half initialization is used for the following 
examples, though no performance metrics were taken 
with respect to the available initialization procedures.  
Tournament selection is the method of choice; where four 
members of the population are randomly selected to take 
place in the tournament.  The individual with the best 
fitness is retained for recombination (with another 
randomly selected individual from the base population) 
and mutation.  After the genetic operators are employed 
on the selected individuals another fitness evaluation is 
performed on the offspring.  If the fitness of the offspring 
is better than the two losers  of the tournament (the two 
individuals with lowest fitness), the offspring replace 
them in the base population.  The probability of mutation 
was 0.05, and the probability of recombination was 0.75.  
No analysis of these probabilities was performed due to 
time constraints; however, these values are generally 
regarded as acceptable within the GP community.  It is 
completely feasible that better results may be obtained 
with further analysis of these parameters.  The 
termination criteria was a combination of maximum 
function evaluations (0.5 million) and tolerance (0.01).  
Finally, the function set was comprised of all the 
mathematical functions available in the standard C header 
<math.h>, and the terminal set was comprised of the 
variable ‘x’ and randomly generated constants. 

 

 

 

 



3.2 EXAMPLE 1 

 

Table 1: Training Set For Example 1. 

 

Table 1 shows the training data input to the GP 
application.  The GP was executed for 100 unique seeds 
with a population size of 40 individuals.  The application 
successfully evolved an optimal solution (that is, fitness = 
0, or the evolved function passed through all points in the 
training data set) in all 100 cases, with an average of 
10,072 function evaluations and an average time of 0.3 
seconds (CPU time). 

This example was included to illustrate an important 
drawback of GP; that is, there is no way to guarantee the 
simplicity of the evolved solution.  For example, in one 
run the GP evolved the following equation: (((x * x) - ((x 
- x) + (atan((10369 * x)) ^ (x - x)))) + (((10369 * x) + x) ^ 
(x - x))) (see figure 5), which simplifies to the optimal 
function x2. 

 

 

 

 

Figure 5: A Complicated Structure Which Reduces To 
The Much Simpler Function x2. 

 

 

 

 

 

 

3.3 EXAMPLE 2 

 

Table 2: Training Set For Example 2 

 

X 0.1 0.4 0.5 0.8 
Y 2.08153 1.87932 1.90439 1.7758 

X 1 1.1 1.4 1.7 
Y 1.33804 0.7934 0.27794 -0.0297 

X 1.8 2 2.1 2.6 
Y 0.65020 -0.4715 -0.4321 0 

 

Table 2 shows the training data input to the GP 
application.  The GP was executed for 100 unique seeds 
with a population size of 40 individuals.  The application 
successfully evolved an optimal solution (that is, fitness = 
0, or the evolved function passed through all points in the 
training data set) in only 8% of the cases, with an average 
of 125,556 function evaluations and an average time of 
25.699 seconds (CPU time).  However, 98% of seeds 
found an approximate solution within a 0.01 error 
tolerance.   

After examining the solution set of the 100 seeds it was 
evident that the best solutions of a majority of the test 
cases included only base trigonometric functions.  
Subsequently, the function set was adjusted to include 
only the basic trigonometric functions that appeared in the 
solution set (sin, cos, tan), and the GP application was 
again run for 100 random seeds.  The application then 
obtained an optimal solution for all 100 cases, with an 
average run-time of 10.2 seconds (CPU time).  This 
analysis provided significant insight into the GP 
application.  Principally, that the GP is very sensitive to 
the function and terminal sets available.  This suggests 
that an adaptive procedure for reducing the complexity 
(size) of said sets during the runs of the GP application 
would significantly enhance the application and its 
results.  Figure 6 shows a plot of the optimal solution, and 
figure 7 shows the simplest equation evolved for this 
example.  The figures correspond to the function: 

 

. 

 

 

 

 

 

X 0 1 2 3 5 

Y 0 1 4 9 25 



 
 

 

Figure 6: Optimal Solution For Example 2. 

 

 

 

 

 
 

 

Figure 7: Simplest Optimal Solution Evolved For 
Example 2. 

 

 

3.4 EXAMPLE 3 

 

As a final example, an error versus generation plot (figure 
8) has been included with multiple functions, varying in 
degree and difficulty.  This plot illustrates the 
applicability of GP to function approximation, as well as 
the underlying principle of GP – evolution.  The plot 
shows the evolution of the solution over time, with eras of 
little solution progression and generations that 

significantly improve the solution quality.  This data was 
obtained without altering the application parameters 
previously discussed, thus showing the generality allowed 
by the GP implementation. 

 

 

  

 

Figure 8: Error vs. Generation for a small suite of 
functions. 

 

4 CONCLUSIONS 
The results of this investigation confirm that Genetic 
Programming is indeed a powerful tool; more so than 
GA’s or ES’s in that GP seeks to evolve an executable 
program as the solution of the problem, rather than simply 
a solution to the problem.  Additionally, unlike GA’s and 
ES’s, the GP operation of recombination can produce 
different offspring from identical parents.  In fact, when 
depth is greater than two with at least one full parent, the 
probability that random recombination will produce new 
offspring is greater than not.  Unfortunately, GP is also 
considerably more complex than GA’s or ES’s.  The test 
suite applied to the GP application shows that GP can be 
used as a tool for function approximation and that it is 
especially effective when the size and shape of the 
solution space is unknown.  However, the test suite also 
showed that GP has considerable difficulty finding a 
simple program that also produces high precision.  The 
complexity of the best solution is also affected by the pre-
selected function and terminal sets.    The complexity 
(size) of the function and terminal sets are directly related 
to the generality and search speed of the GP application.  
When increasing said sets to improve generality, and thus 



the search space of the application, complexity (in time 
and space) is also increased.  Additionally, it must be 
noted that the GP application is tool that is subject to 
significant constraints that must be accounted for when 
used.  Among them is the fact that the output is only as 
good as its training set.  If used in predictive analysis one 
should expect that the more training data employed, the 
more accurate the predictions.  Although, increasing the 
training data set size also adds computation time.   

The examples contained within this paper were initialized 
with a tree depth of 4, and were allowed to evolve 
unconstrained.  The premise was that code bloat would be 
easily distinguished among the runs and analysis could be 
performed.  However, this did not occur.  The 
unconfirmed reason for this is probably due to the nature 
of the recombination procedure.  Recombination of tree 
data structures can be viewed as not only additive, but 
also as destructive (contributing to the confinement of 
code bloat).  Also, since the application was written in 
C++ (a compiled language) it contains a function parser 
as part of the fitness evaluation module.  Recalling the 
aforementioned issues related to memory, processing 
time, and tree structures; the GP application seems 
particularly well suited for parallelization.  Specifically, a 
hierarchical approach, combining the master-slave and 
multi-population approaches, would increase the search 
space and diversity of the application. 

 

5 FUTURE WORK 

A simplification procedure (to effectively collapse the 
tree representation) would be an interesting exercis e 
extending this work.  This would not only be beneficial in 
reducing complexity but also as a way of facilitating 
diversity within the population.  Also, an adaptive 
procedure to reduce the complexity of the function and 
terminal sets at run-time would enhance the performance 
and accuracy of the application across unknown function 
training sets.  Additionally, a procedure that would offer 
the user several optimal functions, with varying degrees 
of complexity, could be useful in the analysis of large 
training sets.  Also, further analysis of the application 
needs to be performed.  This would include behavioral 
analysis of the application with respect to code bloat, 
diversity loss, and initialization requirements.  Also, the 
performance of the application with respect to tree depth 
needs to be assessed.   
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