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Abstract 
 
 
This paper summarizes the implementation and 
performance of Nondominated Sorting Genetic 
algorithm (NSGA-II) [2] for feature selection of 
remotely sensed hyperspectral imagery. Two 
step processes have been followed. In first step, a 
feature subset is selected with optimum spectral 
and texture information content resulting in a 
smaller space to be searched in the next step. In 
the second step, a single objective search 
algorithm is used to obtain a final smaller subset 
out of the features already selected (with 
optimum information content), which have best 
separability between the classes. Classes are 
obtained by classifying the subset bands using 
maximum likelihood classification algorithm. 
Method of spectral and textural information 
evaluation of images, genotypic representation of 
our algorithm, classification methodology and 
separability criteria between classes have been 
discussed. Also discussed is the reason for 
choice of NSGA-II and a strategy to extract 
optimum results from it.  

1 INTRODUCTION 
Processing of images obtained from Hyperspectral 
satellite sensors like Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) which generates large amount of 
data require demanding computational resources. These 
remotely sensed data are widely used for thematic map 
generation. Thematic maps are produced through the 
process of digital image classification. The cost and 
complexity of classification depends on the number of 
features (Nb, image bands at different frequencies) and 
band size, while classification accuracy depends on 
factors like type of classifier used, noise in the bands and 
the information carried by each band. With increasing 
number of bands, cost of classification increases 

exponentially though accuracy saturates after increase to a 
certain number of bands. So, one have to do feature subset 
selection which attempts to select a minimally sized 
subset of bands, Lb<Nb, such that separability between 
classes is optimized over that subset [8].  
If the original feature subset contains Nb number of bands, 
then the number of competing subsets will be 2N

b. This is 
too large a number even for medium-sized Nb. For state-
of-the art hyperspectral sensors like AVIRIS with 220 
bands, doing an exhaustive search is computationally 
infeasible. Among many, searching strategy like Best-first 
search have been used for searching for an accurate subset 
[5]. Pei et al. [9] used Simple Genetic Algorithm (SGA)/ 
(K- nearest neighbor) KNN hybrid approach for feature 
selection. Clustering using KNN algorithm for large 
number of large subsets is computationally intensive. 
Algorithm suggested in this paper, first derives a smaller 
subset Mb(<Nb) with optimum information content and 
less noise before application of any clustering or 
classification method.  

2 THE APPROACH 
In remote sensing, both textural and spectral information 
should be used in order to improve the accuracy of 
classification [6]. Texture information content is 
quantified by entropy, which is a measure of degree of 
disorder or heterogeneity in an image. Entropy image for 
all bands is obtained. Principal Component Transform 
(PCT) of both spectral and entropy bands is done 
separately. This produces uncorrelated components that  
explain maximum amount of variance possible by linear 
transformation of spectral and texture bands respectively. 
Absolute value of correlation coefficient(called factor 
loadings) of band i with principal component(PC) j tells 
how important that band i is to component j. Associated 
information(AI) carried by each band is calculated. Only 
those PC’s are used in AI calculation which cumulatively 
carries almost all information (~99.5 %). Doing this, 
components carrying very less information(supposed to 
be noise) are discarded. The objective is to optimize 
cumulative texture and spectral associated 



information(CTAI and CSAI) of a band combination 
while using minimum number of bands as possible. A 
tradeoff curve between these conflicting objectives are 
obtained by NSGA-II. An optimum feature subset is 
selected by analyzing the trade off curve. Here selection 
entirely depends on the preferences of the decision maker 
for various objectives. Optimum subset selected, basically 
carries most of the information of the entire set. So only 
this subset can be searched (instead of entire set) to look 
for a collection of bands that will yield high classification 
accuracy upon classification as other bands not included 
in this subset are redundant and don’t contribute in 
classification. Out of this optimum subset, our goal is to 
identify a smaller subset of bands with improved class 
separability between classes and hence raised 
classification accuracy. Separability is quantified by 
Brightness Value Overlap Index (BVOI) which measures 
the degree of overlap among classes [7]. Smaller the 
BVOI, better is the classification. Classes(various land 
cover types) are obtained by Gaussian Maximum 
Likelihood Classifier (GMLC). Figure 1 shows the 
schematic chart of the entire process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
                               Figure 1  

Classification accuracy of the final subset band selected is 
evaluated by Khat index [1], also called kappa index of 
agreement.  Method to calculate various functions and 
algorithms have been discussed in the following 
subsection.  

2.1 ENTROPY 
Texture measures the spatial distribution of pixel value 
variations with in a band. One method to asses texture is 
by calculation of entropy by Grey Level Difference 
Histogram (GLDH) Method.  

2.1.1 GLDH  
Let ),( yxg  represents a image band in spatial domain. 
For any displacement function ),( yx ∆∆=δ , where 

x∆  and y∆  are integers values indicating the amount of 
displacement in x and y directions respectively. The 
difference function ),( yxgδ is defined as  

),(),(),( yyxxgyxgyxg ∆+∆+−=δ  
Probability density function is defined as  
                 )),(()/( iyxgpip == δδ  
where, i is the gray value, which ranges from 1, 2, 3, .., Ng 
where Ng is the maximum quantization value(in the 
problem under consideration, it is 255). Using density 
function, entropy can be calculated as  
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2.2 PCT 
This transform produces a new uncorrelated vector space 
in which data has most variance along its first axis, the 
next largest variance along a second mutually 
perpendicular axis and so on. Principal Components are 
calculated in two steps [4]. Firstly nn × covariance 
matrix from the n bands is derived. In second step , eigen 
values and eigen vectors of the covariance matrix which 
are related as 
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is computed. Here XΣ  is covariance matrix of original 
image bands, YΣ is uncorrelated covariance matrix of 
uncorrelated bands, Φ  is eigen vector matrix and λi’s are 
eigenvalues such that   λi > λj for i > j. Eigen values are 
axes of the vector space and variances of the PC’s  their 
length.  The percent of total variance carried by the each 
principal component can be calculated using the formula 
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Correlation of a band with principal component is given 
by 
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where ijρ  is correlation for band i and component j, ije is 
eigenvector for band i and principal component j. 
Associated information carried by a particular band is 
defined by 
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where K is number of principal componets that carries 
sufficient information. Cumulative spectral/textural 
associated information is calculated by 
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where r is the number of bands being considered. 

2.3 NSGA II 
Selecting an optimum subset of features, Mb with 
sufficient spectral and textural information is a multi-
objective optimization problem. The three objectives 
considered are maximization of spectral and textural 
information while minimizing number of bands.  (Pareto 
Optimal) Solutions to this problem can be expressed in 
terms of their superiority to the rest of solutions in search 
space when all objectives are considered, but they may be 
inferior to other solution in atleast one objective. This 
concept is also called Pareto dominance. In absence of 
any other information like degree of preference of one 
objective over other, one solution cannot be said better 
than other. So one needs as many optimal solutions as 
possible to help in final decision making. These solutions 
can be obtained by NSGA II. NSGA II also outperforms 
other algorithms for multiobjective optimization with its 
lower computational complexity and elitism property [14] 
and [3].  For reducing the computational effort and 
automating the parameter specification process in NSGA 
II, simplifications were done based on [10] and [11]. 
Chromosome length was taken equal to the number of 
bands used in the experiment. In the first run of NSGA-II, 
a small population size is used. Population size is doubled 
with each successive run to evolve nondominated 
solutions. Increase of population with each step is stopped 

when the threshold percentage change in number of 
nondominated individuals for two successive run 
specified by ND∆ is reached. ND∆  is given by  
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where nNDI  and 1−nNDI  are the number of non 
dominated individuals in run n and n-1 respectively. Run 
length is estimated to be twice the binary string length 
[10]. This estimate assumes that NSGA-II converges as 
fast as the system undergoing pure binary selection 
because of additional selection pressure due to elitism. 
Crossover probability Pc is derived from disruption 
boundary relationship [13] which is  

                     
s
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where s is the number of individuals participating in 
tournament selection. In NSGA II, child is selected by 
binary tournament selection, so s=2. Probability of 
mutation, Pm is taken as inverse of population [12]. 

2.4 SINGLE OBJECTIVE SEARCH 
Finding a feature subset, Lb so that the classes have 
maximum separability between them is a single objective 
optimization problem. SGA was used to find the final 
optimum subset. To obtain the best parameter (viz. 
population size and number of generations) setting, 
following steps were followed: 

• Fitness values corresponding to different 
population sizes are obtained at some large 
number of generations. This is based on the 
assumption that atleast at that population size 
(P), the solution has converged more than at 
other population sizes. 

• At population P, SGA is run for number of 
generations till the solution has converged. 

Probability of mutation, Pm is taken as inverse of 
population. Binary tournament selection was used. 

2.5 BVOI 
In this method, the range of pixel values within a class is 
compared, with histogram for all classes with in the bands 
used for classification. Accumulated percentage of all 
pixel values having pixel values ranging from minimum 
to maximum for each class is determined by  
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where nmF ,  is accumulated frequency of class n in band 
m, nmiXf )( ,  is frequency of pixel value Xi  within a 
class n of band m, nmMin , and nmMax ,  are minimum and 
maximum pixel value in class n and band m respectively. 
BVOI is calculated by  
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Band subset with least BVOI value denotes maximum 
separability between classes. 

2.6 CLASSIFICATION 
A classified image is needed before separability between 
classes can be evaluated. Classes have been obtained by 
supervised classification of the band subset. In supervised 
classification, user attempts to locate the specific sites in 
the remotely sensed data that represent homogeneous 
areas of known features (land cover types). These areas 
are commonly represented as training sites because the 
spectral characteristics of these known sites are used to 
train the classier for mapping the entire image. Maximum 
Likelihood Classification is the most common supervised 
classification method used with remote sensing image 
data. 

2.6.1 GMLC 
The GMLC method assumes that specified values of 
training samples are statistically distributed according to a 
multivariate normal probability density function. Though 
in real world nothing may be normally distributed, in 
practice, however it is found that the assumption of 
normality holds reasonably well. The probability that a 
pixel xk, taken over n bands, being allocated to class i is 
p(Xk|i). 
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qi is total number of pixels in class i. 

2.6.2 Accuracy analysis by Khat index 
Classified image and corresponding training pixels on the 
ground is used to form a confusion matrix. A confusion 
matrix is a square array of size mm×  ( m  is the number 
of classes) in which numbers are laid out in rows and 
columns that give the number of sample pixels assigned 
to a particular class relative to the actual class as verified 
on the ground. Diagonal elements represent observations 
that agree both on training and classified images and non-
diagonal elements represent that do not agree. Khat index 
k, uses all the elements in the confusion matrix and it is a 
proportion of agreement after chance agreement is 
removed from consideration.  
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where k is kappa index , Po is overall accuracy  given by 

                                 

∑∑

∑

= =

== m

i

m

j
ij

m

i
ii

o

x

x
P

1 1

1  

and Pc is 

             
2

...........(
N

xxxx
P mmii

c
++++ +

=  

where ++ mi xx ........,  are row total, mi xx ++ ........,  are 
column total of confusion matrix. N is  

              N=∑∑
= =

m

i

m

j
ijx

1 1
 



For individual classes, the Khat index is calculated using 
the formula 
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3 IMPLEMENTATION 
Algorithm is implemented on a set of 22 bands from Jun2 
1992 AVIRIS data set1 of a mixed agriculture/forestry 
landscape in the Indian Pine Test Site in Northwestern 
Indiana. It contains 145 rows by 145 columns of pixels.  
The 22 bands were band no. 1+10*i, i=0,1,2….21 of the 
original data set. Figure 2 shows the false color composite 
(FCC) of the area of interest (AOI) prepared using the 
band numbers 141, 71 and 31 respectively. It also shows 
the training pixels chosen for various classes using 
MultiSpec software.  In figure 2, training pixels are the 
one, inside various rectangles (in white), for respective 
classes.                                                   
                          

 

    

    Figure 2 

PC’s of the 22 spectral/texture bands are calculated. 
99.5% of spectral information was carried by first 9 PC’s 
and 99.3%of texture information was carried by first 15 
PC’s out of 22. Associated spectral/texture information of 
each band with PC’s (cumulatively having 99.5% 
information) is calculated.  Optimum band subset is to be 
obtained from 222 band combinations. A binary coded 
chromosome of length 22 was constructed. If the bit was 
one, then that feature was used in calculation of 
                                                           
1 AVRIS have 210 bands in all for each scene. Only 22 were used due to 
their availability but these are sufficient to demonstrate an analysis of 
the method suggested. 

cumulative spectral/textural information content. Using 
NSGA II, a tradeoff curve between maximum spectral 
and texture information, and number of features 
considered is obtained. To help in decision making, 
variables on the three axes were expressed as band 
fraction (i.e. ratio of number of bands used in evaluation 
to maximum number of bands which is 22), ratio of CTAI 
to maximum CTAI possible (i.e. when all the bands are 
considered) and ratio of CSAI to maximum CSAI. 
Decision maker can select the number of feature 
according to his/her preferences about various objectives. 
The tradeoff curve is shown below 

 
 

   Figure 3 

For further experimentation in this problem, the author as 
a decision maker, choose 10 bands with cumulative 85% 
and 93% of cumulative texture and spectral AI with 
respect to the maximum cumulative texture/spectral AI of 
any non dominated band combinations. Here decision was 
made based on the reservations of author to have ratio of 
CTAI and CSAI to their maximum possible, more than a 
particular threshold (85%, one can set the threshold taking 
in consideration the dominance of textural/spectral 
property of the bands). Projecting the non-dominated 
optimal points along band fraction-CSAI/Max (CSAI) 
plane, as can be seen in figure 4, the decrease in CSAI 
fraction (on x axis) is very less compared to decrease in 
band fraction (on y-axis) up to band fraction=0.4545. 

  
     

 Figure 4 



Similarly drawing 2-dimensional plots for the other 
objective i.e. the case when non-dominated pareto optimal 
points are projected in plane band fraction-CTAI/Max 
(CTAI), decrease on x-axis is 15% with 55% decrease on 
y-axis (shown in figure 5). In figure 4 and 5, the points 
plotted are non-dominated points. Some of them seem to 
be dominated because they have been projected on a 2-
dimensional plane. In the above experimentation, ∆was 
set to 10%, implying that close approximation of true 

 
   

             Figure 5 

pareto front is being sought. ∆  decreased with each 
successive run as shown in figure 6. After 6 runs, ≈∆ 8 
%. Population size and number of generations for this run 
was 640 and 50 respectively. Total of 563 non dominated 
unique subset combinations were obtained which were 
used to draw the tradeoff curve. After having selected the 
10 bands, now the aim is to find a smaller subset out of 
this with good separability. This is a single objective 
search problem. Search space is only 210

.
 SGA have been 

used to derive the final optimum band subset that has 
largest separability between classes.  This step seems 
trivial because the number of combinations to be searched 
here is very small and an exhaustive search could have 
been done. But if the experiment was started with all the 
bands of AVIRIS(i.e. 220) instead of 22, then decision 
maker would have to settle for a larger subset with 
optimum information content after NSGA II step, then 
usage of SGA in this step will be of utmost importance.  
Chromosome of 10 gene length was constructed. Again, if 
the bit was one, then the feature was used in 
classification. 
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Figure 6 

For finding the best parameter setting, steps discussed in 
section 2.4 were followed.  For number of generations = 
60, fitness value(BVOI) is obtained at various population 
sizes as shown below  
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   Figure 5 

As is seen in figure 5, at population size=30 BVOI have 
least magnitude. At this population SGA was run till the 
solution converged i.e. till generation=100, as shown in 
figure 6. This is due to the fact that as number of 
generations increase, fitter individuals take over the 
population resulting. 
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Figure 6 

Highest separability was found for subset with band 11, 
21 and 81.  

4 RESULTS 
The following classified image was obtained using the 
selected bands.        



 
 

            Figure 7 

The image got classified into eight prominent classes viz. 
Soyabean1 (S1), Woods (WD), Corn (C), Hay (H), Urban 
(U), Stone-Steel (S), Wheat (W) and Soyabean2 (S2). 
Class Soyabean1 differed from Soyabean2 in the way 
tillage practice was employed in the two land covers, 
since the amount of residue from previous vegetation 
varies. From the classified image, it is seen that AOI 
appears to be about 2/3rd agriculture and 1/3rd woods. Two 
linear patterns are seen running from southeast to 
northwest direction. These are highway (U.S. 52 & U.S. 
231) and a major secondary road (Jackson highway). 
Confusion matrix between training and classified pixels is 
listed in table 1. 

 

Table 1: Training class performance confusion matrix 

NUMBER OF SAMPLES IN CLASS PA CL
AS
S S S1 C W H U S2 W

D  

S 33 0 1 0 0 11 0 0 73.3 

S1 1 182 21 0 0 0 0 0 89.2 

C 2 19 129 0 0 0 0 0 86.0 

W 0 0 0 138 0 2 0 2 97.2 

H 0 0 0 0 60 0 0 0 100 
U 6 0 5 3 0 60 0 0 81.1 

S2 1 0 0 0 0 70 90 0 91.8 

W
D 0 0 0 0 0 0 0 97 100 

U
A 

76.
7 90.5 82.7 97.9 10

0 75 10
0 98  

 

In table 1, UA is user’s accuracy or the probability that 
the pixel of a particular class actually belongs to that class 
on the ground. PA is producer’s accuracy or the accuracy 

with which the maximum likelihood classifier classified 
the image. Overall accuracy calculated was 90.7 % and 
Kappa statistics= 89 %. Overall accuracy (in red line) and 
respective accuracy of classification of the various classes 
(as bars) are shown below 

 
    

Figure 8 

5 CONCLUSIONS 
This paper presents experimental results applying NSGA 
II for feature selection of hyperspectral remotely sensed 
imagery. Genetic algorithms have earlier been applied to 
feature selection. However this work presents a new 
strategy to make the whole process computationally 
efficient. Also the accuracy of classification obtained was 
high (~90%). A novel way of breaking down problem into 
two steps was followed. This enables in getting rid of 
noise from the bands and also in decreasing the size of the 
feature subset to be searched before it is used for feature 
selection for classification problem. The paper also 
discusses the method to optimize the parameters of NSGA 
II. 
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