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Abstract 
 
 
Ultrasonic guided wave technology is one of the 
commonly used methods in monitoring the health 
conditions of aerospace, civil, and mechanical 
infrastructures. Sensor network scale and sensor 
distribution are very important issues, which 
greatly affects the sensor network performance as 
well as the structural health monitoring (SHM) 
system cost. To improve the state-of-the-art from 
commonly used empirical sensor distribution, a 
quantitative sensor placement optimization 
method with covariance matrix adaptation 
evolutionary strategy (CMAES) and a damage 
detection probability model is presented in this 
paper. The miss-detection probability of a sample 
problem with 12 sensors improves by 11% from 
an arbitrary random sensor distribution. CMAES 
algorithm assessment is also carried out with 
algorithm parametric study and a comparison with 
another evolutionary strategy algorithm. Finally, 
the trade-off relation between optimized sensor 
network performance and the number of sensors is 
obtained. 

1 INTRODUCTION 
Structural health monitoring (SHM) is the process of 
implementing a damage detection strategy for aerospace, 
civil, and mechanical infrastructures.  Damage detection, 
localization, assessment, and structure remain life 
prediction are four levels of structural health monitoring 
objectives. Most of the structural components are natural 
waveguideds. This provids the ultrasonic guided waves 
with trememdous opportunety to interrogate the health 
condition of the structures through wave excitation, 
propagation, and detection. Ultrasonic guided wave based 
methods have been recognized as a major part of SHM 
research. In a passive ultrasonic monitoring situation, 
sensors are used to detect the ultrasonic signals emitted 
from a damage event, either a crack propagation or an 

object impact. In an active ultrasonic monitoring situation, 
actuators are used to generate ultrasonic waves in a 
structure. The wave propagates in the structure and 
carrying out the material and structural information to the 
detection sensor. If a damage occurs in the structure, the 
signal will be affected. By using advanced signal 
processing and decision making algorithms, the damage 
can be detected, localized, and assessed.   
Much efforts have been directed in the areas of wave 
propagation mechanics study, and sensor design and 
optimization. Few works have been reported on the sensor 
network level design and optimization using binary coded 
GAs for fixed sensor locations (Worden,2001; Guo, 2004). 
The work presented in this paper aims at developing a 
quantitative sensor placement optimization methodology 
for passive ultrasonic sensor network performance 
enhancement and cost reduction. Wave propagation and 
sensor design charateristics are abstracted into a damage 
detection probability model, which serves as a basis for the 
sensor placement optimization.   
Genetic and evolutionary algorithms are population based 
searching algorithms, in which the exploration of searching 
space is guided by selection and genetic operators such as 
cross over and mutation (Back, 2000). Within a short time 
since its emerging, GEA has achieved an exponetially 
increasing applications in many fields. Covariance matrix 
adaptation evolotionary strategy (CMAES) developed by 
Nickolaus Hansen is particularly capable of solving 
problems with highly nonlinear, concave, and rugged 
search landscapes (Hansen, 2005).  Sensor network 
configurations are optimized toward minimum miss-
detection probability with CMAES in this paper. CMAES 
algorithm assessment is also carried out with algorithm 
parametric study for example the algorithm reliability 
assessment with random seed analysis, algorithm 
parametric sweet spot exploration with population size and 
parent number tuning. An algorithm comparison with 
another evolutionary strategy algorithm is also discussed in 
the paper. Finally, the relation showing the trade off 
between optimized performance and the number of sensors 
is obtained. The approximated Pareto optimum front 
provide very important information for real sensor network 
designs. 
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2 THEORIES 

2.1 A PROBABLISTIC DAMAGE DETECTION 
MODEL 

The ultrasonic wave propagation characteristics are 
governed by the theories of mechanics, material properties, 
and structural boundary conditions. The basic concept of 
passive ultrasonic sensor structural health monitoring is 
shown in Figure 1. When a damage occurs in the structure, 
ultrasonic signals will be generated from the damage 
location and propagate along the plate. The damage event 
is detected successfully if the wave is detected by a sensor 
and classified to be a damage event. Therefore, a complete 
model needs the charateristics of the processes of wave 
generation, propagation, and detection (Rose,1999). A 
detailed wave mechanics study is needed for complicated 
structures and structure oriented sensor and actuator 
design. The sensor network optimization will then  base on 
the performance of each sensor. 
 
 
 
 
 
 
 
  
Figure 1: Ultrasonic passive sensor damage monitoring 
scheme 
In this model, the sensor network optimization is separated 
from the detailed wave mechanics study and individual 
sensor design. For the case of an isotropic structure, the 
waves propagate in all the directions with the same 
velocity. When material attenuation is negligible, the wave 
energy attenuation is only due to the increase of wavefront 
scale. In this case, the signal is assumed to be proportional 
to the reciprocal of the distance between the sensor and the 
damage event. Based on this assumption, a statistic model 
is developed to represent the effective region of the sensor. 
Equation 1 shows that each sensor has a confident 
monitoring region defined by a circle with R1 radius. The 
damage detection probability decreases with distance until 
it reaches R2. When the distance is larger than R2, the 
damage event signal is no longer resolvable from the 
system noise and the sensor loses its effectiveness totally 
in this region. An example of a sensor effective region is 
shown in Figure 2. 
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Figure 2: Sensor damage detection probability distribution 
 
The entire effectiveness of a sensor network is the joint 
effect of all the sensors. Based on the theory of probability, 
the sensor network sensitivity at a certain point is the union 
probability of all the sensors.  
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Equation (2) can be implemented as a sequence of union 
probability of two probabilistic events through Equation 
(3). 
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Sensor network performance can be evaluated by its 
damage detection probability for the entire structure. Case 
history study information is used as the guidance in the 
sensor placement optimization. When the normalized 

damage distribution on the structure is ),( yxPd , the 
damage detection probability for the entire structure is 
defined in Equation (4). 
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Here, the normalization of ),( yxPd  is expressed as  
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To enhance the performance of the sensor network is 
equivalent to minimize the miss-detection probability 
(MDP).  

DDPMDP −=1                                                        (6) 
In numerical implementation, grids of sample points are 
used to evaluate MDP in a 2D space. The integration can 
be reduced to a summation at the sample points.  
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The minimization of MDP is essentially to place the 
sensors at the structural hotspots defined by case history 
damage distribution. For many real applications, the 
information of structural hotspots is not available or not 
precise. The overall damage detection objective is to 
increase the coverage of the sensor network. In this case, 
Equation (7) reduces to Equation (8). 
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For most of the real applications, constraints in sensor 
position should be considered. For example, the sensors 
installed in the region with high damage susceptibility are 
not preferred to prevent the sensor from being damaged. 
The other example is some structural geometric constraints 
produce some infeasible sensor locations. The constraints 
should also be handled in an optimization problem. 

2.2 CMA EVOLUTIONARY STRATEGY 
CMA evolutionary strategy (CMAES) is a heuristic 
optimization algorithm. The initial population is generated 
by sampling a normal distribution with user specified mean 
value and standard deviation of each decision variable. 
Offspring generation, selection and recombination, 
covariance matrix adaptation, and step size control are four 
key operators in the process of evolution. A searching 
iteration stops when user specified convergence or any 
other stop criterion is met. 

2.2.1 Offspring Generation 
A new population is sampled from a normal distribution 
specified by  

))(,(~ )(2)()()1( gggg
k mΝx Cσ+                        (9) 

for λ,,2,1 …=k                                                  

Here, λ  is the population size; )1( +g
kx  is the kth sampled 

individual of generation (g+1).  

))(,( )(2)()( gggmΝ Cσ  is a multivariate normal 

distribution in generation (g). ng Rm ∈)(  is the mean 
value of decision variables in generation (g); +∈ Rg )(σ is 
the “overall” standard deviation, which is also termed step 
size; nng R ×∈)(C  is the covariance matrix. n refers to the 
number of decision variables. 

2.2.2 Selection and Recombination 
Selection and recombination are used to determine the 
mean value of the distribution for generation (g+1).  
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Here, )1(
:
+g

ix λ is the ith best individual in generation (g+1). 
The first µ  individuals in fitness ranking are chosen for 
recombination. Different weights can be assigned to each 
selected individual to enhance selective pressure. 
Generally, the recombination takes all the µ  selected 
parents into account. The recombination weights should 
satisfy Equation (11). 

 1
1

=∑
=

µ

i
iw , 021 >≥≥≥ µwww "                       (11)  

1

1

2 )( −

=
∑=
µ

µ
i

ieff w                                                        (12)   

A variance effective selection mass defined from the 
recombination weights is expressed in Equation (12). This 
paramter is a measurement of the selective pressure in 
CMAES. The value of effµ  is in the range [1 μ ]. When 
the population size of a problem is given, smaller effµ  
represents higher selective pressure. At the extreme case 
when λµµ ==eff , there is no selection at all; when 

1=effµ , only the best individual is selected for offspring 
generation. 
The algorithm parameters introduced in this section are 
population size ( λ ), parent number ( µ ) and 
recombination weights ( iw ).  

2.2.3 Covariance Matrix Adaptation  
The covariance matrix describes the shape of the variable 
distribution. The goal of covariance matrix adaptation is to 
fit the search distribution to the contour lines of the 
objective function to be minimized.  
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In Equation (13), three contribution terms are considered 
for C matrix adaptation.   
The third term 

∑
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estimator for the distribution of selected steps. The first 
term )(gC  carries the information of the previous 
generations into to the covariance matrix of generation 
(g+1). This term is particularly useful and important for 
fast search with small population size. )1( +g

cp  is an 
evolution path used in to exploit the correlations between 
consecutive steps. Equation 14 is the detailed expression of 
evolution path.  
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The algorithm parameters introduced here are learning rate 
for covariance matrix update ( covc ), learning rate for 

evolution path update ( cc ), and weighting between the 
evolution path update and estimator of distribution update 
( covµ ). 

2.2.4 Step Size Control 
A cumulative path length control method is used in 
CMAES to update the step size )(gσ  of each generation. 
In this method, a conjugate evolution path is constructed 
according to Equation (15). Then, )1( +gσ is generated with 
Equation (16). 
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Two algorithm parameters introduced here are learning 
rate for cumulation of step size control ( σc ) and damping 

parameter for step size update ( σd ). 

2.2.5 Parameter Settings 
Suitable algorithm parameterization is always important 
for the performance of genetic and evolutionary algorithms 
in the aspects of searching efficiency, global optimization 
quality, and algorithm reliability. The algorithm parameters 
used in CMAES are  

λ ,µ , iw , covc , cc , covµ , σc and σd . Fortunately, a set of 
default parameter setting is given in the algorithm, which is 
tested to be a robust setting applicable to a wide range of 
functions to be optimized (Hansen 2005). The default 
settings for population size, parent number and 
recombination weights are expressed in Equation (17), 
Equation (18), and Equaiton (19) resepectively. 

 ⎣ ⎦nln34 +=λ                                                         (17) 

⎣ ⎦2/λµ =                                                                  (18) 
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2.2.6 Stop Criteria 
CMAES provides a suite of stop criteria including the 
maximum stop fitness, maximum number of function 
evaluation, maximum number of iteration, decision 
variable change threshold, fitness change threshold. Stop 
criteria indicating algorithm divergence are also provided, 
for example, the upper limit of decision variable change, 
the upper limit of function fitness change, etc.    

2.2.7  Boundary and constraint handling 
The boundary handling methodology provided in CMAES 
is to replace the random generated value with the 
corresponding boundary value of the decision variable 
when the sampling is out of bound. The lower boundary is 
used if the value is less than the lower boundary. The upper 
boundary is used if the value is larger than the upper 
boundary. In the numerical experiment, in order to exploit 
the diversity of the searching space, the initial step size is 
set to be half of the boundary range. A large portion of the 
samples is out of bound and then set to the boundary value. 
Therefore, premature convergence sometimes happens at 
the boundary value. To solve this problem, the “sticky 
boundary” is modified to a “reflection boundary” in the 
work presented in this paper. Instead of using the boundary 
value, the symmetric value with respect to the boundary is 
used in the modified “reflection boundary” when the 
sampled value is out of bound.  Each decision variable 
within a newly generated offspring experiences the 
reflection boundary check before the offspring is used for 
function fitness evaluation.  
Constraints can also be handled in CMAES with a user 
defined penalty function in the objective function or simply 
discard the infeasible solution and generate new offspring 
until the population size is met.  
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3 A SAMPLE SENSOR NETWORK 
DESIGN PROBLEM 

3.1 MONITORING PROBLEM DESCRIPTION 
In this sample problem,  normalized sensor and structure 
scale is used. The monirtoring region is 100x100 in 
arbitrary unit. The sensor performance parameter R1 and R2 
are 3 and 40 respectively.  
The case history damage distribution is shown in Figure 3. 
The damage distribution is normalized such that the 
summation of the probability in a 100x100 sample grids is 
1. In this sample structure, the damages are most likely to 
happen in two elliptical areas at two sides and the center of 
the plate.  
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Figure 3: Damage probability distribution 

3.2 OPTIMIZATION PROBLEM 
FORMULATION 

The optimization problem is to minimize the MDP 
function in  Equation (8) when the the number of sensors is 
given.  When the sensor number is N, 2N real decision 
variables will be considered for the x and y coordinate 
positions of these sensors. Real coded evolutionary 
strategies are used. No other constraints are used besides 
the boundaries of the monitoring region. The mathematical 
formulation of this optimization problem is in Equation 
(19).  
Minimize f(X,Y)=MDP(X,Y)                                        (19) 
When      Xlb≤Xi≤Xub         i=1,2,...,N 
               Ylb≤Yi≤Yub          i=1,2,....N 
Here for this particular problem Xlb=Ylb=0, and 
Xub=Yub=100.   

3.3 SENSOR PLACEMENT OPTIMIZATION 
RESULTS AND ALGORITHM PARAMETRIC 
ANALYSIS 

3.3.1 Sensor Network Placement Optimization with 
Default Parameter Settings 

The default algorithm parameter setting is used for the 
sensor placement optimization when the number of sensors 
used is 12. According to Equation (17-19), the population 
size, parent number and recombination weights are listed 
in Table 1.  
 
Table 1: Algorithm parameters 

Number of Sensors 12 

Number of variables 24 

Population size 13 

Parent number 6 

Recombination weights [0.3818    0.2458    0.1663    
0.1098    0.0660    0.0302] 

  
The evolutionary search stops when the maximum standard 
deviation of the decision variables is smaller than 0.25. 
This represents the convergence of the sensor placement 
configuration. The evolution history of the best fitness 
value of each generation for one run is plotted versus  the 
number of function evaluation in Figure 4. At the 
beginning of the search, the step size of the decision 
variables are large, the variation of best fitness values 
change dramatically. Because the offspring generation is 
sampled from a normal distribution derived from the 
selected parents, it does not guarantee that the best fitness 
found in the new generation is better than the previous 
generation. Therefore, in CMAES, the best fitness value of 
each generation usually does not decrease monotonically, 
which is different from some evolutionary algorithms with 
deterministic selection operators. In addition, the best ever 
found solution is not necessarily within the final generation.  
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Figure 4: The evolution history of the best fitness value of 

each generation 



 6

The best fitness value of MDP found in this run is 27.24%. 
This means that the 12 sensor system can detect 72.76% of 
the damage events occurred on this structure. Although this 
number is somehow not very satisfactory, the performance 
is fair for the limited sensor sparse array system. In 
addition, the evolutionary algorithm improves the 
performance of the sensor network by decreasing the MDP 
by about 11% from arbitrary sensor placement 
configurations to the best configuration find in this run. 
The sensor network sensitivity distribution of the 
optimized configuration is shown in Figure 5. This figure 
shows that the sensor placement result from the CMAES 
optimization generally fits the structure hotspot. The 
corresponding miss-detection probability distribution is 
shown in Figure 6. It is found that the four corners of the 
hotspot area are not well covered by this 12 sensor network 
configuration.   
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Figure 5: Sensor detectability distribution of the best 

sensor configuration found in one run of CMAES  
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Figure 6: Damage miss-detection probability distribution 

3.3.2 CMAES algorithm reliability analysis 
40 different random number seed runs are used to evaluate 
the reliability of this CMA evolutionary strategy.  

The best ever found minimum miss-detection probability 
(MDP) and the minimum MDP in the last generation are 
evaluated for the test runs. The corresponding number of 
function evaluations for the best ever found solution and 
the number of function evaluation for algorithm 
convergence are also recorded. Although the best ever 
found solution is not guaranteed to be found in the final 
generation, it is always close to the last generation. This 
means that the selection process of the algorithm indeed 
drives the solution toward the best in the process of its 
evolution. The mean value and standard deviation of these 
four results are listed in Table 2. Very small standard 
deviations of the optimized MDP value is observed from 
the 40 runs. In addition, the standard deviation of the 
number of function evaluation toward convergence is also 
comparably small to the average number of function 
evaluation. Therefore, the CMAES with default parameter 
setting has a good performance in terms of its reliability for 
this problem.  

Table 2: Statistic analysis of algorithm reliability 

Stop at converge Best ever solution 40 random 
number 
seeds 

MDP 

(%) 
Function 

evaluation 
MDP 

(%) 
Function 

evaluation 

Mean 27.25 2596 27.25 2536 

Standard 
deviation 0.0113 379 0.0106 381 

 

Although the optimized fitness value is very close for all 
the 40 runs, the optimized sensor placement configuration 
are not always the same. Besides the one that is shown in 
Figure 6, the sensor distribution configuration obtained in 
another run is shown in Figure 7. There are also some other 
configurations observed. The ultimate reason for this 
multiple solution is that the damage probability distribution 
shown in Figure 4 is fairly smooth and flat at the center 
region. Therefore, the MDP values of slightly different 
sensor configurations are very close. In the context of 
genetic and evolutionary algorithm, it is because of the 
extremely small gradient in the searching landscape toward 
the global optima. The stop criteria setting used here 
terminates the evolution process when the maximum 
standard deviation of the decision variables is smaller than 
0.25. Further study with refined stop criterion and 
increased population size could be used to validate the 
reason for this multi solution result.  From another point of 
view, different configurations with close performance 
actually provided the designer with more choices in a real 
application.  
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Figure 7: Another example of optimized sensor 
configuration  

3.3.3 Exploration of Sweet Spots: Algorithm 
Parametric Study 

An exploration of the algorithm sweet spot is performed by 
tuning the population size and parent number.  
In the first experiment, the population size sequence used 
are [8 10 12 14 16 18 20 22 24 26], which covers the 
default setting of 13. The parent number is also derived 
from Equation (18). Some typical searching histories are 
shown in Figure 8. Different population size lead to very 
close optimized MDP value. The mean and standard 
deviation are 27.24% and 0.015% respectively. Slight 
decreasing of the MDP values is observed when the 
population size increases. This fits into the scenario of 
evolutionary search that larger population size lead to 
better global optima search. However, since the deviation 
is within the range of the algorithm reliability, there is still 
no conclusive assertion for this.  

The number of function evaluation for small population 
size is significantly smaller than those values for larger 
population size. When the population size increased from 
10 to 26, the number of function evaluation increases from 
2000 to 5000. This shows the effectiveness of CMAES 
algorithm in quick search by using a satisfactory small 
population size. In addition, extremely smaller population 
size will not help the process of searching. When 
population size is 8, the convergence of the algorithm is 
found to be slower than population size 10. Again, more 
runs are needed to validate this conclusion from the 
stochastic behavior of evolutionary search.   
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Figure 8: Searching history using different population size.  

The parent number analysis is also carried out when the 
population size is fixed at 13. Six parent numbers 
[2,4,6,8,10, 12] are used for testing. The result shows that 
the final optimum of MDP slightly improves with the 
increase of population size in the range of 0.05%. The 
number of function evaluation is very close for these runs. 
However, the best fitness value for each generation along 
the searching history improves quicker for larger parent 
number. This is reasonable, because larger parent number 
ensures steady convergence while the small parent number 
introduces too much selective pressure and larger 
oscillation steps in the searching process. Therefore, the 
fitness value improves in a comparably larger oscillation 
manner. Because the evolution path, historic covariance 
information, and step size control are used in CMAES, no 
obvious premature convergence that ends up with a 
significantly poor result is observed in these runs.  

3.3.4 Comparison with other Evolutionary Strategy 
Algorithms 

To assess the performance of CMAES, the same problem 
is solved with an ordinary (λ +μ ) evolutionary strategy. 
The same stop criterion used is also when the standard 
deviations of the decision variables are all less than 0.25. 
The maximum generation number is set to 200. The 
selective pressure for the ranking based search is set to 2, 
which ensures most greedy selection. Firstly, eight 
population sizes ([20 22 24 26 28 30 32 40] ) are 
experimented. These values are set according to the 
theoretical guidelines for binary GA drift prediction. 

34)2(4.1~ =×× SNλ  All of the runs terminate at the 
maximum number of generation. The value of the final 
evolution results are [0.2733   0.2727    0.2747    0.2729    
0.2737    0.2729 0.2724 0.27309]. The mean and standard 
deviations are 27.32% and 0.0702% respectively. Secondly, 
the population size is set to 32, which gives the best 
solution in the eight runs. The results of 30 random seed 
runs shows the mean value and deviation of the MDP are 
27.3% and 0.051% respectively.  Comparing these results 
with the results listed in Table 2, CMAES is found to be 
better in both searching quality and efficiency.   
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3.4 SAFETY VERSUS COST 
The previous result shows that when the sensor number is 
12, the optimized MDP is 27.25%. This is not a 
satisfactory monitoring design if one damage event may 
cause significant deterioration or even catastrophic failure 
of the structure. A multi-objective optimization problem is 
naturally brought up to find a balance point between the 
safety and cost. In the decision variable domain it is 
expressed as putting an optimized number of sensors in its 
right position  

In this study, the performance is evaluated by the MDP 
value of a sensor network configuration, and the number of 
sensors represents the cost. A group of single objective 
optimization problems is solved to approximate the Pareto 
optimum set. The result of MDP versus sensor number is 
shown in Figure 9. MDP decreases monotonically with the 
increasing of number of sensors. When R1=3, the miss-
detection probability decreases to 10% when the number of 
sensors used is 24.  

In addition to get the optimized sensor placement, the 
improvement of individual sensor performance is also a 
very important issue. The optimized MDP when the 
confident monitoring radius of the sensor is 5 is also shown 
in Figure 9. As was expected, the overall performance 
increased significantly. 
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Figure 9: Relation between Miss-detection probability and 
the number of sensors 

4 CONCLUSIONS AND DISCUSIONS 
A probabilistic damage detection model is developed in 
this paper to evaluate the performance of a passive 
ultrasonic sensor network in structural health monitoring. 
CMAES is used to optimize sensor distribution on the 
structure. For the sample network with 12 sensors, 
CMAES results achieved 11% damage detection 
probability improvement compared with random sensor 
network configuration. An algorithm parametric study is 
also performed including the algorithm reliability, quality, 
and efficiency test. The result shows that the CMAES 
algorithm is comparably reliable with the default algorithm 

parameter settings. Reasonably small population size can 
be used to find the optimized fitness value quickly. The 
CMAES over performs the comparing evolutionary 
algorithm in both the searching converging speed and 
solution quality in the test runs performed in this research. 
An approximate Pareto optimum set solution illustrating 
the tradeoff between safety and cost is obtained by solving 
single objective optimization problem with different 
number of sensors.  

For future research, the sensor network design problem is 
essentially a multi-objective optimization problem. NSGA-
II, ε -NSGA-II, SPEA-II and other multi-objective genetic 
and evolutionary algorithms are appropriate tools to get a 
set of solutions more efficiently. When a multi-metric 
sensor network quality evaluation are used, a higher order 
multi-objective optimization problem formulation is in 
great demand. Application of genetic and evolutionary 
algorithms in real monitoring structures with material 
attenuation and anisotropy are some of the future research 
directions. 
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