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Abstract 
 
 
Low Impact Development (LID) is a relatively 
new concept in urban stormwater control, and it 
emphasizes on using distributed on-site 
Integrated Management Practices (IMPs) to 
reach both water quantity and quality control 
goals. Previous studies were focused on using a 
single type of IMP, such as detention basins, and 
trying to reach an optimum control design. This 
research focuses on using both infiltration and 
the detention types of IMPs to reach the optimal 
control. A revised version of the Non-dominated 
Sorted Genetic Algorithm-II (NSGAII) 
alogrithm, the Epsilon Non-dominated Sorted 
Genetic Algorithm (ε-NSGAII) (Kollat and 
Reed, 2005), was used to optimize various LID 
designs on an urbanizing watershed. The 
optimization process results in a non-dominant 
Pareto front between total cost and the water 
quantity performances, and this tradeoff front is 
very valuable for informed and defendable 
stormwater decision-makings.  

1 INTRODUCTION 
Decision-making in stormwater control always involves 
maximizing the improvements in stormwater runoff 
quantity and quality while minimizing the total control 
cost. Thus a Pareto-front that depicts the trade-off 
between the total cost and the improvements in runoff 
conditions is crucial to defendable stormwater control 
decision-making. Previous studies either rely on 
traditional gradient-based methods to carry out the 
optimization (Elliot, 1998; Lee, et al., 2005) or focus on 
optimizing a single type of IMP, such as detention basins 
(Harrell and Ranjithan, 2003; Zhen, et al., 2004). There 
lacks a powerful tool that is capable of optimizing LID 
designs, which consists of both detention type of IMPs 
and infiltration type of IMPs such as green roof and 
porous pavement.  

In this study we use the Epsilon-Dominance Non-
Dominated Sorted Genetic Algorithm II (ε-NSGAII), 
which is a revised version of the NSGAII developed by 
Deb et al. (2002), to carry out the optimization of LID 
designs on an urbanizing watershed. Potential IMP types 
and sizes, as well as their costs and efficiencies in 
stormwater control are evaluated and optimized by ε-
NSGAII. A total number of 38,000 LID scenarios are 
evaluated and 47 non-dominated solutions between total 
cost and performances in runoff volume and peak rate are 
identified. The USEPA Stormwater Management Model 
(SWMM version 5.0) is used for calculating the runoff in 
each LID design. Section 2 provides an overview of the 
background in stormwater control optimization. Section 3 
introduces the optimization framework used in this study.  
A real application example is presented in Section 4 with 
initial results and discussions. Summary and conclusions 
are provided in Section 5.  

2 LITERATURE REVIEW 

2.1 URBAN STORMWATER CONTROL 
CONCEPTS 

Urban sprawl always causes increase in surface runoff 
volume and peak rate, as well as the deterioration in 
downstream water quality. Traditional stormwater best 
management practices (BMPs) focus on fast drainage and 
temporally holding the stormwater at a centralized 
detention basin. However, this method reduces local 
groundwater recharge and at the same time causes 
downstream flooding and deterioration of water quality. 
The low impact development (LID) concept was first 
proposed by the Prince George’s County, Maryland and is 
increasingly accepted across the country as a new method 
in stormwater control. 
Different from the traditional stormwater control, which 
heavily depends on curbs, gutters, and pipe networks to 
reach fast drainage, the low impact development method 
emphasize more on controlling the stormwater at the 
source. The LID method uses small-scale integrated 
management practices (IMPs) such as green roof, porous 



 

pavement, detention basins, and bio-retention area across 
a watershed, and runoff is encouraged to infiltrate into the 
ground where it originates. Meanwhile the IMPs are also 
capable of treating stormwater runoff pollutants such as 
Phosphorus, Nitrite and Nitrate, Petroleum and oil & 
grease, Cu, Pb, and other common pollutants found in 
urban stormwater runoff. The overall goal of the LID 
method is to mimic the pre-development or natural 
hydrologic functionally landscape. 

2.2 OPTIMIZATION IN STORMWATER 
CONTROL 

In an effort to develop a model for determining the 
optimal location of stormwater quality controls and thus 
to reduce the sediment in receiving waters, Elliot (1998) 
used a gradient-based search procedure in a simplified 
mathematical model. The search process was repeatedly 
applied at various starting points and a global optimum 
was selected based on the results from multiple runs. Lee 
et al. (2005) used a linear programming solver to optimize 
the performance of stormwater storage-release systems 
and on-site wet-weather controls (WWCs). 
 Optimization of detention pond and land use planning 
was carried out by Harrell and Ranjithan (2003), who 
used a simple genetic algorithm (GA) to generate a cost-
effective detention pond configuration within sub-
catchments of a watershed in order to reach target water 
quality control. Zhen et al. (2005) investigated the 
optimization of location and sizing of stormwater basins 
at the watershed scale. The scatter search method was 
used to build the optimization model, and a trade-off 
curve between the total cost and the reduction in 
pollutants was identified in the study. 

2.3 STORMWATER CONTROL COSTS 
Life cycle costs of stormwater control usually involve 
initial construction cost, land opportunity cost, and 
operation and maintenance (O&M) cost. Since the land 
opportunity cost and O&M cost are highly site specific, 
usually the construction cost is used as capital stormwater 
control cost for analysis purposes (Sample et al., 2003).  
The construction costs of different IMPs have been 
investigated in many studies. Table 1 is a generalization 
of the construction costs of several types of IMPs.  

Table 1: Construction costs of IMPs 
IMP TYPE COST 

 
Detention basins C=2.195*104V0.75 
Green roof C=80000*A 
Sand filters C=50300*A 
Bio-retention area C=18.5*V0.7 
Porous pavement C=65000A 

       V is in cubic feet and A is in acres 

 

2.4 NSGAII AND Ε-NSGAII 
The Non-dominated Sorted Genetic Algorithm-II 
(NSGAII) developed by Deb et al. (2002) is a revision 
from the original Non-dominated Sorted Genetic 
Algorithm (NSGA) (Deb, 1995). Compared to the 
original version, NSGAII reduced the computational 
complexity, incorporated explicit elitism, and eliminated 
the need for specifying the sharing parameter of σshare 
(Coello Coello et al., 2002). In NSGAII, a solution is 
ranked according to the number of solutions that dominate 
it. Two-step crowded binary tournament selection is then 
carried out based on the fitness value of each solution. 
During the process, the solution with a lower rank is 
always preferred. When two solutions have the same rank, 
the one with a larger crowding distance is selected. By 
doing this NSGAII ensures a more distributed set of 
solutions along the final Pareto front (Kollat and Reed, 
2005). 
As a further revision to NSGAII, ε-NSGAII (Kollat and 
Reed, 2005) adds ε-dominance archiving, adaptive 
population sizing, and automatic termination to the 
original NSGAII algorithm (Kollat and Reed, 2005). The 
ε-dominance is a user-specified factor that determines 
how precise solution to each objective will be. A large ε 
value means a coarser grid of the solution space (which 
means less ultimate solutions) and vice versa. After a 
user-specified number of generations within each run, the 
ε-NSGAII automatically adapts its population size 
according to the “archived” best solutions ever found 
(Figure 1). Using an injection scheme, the adapted 
population consists of 25% of the ε-non-dominated 
archive solutions and 75% of new randomly generated 
solutions. The search for the Pareto front can be 
automatically terminated by ε-NSGAII if the number and 
quality of the solutions have not increased above ∆% 
within two successive runs (Kollat and Reed, 2005).  
When using the ε-NSGAII algorithm, the user needs to 
specify an initial population size for the algorithm to start 
with. Other required parameters include the maximum 
number of function evaluations (nfe) and the maximum 
generations per run. 
The ε-NSGAII algorithm has been successfully applied to 
long-term groundwater monitoring problems to find the 
Pareto front between sampling cost and sampling errors 
(Kollat and Reed, 2005). Various tests also showed that 
the ε-NSGAII algorithm outperforms the NSGAII and 
other evolutionary algorithms (EAs) in aspects of 
distribution and diversity of solutions found, number of 
function evaluations, and robustness (Kollat and Reed, 
2005).  
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Schematic diagram of the ε-NSGAII algorithm 

(from Kollat and Reed, 2005) 
 

2.5 THE EPA-SWMM MODEL 
Developed by USEPA in 2005, the Stormwater 
Management Model (SWMM, version 5.0) is a distributed 
on-site model primarily developed for urban areas. The 
model is capable of making both water quantity and 
quality predictions. Typical urban settings such as 
manholes, underground pipes, storage units, dividers, 
orifices, weirs, and open channels can all be represented 
within SWMM. The model has been widely applied to 
design planning and long-term performance evaluations in 
urban stormwater control (Huber and Dickinson, 1988; 
Urbonas and Stahre, 1993; Tsihrintzis and Hamid, 1998; 
Huber et al., 2005).  

3 OPTIMIZATION MODEL 

3.1 THE GENERIC PROBLEM FORMULATION 
Optimization of urban stormwater control is always the 
process of identifying the tradeoff curve between 
conflicting goals of maximizing stormwater control while 
minimizing the total cost. Given a watershed with m 
possible locations of applying IMPs, and n is the number 
of IMP types to select from for each potential location, 
the optimization of various LID scenarios can be stated 
as:  
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where 

  j
iC =cost of IMP type j at location i,  
j

is =the size of IMP type j at location i,  
j

iy =binary variable that indicates whether IMP type j 
will be selected or not at location i,  
tps=simulated time to peak,  
tp=target time to peak,  
qps=simulated peak flow rate,  
qp=target peak flow rate,  
Vs=simulated total runoff volume,  
V=target total runoff volume,  

Pj
iE , =efficiency of IMP type j at location i in removing 

pollutant P,  
P
iM =loading of pollutant P to location i,  

PT =target loading of pollutant P,  
iS =feasible range of IMP sizes at location i, m=total 

number of possible locations to apply IMP techniques, 
and  
n=total number of available IMP techniques.  

3.2 OPTIMIZTION ALGORITHM 
The ε-NSGAII algorithm is well suited for solving the 
LID scenario optimization problem. Since both ε-NSGAII 
and SWMM are available in C code, it is possible to 
generate an initial population of various LID scenarios in 
ε-NSGAII and to pass onto SWMM. The SWMM 
simulated results can then be sent back to ε-NSGAII for 
evaluation against objectives of cost and water 
quantity/quality. Mutation and crossover operations can 
then be carried out afterwards and the process will be 
iterated until the true Pareto-front is approximated. A 
pseudo-code for the whole process is shown in Figure 2, 
and the detailed steps for carrying out the optimization are 
introduced in the next section. 
 
 
 
 
 



 

 
Start                                     
Read SWMM input                                
While run number<maximum nfe      
  Initialize population of LID designs     
     Generate random population-size M    
  Update SWMM input with population    
  Evaluate objective values based on SWMM results 
  Assign rank based on Pareto dominance    
   For i=1 to number of generations per run   
        Combine parent and child population   
   Fast non-dominated sorting      
        Evaluation of new population in SWMM  
   Crowded tournament selection     
   Perform ε-non-dominant sorting and update   
      archive           
   Mutation and crossover       
    End loop            
    Run injection into population size with three times 
        of archive size               
End loop                
End             

 
Figure 2: Pseudo-code for LID Scenario Optimization 

Using the ε-NSGAII Algorithm 

3.3 OPTIMIZATION FRAMEWORK 

3.3.1 Initialization of ε-NSGAII 
As an initialization of the ε-NSGAII algorithm, a 
population of LID scenarios is randomly generated. Each 
individual of the population is made up of a binary part 
and a real variable part. The binary part depicts which 
type of IMP to use at each potential site, and the real 
variable part represents the size of that IMP.  
The length of an individual is jointly decided by the 
number of potential IMP locations, m, within a watershed 
and by the available IMP types, n. The length, L, can be 
expressed as: 
L= m*nb + m                                                                 (8) 
where nb is the number of binary digits needed to 
represent the real numbers 0~n, with 0 represents no IMP 
is implemented at a certain location.  

3.3.2 Evaluation of LID Scenario Population 
At each generation of ε-NSGAII, a child generation (N) of 
LID scenarios is mixed with the parents (N) from 
previous generation. Each individual in the mixed 
population is sent to SWMM and evaluated. Objective 
values including total cost of a scenario, runoff quantity, 
and runoff quality are calculated. The LID scenarios (2N) 
are then ranked using ε-dominance according to their 
objective values. A crowded tournament selection is 
performed on each front and the best N scenarios are 
selected as the elitist new parent population, which is sent 

to an offline archive of best LID scenarios ever found. 
Crossover and mutation operations are also performed on 
the parent population to generate a new child population 
(N) of LID scenarios.  

3.3.3 Population injection 
At the end of each run, the ε-NSGAII automatically 
changes the population size for the next run through a 
25% injection scheme. That is, given an archive size of S 
best LID scenarios at the end of the previous run, the ε-
NSGAII will randomly generate 3S new LID scenarios 
and mix it with the archived S scenarios for the next run. 
The population size for the next run of ε-NSGAII will 
then be 4S. The whole process will be iterated until the 
maximum number of function evaluations (nfe) is 
reached.  

4 CASE STUDY 

4.1 WATERSHED DESCRIPTION 
The Fox Hollow Watershed (Figure 3) located at Centre 
County, Pennsylvania, is used to apply the optimization 
analysis in this study. The Fox Hollow Watershed is 186 
hectares in area and consists of an intensively urbanized 
Penn State University campus portion and a less 
developed meadow/pasture land portion. Runoff from the 
Fox Hollow Watershed contributes to a major 
downstream groundwater recharge field, which serves as 
water resources to the University through several potable 
wells. As the University campus is continuously 
urbanized and the meadow/pasture land area is to be 
developed in the future, there is a grave concern about the 
future stormwater runoff quantity and quality.  
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 3: The Fox Hollow Watershed at Centre County, 
PA, and the Potential Locations for IMP Applications 

(adapted from Fennessey et al., 2005) 

Forest land Flower garden

Playground Softball field



 

4.2 LID SCENARIO DESIGN 
In this study four sub-catchments within the Fox Hollow 
Watershed are assumed to be developed, and they are the 
forest land area, the flower garden area, the playground 
area, and the softball field area (Figure 3). LID scenarios 
will be applied to the developed sub-catchments and an 
optimization analysis will be carried out on these LID 
scenarios. Three types of IMPs, including green roof, 
porous pavement, and bio-retention area will be 
available to choose for building the LID scenarios.  
This study mainly focuses on optimizing the water 
quantity control of various LID scenarios. Two major 
concerns in stormwater control, which are peak runoff 
rate and the total volume, are optimized along with the 
total cost of various LID designs.  

4.3 OPTIMIZATION MODEL FORMULATION 
Given the four possible IMP locations and three potential 
IMP types at each location, the length of an individual can 
be calculated using Equation 8 as:  
L= m*nb + m =4*2+4=12.  
Here nb =2, which is the number of binary digits needed 
to represent 0~3.  
As an effort to avoid the mixed binary and real values in 
an individual and thus to simplify the mutation and 
crossover processes, a pseudo-binary representation of 
IMP types is created (Table 2).  
 

Table 2: Pseudo-binary Representation of IMP types 
REAL 

NUMBER 
BINARY 
VALUES 

LID TYPE 

   
0~0.5 0~0.5 0   0  (0)                     No LID
0~0.5 0.5~1 1   0   (1)                Green roof
0.5~1 0~0.5 0   1   (2)     Porous pavement 
0.5~1 0.5~1 1   1   (3)    Bio-retention area 

 
Two real values, instead of binary values, are used to 
represent the four potential IMP types at a certain location 
within the watershed. In this way each individual is 
composed of 12 real values, with the first 8 values depicts 
the IMP chosen at the four locations and the following 
four values specifies the respective IMP sizes. 
Meanwhile, the four locations are arranged in the order of 
the forest land area, the flower garden area, the 
playground area, and the softball field area in an 
individual. 
A further endeavor to simplify the IMP size 
representation is to normalize the IMP sizes to the sub-
catchment areas. Thus a ratio value between 0 and 1 can 
be used to specify the IMP size used in a potential 
location. A typical individual that represents a LID 

scenario in the Fox Hollow Watershed is shown in Figure 
4. 
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Figure 4: Sample Individual with Information of IMP 

Types and Sizes in an LID Scenario 
 
As is shown in Figure 3, the forest land area, which is the 
first one in the four locations, chooses the IMP type 0. 
This means no IMP will be implemented at the forest 
land, and the 0.2 ratio thus has no real meaning. Whereas 
the softball field area, which is the last one in the four 
potential locations, chooses IMP type 1 with an area ratio 
of 0.9. This means that the green roof IMP will be 
implemented on 90% of the softball field area. IMP types 
for the flower garden area and the playground area (which 
are arranged as the second and third locations) are not 
shown in Figure 3 but follow the similar principle. 

4.4 OPTIMIZATION RESULTS AND 
DISCUSSION 

The ε-NSGAII algorithm is linked with the SWMM 
model in Visual C++ following the pseudo-code shown in 
Figure 2. After the optimization model is set up, various 
parameter configurations for the optimization process are 
used to fully explore the search space. A list of parameter 
configurations for these analyses can be found in Table 3. 
All the analyses in Table 3 use an initial population size 
of 12, and a population injection value of 0.25 is used.  

 
Table 3: Non-dominated LID Scenarios for the Fox 

Hollow Watershed as Identified in Initial Runs 
Index of 
analysis

Max 
gen. 

per run

# of 
random 

seeds 

Max # 
of nfe 

# of archived
best solutions

  
1 100 1 5,000 12 
2 40 1 3,000 7 
3 120 1 4,000 6 
4 90 2 6,000 14 
5 60 1 20,000 9 

 
In Table 3, the maximum generation per run represents 
the number of generations after which the ε-NSGAII 
algorithm self-terminates the current run and starts a new 

IMP: 0 No IMP IMP: 1  Green roof

Normalized IMP sizes



 

run if no improvement in the solution performance is 
found. While the number of random seeds and the 
maximum number of function evaluations (nfe) are self-
explanatory, the number of archived best solutions is the 
non-dominated best solutions found at the end of 
maximum function evaluations.  
As is shown in Table 3, a total number of 38,000 LID 
scenarios are evaluated and 48 non-dominated solutions 
are identified. A non-dominated sorting is then carried out 
to the 48 solutions, and a final 47 solutions are identified 
as the non-dominated solutions for the LID optimization 
problem. An excerpt of the 47 solutions can be found in 
Table 4.  
 

Table 4: Non-dominated LID Scenarios for the Fox 
Hollow Watershed after 38,000 Evaluations 

Total cost 
(Millions of $) 

Total volume 
(1000 ft3) 

Peak flow rate  
(cfs) 

  
6.955 42.195 6.5608 
6.720 42.257 6.562 
6.440 39.213 7.676 
4.302 42.413 6.603 
1.595 71.443 9.369 
3.592 42.968 6.745 
4.720 41.705 8.024 

 
The conflicting relationship between total cost and the 
performances in total runoff volume and peak rate is well 
revealed by the solutions shown in Table 4. In general, a 
higher total cost, which means bigger IMP sizes at various 
locations, results in lower values of total volume and peak 
rate. The contrary situation is observed when a lower cost 
is reached at the expense of suffering worse runoff 
situations (higher total volume and peak rate). This is in 
accord to common situations that decision-makers are 
often faced with.  
Table 4 also shows that the total runoff volume and peak 
rate do not necessarily increase or decrease jointly all the 
time for all LID scenarios, and this can be very useful in 
certain stormwater control situations. For example, 
scenario A may have a higher total volume than scenario 
B and the peak rate from scenario A is lower than that 
from scenario B, and meanwhile scenario A incurs a lower 
total cost as compared to scenario B. In this instance, 
scenario A will be a better choice when flooding is a 
major concern, since high peak rate is directly related to 
flooding occurrences.  
The 47 non-dominated solutions are illustrated in Figure 
5. As can be seen in the figure, more solutions are needed 
for building a continuous Pareto front. Future efforts will 
focus on applying a bigger initial population size, which 
is to explore the decision space more completely and thus 

identify more non-dominated solutions. With that, a more 
continuous Pareto front is expected to be identified. The 
continuous surface can help decision-makers to fully 
explore design possibilities with respect to specific 
control objectives.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The Non-dominated Pareto-front Identified 
between LID Cost and Water Quantity Performances after 

38,000 Evaluations 
 

5 SUMMARY AND CONCLUSION 
An optimization model is built to identify the Pareto front 
between the cost of LID scenarios and the corresponding 
peak runoff rates and the total runoff volume, which are 
confilicting objectives in urban stormwater control. The ε-
NSGAII algorithm is linked to the USEPA SWMM model 
for carrying out the multi-objective optimization. Three 
possible types of IMPs are used to make up LID scenarios 
within an urbanizing watershed, and the optimization 
model evaluates the LID scenarios by changing the IMP 
types and sizes at four potential locations.  
A total number of 38,000 LID scenarios are evaluated and 
47 non-dominated solutions are found. On the final Pareto 
front between total cost and performances of water 
quantity, appropriate LID scenarios can be easily selected 
based on specific budget and water quantity control 
objectives. In general, the optimization model can be a 
very useful tool in urban stormwater related decision-
makings, especially for optimizing LID scenarios. 
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