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Abstract 
 
 

A smart, bi-directional model has been 
developed to determine three-dimensional 
temperature profiles, weld geometry and the 
transformed phase fraction during gas tungsten 
arc (GTA) butt welding. The model is capable of 
estimating input parameters such as the net input 
power, welding speed, effective thermal 
conductivity, and, activation energy, pre-
exponential factor and exponent in Johnson-
Mehl-Avrami (JMA) equation for phase transfer 
calculations, using limited number of 
experimental data and parallelized Parent Centric 
Recombination (PCX) based Generalized 
Generation Gap (G3) genetic algorithm as a 
multivariable optimization technique. Thus, the 
model can satisfy both the industrial and research 
requirements of specifying a window of input 
parameters to obtain specific weld geometry and 
calculating uncertain input parameters required 
during mathematical modeling. The calculated 
shape and size of the fusion zone and the 
austenite phase fraction were in fair agreement 
with the experimental results. The effect of 
various parameters on convergence and 
reliability of the proposed multiple deme based 
G3 model was also studied. The model gave 
increased reliability and faster convergence. 

1 INTRODUCTION 
Reliable and cost-effective welds are often fabricated in 
industry through repeated experiments and experience. 
However, this approach ignores the potential 
technological advantage attainable through the application 
of principles of modern welding science and technology. 
Efforts to correlate large number of welding variables 
with weld characteristics through neural network or 
statistical regression are expensive and time consuming 

because of the requirement of a large number of welding 
experiments (De and DebRoy, 2004). In the last decade, 
phenomenological models of fusion welding have 
provided important understanding of the welding 
processes and welding materials (David and DebRoy, 
1992). However, these models can only predict weld 
characteristics for a given set of input welding variables, 
whereas the welding engineers need a window of 
operating variables to produce a weld with target weld 
characteristics such as weld geometry. The mismatch 
between the industrial needs and the structure of the 
currently available phenomenological models has 
restricted the use of these powerful computational models 
in the industry. The approach outlined in this paper 
empowers practicing engineers to determine a window of 
input variables that would provide the target weld 
geometry and microstructure. This work will add to the 
growing quantitative knowledge base in welding industry 
aided by the promise to solve difficult problems using 
concepts of evolution and increasing powers of modern 
software and hardware. 

Current computer models for the calculation of heat 
transfer and phase transformations in gas tungsten arc 
(GTA) butt welding require many input parameters to 
define the welding system, such as the system geometry, 
welding variables, Johnson-Mehl-Avrami (JMA) kinetic 
parameters (Elmer et al., 2003) and thermo-physical data. 
Several of these parameters such as the thermo-physical 
properties, system geometry, welding current (I), voltage 
(V) and welding speed can be easily specified with a 
reasonable degree of certainty. However, for GTA 
welding process, values of net power input to the 
workpiece (I × V × arc efficiency), effective thermal 
conductivity, and activation energy of phase 
transformation, pre-exponential factor and exponent in 
JMA equation cannot be assigned easily. Although the 
values of arc efficiency, which determines the net power 
input to the workpiece, have been experimentally 
measured for many welding conditions, the reported 
values vary significantly even for apparently similar 
welding conditions, reflecting the complexity of the 
welding processes (Kumar et al., 2004). The value of 



effective thermal conductivity is the property of the 
specific welding system and not an inherent thermo-
physical property of the liquid metal, and hence needs to 
be estimated (De and DebRoy, 2004). (Nath et al., 1994) 
have shown that due to the effect of nucleation and 
growth on phase transformation kinetics, the apparent 
activation energy for diffusion of carbon in austenite will 
be different from the actual value. As the JMA equation is 
modified to capture the non-isothermal behavior of the 
system, the JMA pre-exponential factor and exponent 
need to be calculated accurately. (Elmer et al., 2003) 
calculated the values of pre-exponential and exponent 
parameters of JMA equation by taking the value of 
activation energy suggested by (Nath et al., 1994) and 
using curve fitting technique. However, as the values of 
these kinetic parameters are very sensitive to the value of 
activation energy, therefore, activation energy also needs 
to be considered as an unknown variable in the 
calculations. Currently there is no unified basis to 
accurately prescribe the values of these variables based on 
scientific principles. Since the results obtained from the 
heat transfer and phase transformation models depend 
significantly on these input parameters, it is necessary to 
determine them accurately. 

A recourse is to develop an inverse modeling scheme 
utilizing the power of phenomenological heat transfer and 
JMA based phase transformation models to calculate the 
optimum values of these unknown variables using a 
limited amount of experimental data. (De and DebRoy, 
2003; Kumar et al., 2004; and Kumar and DebRoy, 2004) 
calculated the unknown values of a few input parameters 
like arc efficiency and effective thermal conductivity 
using the weld pool dimensions as experimental data. In 
their models, they used numerical derivative based 
optimization techniques to find the values of input 
parameters. The output from these models is a single set 
of values of the input parameters. However, in GTA 
welding process, the evolution of weld pool involves 
complex interaction of physical processes such as 
application of welding arc, heat transfer and phase 
transformation. To simulate these simultaneous processes 
for obtaining the target weld geometry and 
microstructure, several combinations of welding variables 
are possible. The ability of genetic algorithm (GA) to find 
multiple optimal solutions and provide a window of 
parameters makes it unique in solving inverse problems 
having multiple solutions (Back et al., 2000).  

Two interactive computational modules will be embedded 
into the proposed GTA butt weld smart model for welding 
engineers – one for the analysis of heat transfer using 
Rosenthal solution in fusion butt welding (Sista et al., 
2000) and calculation of phase transformation using JMA 
equation (Elmer et al., 2003), and the other for the 
optimization of the unknown parameters using Parent 
Centric Recombination (PCX) based Generalized 
Generation Gap (G3) genetic algorithm model (Deb et al., 
2002; Deb, 2003). The approach adopted here will be 

inherently different from the neural network technique 
where the input and output variables are related through a 
set of hidden nodes and their relationships do not have to 
comply with any physical law. In contrast, when the 
optimization algorithm embodies a phenomenological 
model of heat transfer and modified JMA equation to take 
into account non-uniform weld heating and 
transformation in α+γ two-phase field (α or ferrite is the 
low temperature phase, and γ or austenite is the high 
temperature phase of steel), the window of welding 
parameters and the output weld pool geometry and 
microstructure are related by phenomenological 
governing laws. Thus, the present smart model, equipped 
with the phenomenological models based on physical 
laws will be able to provide a quantitative framework for 
practicing engineers to achieve the target weld geometry 
and microstructure. 
The goal of the present work is to estimate the net input 
power, effective thermal conductivity, welding speed, 
activation energy of transformation, and pre-exponential 
factor and exponent of JMA equation through an inverse 
modeling approach, which includes a combination of a 
genetic algorithm based optimization model, a 
temperature field calculation model, a phase fraction 
calculation model and a set of experimentally measured 
data. To reduce the computation time, a parallel version 
of PCX based G3 model based on island model approach 
(Back et al., 2000) is developed and the effect of various 
migration parameters on convergence is analyzed.  

2 EXPERIMENTAL DATA 
Tables 1 and 2 present the experimentally measured 
values of austenite phase fractions and temperatures used 
in the present study (Elmer et al., 2003).  
 

Table 1: Experimental data for austenite (γ) phase 
fractions along x = -3.5 mm line on the top surface (z = 0) 

LOCATION (mm) γ-PHASE FRACTION  

 
(-3.5, 3.25, 0) 1.000 

(-3.5, 3.50, 0) 0.989 

(-3.5, 3.75, 0) 0.939 

(-3.5, 4.00, 0) 0.778 

(-3.5, 4.25, 0) 0.480 

(-3.5, 4.50, 0) 0.287 

(-3.5, 4.75, 0) 0.103 

(-3.5, 5.00, 0) 0.040 

(-3.5, 5.25, 0) 0.014 

(-3.5, 5.50, 0) 0.000 

 



Table 2: Experimental data for temperature at different 
locations on the top surface (z = 0) 

LOCATION (mm) TEMPERATURE (K) 

  
(5.0, 0, 0) 1727.978 

(8.0, 0, 0) 1191.736 

(10.5, 0, 0) 978.942 

(-3.5, 0, 0) 1770.002 

(-5.0, 0, 0) 1193.387 

(0, 4.0, 0) 1780.218 

3 MATHEMATICAL MODEL  
The proposed work is based on coupling an optimization 
model with phenomenological models of heat transfer 
and phase fraction calculations and a limited volume of 
experimental data to achieve a useful smart model for 
welding engineers. The optimization algorithm 
minimizes the objective function (i.e. squared error 
between the predicted and the experimentally observed 
temperatures and austenite phase fractions) during the 
GTA welding process.  

3.1 DIRECT NUMERICAL MODEL 

3.1.1 Calculation of temperature field  
The temperature field is calculated using Rosenthal’s 
analytical equation (Sista et al., 2000; Lambrakos and 
Milewski, 2002; Karkhin et al., 2002): 
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where To is the ambient temperature (K), P is the net 
power input (W), k is the effective thermal conductivity 
(W/m-K),  r is the distance of a given location from the 
heat source (m), v is the welding velocity (m/s), x is the x-
coordinate of the given location (m), ρ is the density of 
the material (kg/m3), and C is the specific heat of the 
material (J/kg-K). From the calculated temperature field, 
the thermal cycles, i.e. the temperature versus time data at 
a given location, are calculated by dividing the x-
coordinate by the welding velocity.  

3.1.2 Calculation of austenite (γ) phase fraction  
The austenite phase fraction, fr, at selected locations is 
calculated using the non-isothermal JMA equation (Elmer 
et al., 2003):  
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where Ti is the temperature for the ith interval (K), Fi is the 
equilibrium fraction of the new phase at temperature Ti, k0 
is a pre-exponential constant (s-1), Q is the activation 
energy for phase transformation (kJ/mol), R is the gas 
constant, ∆t is the time interval (s), m is the number of 
time steps in the thermal cycle, n is the JMA exponent, 
and τi is a time constant given by: 
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where fr(ti-1) is the fraction calculated at the end of (i-1)th 
time step. This equation is for the ith time interval, ti, and 
has to be integrated over the thermal cycle at a location, 
obtained from the heat transfer model, to get the austenite 
phase fraction, fr, at that location. 

3.2 GENETIC ALGORITHM AS AN 
OPTIMIZATION MODEL 

The objective function is defined as: 
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      (4)  

where Te(xi, yj, 0) and Tc(xi, yj, 0) are the experimental and 
calculated absolute temperatures at location (xi, yj, 0), 
respectively, and fre(xk, yl, 0) and frc(xk, yl, 0) represent the 
experimental and calculated values of austenite phase 
fractions at location (xk, yl, 0), respectively. In Eq. (4), 
objective function, O, is a function of some known 
parameters (e.g. ρ, C, r, To etc.) and six unknown 
parameters, i.e. net power (P), welding velocity (v), 
effective thermal conductivity (k), pre-exponential 
constant (k0), activation energy for phase transformation 
(Q) and JMA equation exponent (n). 

 0( , , , , , )O f P k k Q nν=    (5) 

Therefore, we need to find six unknown parameters to 
minimize the value of objective function, which depends 
non-linearly on these variables as shown by Eqs. (1), (2), 
(3) and (4).  

The Generalized Generation Gap (G3) model using Parent 
Centric Recombination (PCX) operator (Deb et al., 2002; 
Deb, 2003) is used in the present study for optimizing the 
values of the unknown variables. This model was chosen 
because it has been shown to have faster convergence rate 
on standard test functions as compared to other 
evolutionary algorithms (Deb et al., 2002; Deb, 2003). 
This model is a modification of Minimal Generation Gap 
(MGG) model (Deb et al., 2002). In this model, the 
roulette-wheel selection of MGG model is replaced by 
block selection of best two solutions. This is a steady state 



model, which preserves elite solution from the previous 
iteration as shown in Fig. 1.  

 
Figure 1: Generalized Generation Gap (G3) model using 
PCX operator 

3.2.1 Algorithm of PCX based G3 model  
The algorithm of the G3 model is as follows: 

1. From the population, P(t), select the best parent and 
µ-1 other parents randomly. 

2. Generate λ offspring from the chosen µ parents using 
a recombination scheme. 

3. Choose two parents at random from the population. 
4. From a combined subpopulation with two chosen 

parents and λ created offspring, choose the best two 
solutions and replace the chosen two parents with 
these solutions. 

The G3 model uses a Parent Centric Recombination 
(PCX) operator in step 2, which is a modification of 
Unimodal Normal Distributed Crossover (UNDX) 
operator. The main difference from UNDX operator is 
that the offspring solutions are centered around each 
parent in PCX operator as shown in Fig. 2. 

In PCX operator, first, the mean vector gr  of the chosen µ 

parents is computed. For each offspring, one parent ( )pxr  

is chosen with equal probability. The direction vector 
( ) ( )p pd x g= −

r r r  is calculated as shown in Fig. 2(c). 
Thereafter, from each of the other (µ-1) parents, 
perpendicular distances Di to the line ( )pd

r
 are computed 

and their average D  is found (Fig. 2(c)). The offspring is 
created as follows (Deb et al., 2002): 
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where ( )ier  are the (µ-1) orthonormal bases that span the 
subspace perpendicular to ( )pd

r
. Thus the complexity of 

the PCX operator is O(µ), instead of O(µ2) required for 
the UNDX operator. The parameter wζ and wη are zero-

mean normally distributed variables with variance 2
ζσ  

and 2
ησ , respectively. In this approach, individual 

recombination operator biases offspring to be created near 
the parents by assigning each parent an equal probability 
of creating offspring in its neighborhood. The selection 
operation reduces the variance in the population whereas 
PCX operator increases it. This ensures that population 
mean of the entire offspring population is identical to that 
of the parent population (Deb et al., 2002).  

  
      (a)               (b)           (c) 

Figure 2: (a) UNDX operator, (b) PCX operator, (c) PCX 
operator: creation of the offspring 

3.2.2 Algorithm for parallelizing G3 model  
A multiple-population or multiple deme (or island) based 
GA model (Back et al., 2000; E. Cantú-Paz, 2000) was 
used during the analysis. To capture the effect of deme 
size, migration gap and number of migrated individuals, 
an adaptive scheme was used. In this scheme, deme size 
was incremented after every migration to avoid any pre-
convergence. The destinations of the migrants were based 
on (+1+2) topology (E. Cantú-Paz, 2000). This topology 
signifies that at first epoch, machine rank 0 will receive 
solutions from machines ranked 1 and 2, and will send its 
data to machines with rank p-1 and p-2, where p is the 
total number of processors. The choice of topology also 
affects the quality of the search. To reduce this effect, an 
extended neighborhood theory and migration before 
convergence were used during the calculation. The 
extended neighborhood can be understood by imagining a 
tree rooted on a particular deme. The descendants of a 
node in the tree are the immediate neighbors of the deme 
it represents, and the τ-level in the tree contains the demes 
that are reachable from the root deme after τ epochs (E. 
Cantú-Paz, 2000). These demes form the extended 
neighborhood of the root as shown in Fig. 3. Selecting the 
emigrants and replacements based on their fitness may 
increase the selection pressure, which will influence the 
speed of convergence of the algorithm. Excessively slow 
or fast convergence rates may cause the search to fail 
(Goldberg et al., 1993; Thierens and Goldberg, 1993). If 
the selection is too weak, the population may drift 
aimlessly for a long time, and the quality of the solutions 
found is not likely to be good. On the other hand, rapid 
convergence is desirable, but an excessively fast 
convergence may cause the GA to converge prematurely 
to a suboptimal solution. The selection intensity is 
maximum when the best individuals migrate and replace 



the worst. To avoid pre-convergence, the selection 
intensity is reduced by generating extra random 
individuals at each epoch. 

 

 

 

 

 

 

 

 

Figure 3: Tree representation of the extended 
neighborhoods of demes in +1+2 topology of degree 2. 
The numbers inside the circle represent the processor id. 
(E. Cantú-Paz, 2000). 
 

The algorithm can be summarized as follows and the 
flowchart is given in Fig. 4: 

1. Generate different random numbers to create different 
population on each machine.  

2. Use different values of σς and ση on different machines 
to keep diversified children around the parents.  

3. Assign generation; epoch; generation gap (Gen_gap); 
migrated members (uncles); increase in deme size 
(alliens); group members (gp_member);  

4. Run the PCX based G3 model and keep track of best 
fitness value on each processor. 

5. If number of generations since the last migration is 
greater than or equal to the generation gap (Gen_gap) 
then find the average of the best fitness values 
(avg_best) of the previous Gen_gap number of 
generations, otherwise skip to step 7. 

6. If avg_best is equal to the best fitness for the current 
generation then:  

     (a) Arrange the population in the order of their 
decreasing fitness values. 

     (b) Select the partners using (+1+2) topology.  

     (d) Exchange best solutions, equal in number to the 
uncles, with the partners. 

     (e) Remove worst uncles*2 solutions from the 
population. 

     (e) Generate alliens number of new population 
members using different random seeds to avoid 
creating the same individuals.  

     (f)  Assign epoch = epoch + 1; 

7. Assign generation = generation + 1; and continue till 
convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Flow chart of the parallelized G3 model  

4 RESULTS AND DISCUSSION 
In order to generate the initial random population to start 
the calculations, the values of the six unknown parameters 
were initialized based on their values reported in the 
literature (Elmer et al., 2003). The used initialization 
ranges for these variables are as follows: P (1.0 to 2.5 
kW); v (0.3 to 1.0 mm/s); k (20.0 to 50.0 W/m-K); k0 
(1.0×105 to 2.5×105s-1); Q (100.0 to 150.0 kJ/mol); and n 
(1.0 to 2.5). All the runs were conducted using 5 different 
random seeds to achieve a convergence limit where 20% 
individuals of the total population reached an objective 
function value (fitness) of less than 3.0×10-2.  

4.1 PERFORMANCE OF THE SERIAL G3 
ALGORITHM  

4.1.1 Effect of computational complexity of 
objective function on G3 model  

In order to investigate the efficacy of the G3 model with 
PCX operator, two different objective functions were 
solved. The first objective function contained only the 
temperature term as shown in Eq. 7. 
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The second objective function was the actual objective 
function described in Eq. 4, which contains both 
temperature and phase fraction terms. Runs were taken 
for 5 different random seeds with population size (N) = 
100 and number of kids (λ) = 2. In order to search reliably 
in a large dimensional search space, smaller step sizes in 
variables were chosen by taking low values of ση and σζ. 
Figure 5 shows that higher number of function 
evaluations is required for combined objective (Eq. 4). 
This is because first objective function (Eq. 7) is 
dependent only on three variables while the second 
objective function is a function of six variables, and 
increase in problem size increases the dimensionality of 
the search space. Figure 5 also shows that the objective 
function containing temperature and phase fraction terms 
has a number of local minima regions, where the search 
temporarily gets entangled. However, convergence is 
finally attained in each case indicating that the PCX 
operator based G3 algorithm is good enough to bring the 
solutions out of these local minima by exploring the 
regions outside these areas.  
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Figure 5: Variation of required number of function 
evaluations (nfe) for 10 different random seeds. 

4.1.2 Effect of σζ and ση on convergence 
Different runs were taken for different values of σζ and ση. 
Figure 6 shows that number of function evaluations 
increases with increase in ση and σζ. Values of ση and σζ in 
the range of 0.1 to 0.15 require fewer function evaluations 
compared to higher values of these parameters. This is 
because smaller values of ση and σζ result in smaller step 
size in the values of variables, which facilitates good 
exploration near the optimal solution. 

4.1.3 Effect of number of kids and parents 
participating in PCX on convergence 

Figure 7 shows the effect of number of kids and 
population size on the number of function evaluations. As 
20% individuals of whole population are required to reach 
the minimum limiting value of objective function (i.e. 
3.0×10-2) to terminate the calculation, more number of 
kids is required for exploration. Large number of kids 

increases the number of function evaluations. So, there 
exists a tradeoff between number of kids and function 
evaluations to attain the convergence. Figure 7 shows that 
number of kids in the range of 2 to 5 gives better solutions 
compared with large number of kids. This number is 
slightly higher than that suggested by (Deb et al., 2002) 
for Rosenbrock function analysis. This discrepancy may 
be attributed to the nature of objective function, which 
gets trapped in local minima as shown in Fig. 5. It may 
also be due to the strict implementation of convergence 
criterion on the solution. Higher number of kids helps in 
exploring large search space around the parents and thus, 
in coming out of the local traps. Increase in population 
does not help much in reducing the number of function 
evaluations because of the selection of only two best 
solutions from the kids and participating parents. 
Therefore, increase in population size only overburdens 
the number of function evaluations as can be seen from 
Fig. 7. 

 

 
 

 

 

 

 

Figure 6: Variation in required number of function 
evaluations (nfe) for different values of ση and σζ with 
population size (N) = 100 and number of kids (λ) = 2. 

 

 

 

 

 

 

 

 

 

Figure 7: Variation in required number of function 
evaluations (nfe) for different values of population size 
(N) and number of kids (λ).  

4.2 PERFORMANCE OF THE PARALLEL G3 
ALGORITHM  

In the parallel algorithm, different values of ση and σζ in 
the range of 0.1 to 0.15 were used during the calculations 
because these values require lesser function evaluations as 
shown in Fig. 6.  All the preliminary parallel computation 

0.08
0.11

0.14
0.17

0.2
0.23ση

0.08

0.11
0.14

0.17
0.2

0.23

σζ

3.2
3.5
3.8
4.1
4.4
4.7

Log(nfe)
3.2
3.5
3.8
4.1
4.4
4.7

Log(nfe)

65
85

105
125

145
165

185

N

2

4

6
8

λ

3.2
3.5
3.8
4.1
4.4
4.7
5
5.3

Log(nfe)

3.2
3.5
3.8
4.1
4.4
4.7

5
5.3

Log(nfe)



analysis is done on a cluster of 4 PCs of 2.86 GHz 
frequency and 512 MB RAM. The parallel computation 
time (TP) is given by: 

TP = Tf + Tc = (nfe* tf) + Tc  (8) 
where Tf is the computation cost, Tc is the time spent in 
communication between processors and tf is the function 
evaluation time. The communication time is negligible 
(i.e. few micro seconds) compared to function evaluation 
time (i.e. tf = 3 seconds) because only the values of the 
variables and the corresponding objective function are 
transferred among processors during the communication. 
So, we can rewrite Eq. (8) as follows: 

TP ≈ Tf = (nfe* tf)    (9) 
Therefore, in the present study the parallel computation 
time is presented in the form of number of function 
evaluations required for convergence. As increase in the 
population size does not affect the number of function 
evaluations required for convergence in the steady state, 
PCX-based serial G3 model (see Fig. 7), a deme size of 
100 was used on the processors. A deme size of 100 can 
also help in achieving higher reliability as compared to 
smaller deme size, which often causes evolutionary 
algorithms to have low reliability (Reed and Yamaguchi, 
2004). 

4.2.1 Effect of the number of migrated members 
and migration gap (frequency) 

In the migration policy, the best migrants replace the 
worst individuals, which is a case of high selection 
pressure. At each epoch, extra random individuals are also 
generated to reduce the selection pressure and increase the 
diversity. If the migration frequency is too high (i.e. 
generation gap between migrations is low), then the 
selection pressure increases due to faster diffusion of best 
solutions among processors. This may lead to pre-
convergence or localized exploration of the solution 
space. If the migration frequency is too low (i.e. 
generation gap between migrations is high), then diffusion 
of best solutions will require more generations to reach 
the other processors, resulting in relatively more number 
of function evaluations, as is evident from Fig. 8. This 
may be due to wastage of time in exploring the local 
region. Increase in migrated members also increases the 
selection pressure. At low value of migration gap and 
large number of migrated members, selection pressure is 
highest. Therefore, the algorithm requires more function 
evaluations to avoid pre-convergence, as shown in Fig. 8.  

4.2.2 Effect of number of migrant individuals and 
randomly created extra individuals (alliens or 
increment in deme size) at each epoch 

In the migration policy, if there is no increment in deme 
size, and if large number of migrated best members 
replace the worst solution, then the selection pressure is 
high. This may lead to pre-convergence of solution.  
Increase in deme size at each epoch reduces this selection 

pressure, and hence the algorithm requires less function 
evaluations to reach the convergence limit as shown in 
Fig. 9. Too much increase in deme size puts extra burden 
of objective function evaluation for newly created 
individuals. Therefore, a small optimal value should be 
chosen to increase the diversity and avoid any pre-
convergence. 
 
 
 
 
 
 
 
 
 
Figure 8: Variation in required number of function 
evaluations (nfe) for different values of migration gap (or 
frequency) and migrated members (or migration rate).  
  
 
 
 
 
 
 
 
 
Figure 9: Variation in required number of function 
evaluations (nfe) for different number of migrated 
members (i.e. migration rate) and number of randomly 
created individuals at each epoch (i.e. alliens).  

4.2.3 Speedup and reliability  
The speedup is defined as: 

 
 (10) 

 
where Ts is the time required on single processor while Tp 
is the time required on p-processors to achieve the same 
convergence limit. Equation (10) shows that if the 
communication time is negligible compared to function 
evaluation time, then the speed up is equal to the ratio of 
number of function evaluations (nfe) required on single 
processor to nfe on p-processors for same convergence.  
Figure 10 presents the effect of the number of processors 
on number of function evaluations required, nfe, for 
achieving the desired convergence criteria. Each box-plot 
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summarizes the result for 25 random runs.  Different 
random seeds and different parameter values (e.g. ση and 
σζ) were used on different processors. Figure 11 
summarizes the success/failure (in percentage) of 
achieving the convergence within 50,000 number of 
function evaluations. Only the data for the successful runs 
are plotted in Fig. 10. The outer intervals or the lines of 
the box plots in Fig. 10 represent the number of function 
evaluations (nfe) for 95th percentile confidence interval 
(CI), while the notches (or boxes) represent the 75th 
percentile CI, and the horizontal line inside the notch (or 
box) designates the median. The standard deviation in the 
number of function evaluations on a single processor is 
very large, as can be seen in Fig. 10. However, the 
standard deviation decreases drastically for more than 
four processors. Figure 10 shows that almost linear speed-
up was attained for smaller number of processors. With 
increase in the number of processors above four, the 
standard deviation in the number of function evaluations 
decreased drastically. Figure 11 shows that the reliability 
of the model increases significantly with increase in the 
number of processors. This framework with more than 
four processors produces a success rate of close to 95% 
for solving the proposed problem. The above increase in 
speedup and reliability for higher number of processors 
may be due to the effect of using different parameter 
values on different processors, migration rate, migration 
frequency and the number of extra individuals created at 
each epoch, because these help in exploring the diverse 
region simultaneously and in avoiding the local minima. 
The faster convergence is the key advantage of the PCX 
based G3 model (Deb et al., 2002; Deb, 2003) over other 
existing evolutionary algorithms. By increasing the 
reliability using multiple processors, this framework will 
be very helpful in solving the real-world problems where 
reliability and faster convergence are the two main 
requirements. 

4.3 VALIDATION OF THE OBTAINED VALUES 
OF UNKNOWN PARAMETERS 

An important advantage of genetic algorithm optimization 
technique is that it provides the practicing engineer with a 
window of input variables that would lead to a target weld 
geometry and microstructure. Table 3 clearly illustrates 
this advantage where six different sets of input parameter 
values obtained from the smart model have been listed, all 
of which can give the required weld geometry and 
microstructure. The calculated values are within the 
acceptable limits as reported in the literature; for example, 
(Christian, 2002) suggested that the value of the JMA 
exponent, n, should lie between 1.5 and 2.5 for diffusion 
controlled transformations, and (Elmer et al., 2003) 
determined n to be 1.45; also, (Elmer et al., 2003) used a 
value of Q equal to 117 kJ/mole. 

In situ Spatially Resolved X-Ray Diffraction (SRXRD) 
experiments provide direct observation of welding 
induced phase transformations (Elmer et al., 2003). Figure 
12 shows an experimentally measured phase map in the 

heat-affected zone (HAZ) on the top surface of gas 
tungsten arc (GTA) weld in AISI 1005 C-Mn steel (Elmer 
et al., 2003). This phase map gives quantitative 
information about the changes occurring in the austenite 
(γ) volume fraction during the heating cycle. The shading 
indicates the fraction of austenite, which varies from 0% 
austenite (γ) (blue portions or dark shade starting at y = 9 
mm location) to 100% austenite (red portions or dark 
shade close to the center of the figure). The thick solid 
lines in Fig. 12 represent temperature isotherms calculated 
by the Rosenthal equation (Eq. 1) using the input 
parameters predicted by the current smart model, i.e. the 
first set of values in Table 3. The weld pool boundary is 
marked by the solidus isotherm (1779 K), while the A1 
(993 K) and A3 (1204 K) isotherms identify the 
equilibrium start and finish locations for the ferrite to 
austenite (α→γ) transformation. The calculated isotherms 
are found to very well mark the weld pool boundary and 
the austenite start and finish boundaries shown in the 
measured data. Thus the reliability of the parameters 
obtained from the smart model is ascertained. 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Variation in required number of function 
evaluations (nfe) with number of processors.  
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Percentage of successful (converged) runs for 
different number of processors. 
 

1 2 3 4 5 6 7 8 9 10
Number of processors

0

10000

20000

30000

40000

50000
nf

e

1 2 3 4 5 6 7 8 9 10
Number of processors

0
10
20
30
40
50
60
70
80
90

100

%
 o

f s
uc

ce
ss

fu
l r

un
s 



The internal consistency of the kinetic parameters 
obtained from the smart model, reported in Table 3, was 
checked by comparing the austenite fractions at different 
SRXRD locations, presented in Table 1, with those 
calculated by the non-isothermal JMA equation (Eq. 2) 
using the first set of values in Table 3. The calculated 
austenite fraction curve in Fig. 13 almost overlaps the 
experimental data showing the accuracy of the kinetic 
parameters obtained by the smart model. Fig. 13 also 
shows that the calculated curve is in much better 
agreement than that reported in the literature (Elmer et al., 
2003), which was obtained using conventional data fitting 
approach. 

 

 

 

 

 

 

 

 
 

Figure 12: The top surface of the weld with 
experimentally measured austenite phase fractions. The 
thin, grey, solid lines are the temperature isotherms 
calculated by (Elmer et al., 2003). The superimposed 
thick solid lines represent the temperature isotherms 
calculated in the present study by using the optimized 
values of unknown parameters in the Rosenthal equation. 
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Figure 13: Comparison of the calculated and 
experimentally obtained transformed fractions of γ-
austenite at a given x-location (x = -3.5 mm) in the weld 
heat-affected zone. The results are compared with those 
calculated by (Elmer et al., 2003) for the same location. 
 

It is noteworthy, that the smart model used the 
experimental data for only one x-location in the HAZ (x = 
-3.5 mm, given in Table 1) to calculate the unknown input 
parameters. To analyze if these parameters can be used to 
predict the γ-fractions at other x-locations in the HAZ, the 

calculated results for two other x-locations (x = 0 mm and 
1 mm) were compared with the corresponding 
experimental measurements in Fig. 14. The calculations 
were done using the last set of unknown parameter values 
given in Table 3. Fair agreement is seen in all the cases 
indicating the robustness of the smart model in predicting 
the microstructure in the HAZ, while using only a limited 
set of input experimental data.  
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Figure 14: Comparison of the calculated (lines) and the 
experimentally obtained (symbols) transformed γ-
fractions at different x-locations in the HAZ.  

 

Table 3: Different sets of unknown parameters obtained 
from the smart model. 

P 
(kW) 

v 
(mm/s)

k 
(W/m-K) 

Q 
(kJ/mol) 

n 
 

k0 
(s-1) 

 
1.68 0.59 37.49 116.56 1.43 1.84×105

1.59 0.56 35.29 112.31 1.77 1.47×105

1.75 0.62 38.99 114.59 1.49 1.46×105

1.71 0.60 38.10 113.57 1.66 1.30×105

1.82 0.64 40.70 112.66 1.90 1.49×105

1.72 0.61 38.33 114.83 1.43 1.70×105

5 CONCLUSIONS 
A smart phenomenological model for GTA butt welding 
involving parallel genetic algorithm and 
phenomenological models of temperature field and phase 
fraction calculation was developed. The smart model was 
used to estimate the net input power, effective thermal 
conductivity, welding speed, activation energy of 
transformation, pre-exponential and exponent of Johnson-
Mehl-Avrami (JMA) equation from a limited set of 
experimental data. The following conclusions can be 
drawn from the study. 
(1) The Parent Centric Recombination (PCX) based 
Generalized Generation Gap (G3) model is able to 
explore the search area even in large search dimensions 
without getting trapped in local minima. The convergence 
of the model is not very sensitive to the population size. 

993 K

1204 K
1779 K 



(2) Too high or too low migration frequency degrades the 
performance of the parallel model because of the 
increased selection pressure and low diffusion rate of best 
solutions, respectively. 
(3) A small optimal value of deme size increment gives 
best performance as it allows an increase in diversity 
while avoiding any pre-convergence due to high selection 
pressure used in the algorithm. 
(4) The reliability of the PCX based G3 model increases 
drastically with increase in the number of processors. The 
proposed framework is highly efficient for solving real 
world problems due to its faster convergence and higher 
reliability on multiple processors. 
 (5) Different sets of values of the unknown parameters, 
i.e. net input power, effective thermal conductivity, 
welding speed, activation energy of transformation, pre-
exponential and exponent of Johnson-Mehl-Avrami 
(JMA) equation, were estimated by the model using only 
a limited amount of experimental data. When these 
estimated unknown parameter were used as inputs in the 
phenomenological models to calculate the γ-fractions in 
the HAZ, the results agreed very well with the 
corresponding experimental measurements indicating the 
accuracy of the predictions. The agreement of these 
results was much better than that of the results reported in 
the literature.  
Furthermore, the application and the effect of various 
parameters on convergence of parallel island based PCX-
G3 model described in this paper is a contribution to the 
growing knowledge base in the field of evolutionary 
algorithms.  

Acknowledgments 
The authors would like to express their gratitude to Mr. 
W. Zhang for assisting with the phase transformation 
calculation model. The authors are also thankful to Dr. K. 
Deb and KANGAL lab members for providing free access 
to their PCX operator based G3 model. 

References 
T. Back, D. B. Fogel, and Z. Michalewicz (eds.) (2000). 
Handbook of Evolutionary Computations. IOP Publishing 
Ltd.: Oxford University Press. 

E. Cantú-Paz (2000). Efficient and Parallel Genetic 
Algorithms. Boston:Kluwer Academic Publishers. 

J. W. Christian (2002). The Theory of Transformations in 
Metals and Alloys, 3rd edition. Boston:Pergamon. 

S. A. David and T. DebRoy (1992). Current issues and 
problems in welding science. Science 257:497-502. 

A. De and T. DebRoy (2004). A smart phenomenological 
model for probing unknown welding parameters. Journal 
of Physics D: Applied Physics 37:140-150. 

K. Deb, A. Anand, and D. Joshi (2002). A 
computationally efficient evolutionary algorithm for real-
parameter optimization. KanGAL Report No. 2002003, 
April. 

K. Deb (2003). A population-based algorithm-generator 
for real-parameter optimization. KanGAL Report No. 
2003003, March. 

J. W. Elmer, T. A. Palmer, W. Zhang, B. Wood, and T. 
DebRoy (2003). Kinetic modeling of phase 
transformations occurring in the HAZ of C-Mn steel 
welds based on direct observations. Acta Materialia 
51:3333-3349. 

D. E. Goldberg, K. Deb, and D. Thierens (1993). Toward 
a better understanding of mixing in genetic algorithm. 
Journal of the Society of Instrument and Control 
Engineers  32(1):10-16. 

V. A. Karkhin, V. V. Plochikhine, and H. W. Bergmann 
(2002). Solution of inverse heat conduction problem for 
determining heat input, weld shape, and grain structure 
during laser welding. Science and Technology of Welding 
and Joining 7:224-231. 

A. Kumar, W. Zhang, C.-H. Kim, and T. DebRoy (2004). 
A smart bi-directional model of heat transfer and free 
surface flow in GMAW for practicing engineers. In 7th 
International Seminar on Numerical Analysis of 
Weldability at Graz, Austria. (In press) 

A. Kumar and T. DebRoy (2004). Guaranteed fillet weld 
geometry from heat transfer model and multivariable 
optimization. International Journal of Heat and Mass 
Transfer. (Submitted for publication) 

S. G. Lambrakos and J.O. Milewski (2002). Analysis of 
processes involving heat deposition using constrained 
optimization. Science and Technology of Welding and 
Joining 7:137-148. 

S. K. Nath, S. Ray, and V. N. S. Mathur (1994). Non-
isothermal austenisation kinetics and theoretical 
determination of intercritical annealing time for dual-
phase steels. The Iron and Steel Institute of Japan 34:191-
197. 

P. Reed and S. Yamaguchi (2004). Simplifying the 
parameterization of real-coded evolutionary algorithms. 
2004 EWRI World Water and Environmental Resources 
Congress. Salt Lake City. (In press) 

S. Sista, Z. Yang, and T. DebRoy (2000). Three-
dimensional Monte Carlo simulation of grain growth in 
the heat-affected zone of a 2.25Cr-1Mo steel weld.  
Metallurgical and Materials Transactions B 31:529-536. 

D. Thierens and D. E. Goldberg (1993). Mixing in genetic 
algorithms. In S. Forrest (ed.), Proceedings of the Fifth 
International Conference on Genetic Algorithms, 38-45. 
San Mateo, CA: Morgan Kaufmann. 

 


