
Optimal Gait Analysis of Snake Robot Dynamics ∗

Vipul Mehta
Department of Mechanical Engineering

The Pennsylvania State University
University Park, PA - 16802

vvm104@psu.edu

ABSTRACT
Though there have been a lot of research in the area of
snake-robot kinematics and dynamics, a little attention has
been given to find out an optimal gait for the robot. This
optimal gait until now is being calculated using a graphical
method. An attempt, here, is made to get these optimum
gait parameters using evolutionary algorithms.

We intend to optimize the input power consumed by the
robot for a given propulsive speed. A popular multi-objective
evolutionary algorithm developed by Deb et al., NSGA-II is
used in this work and the results are presented.

Results from an approximation of objective function through
polynomials and from the actual simulation are presented.
Two different frictional models are considered and their re-
sults are given. The results are in good agreement with the
literature. A parametric study is also included to find min-
imum population size and number of generations. The per-
formance metrics are used to justify the parametrization.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Graphical Anal-
ysis; I.2.9 [Artificial Intelligence]: Robotics—Kinematics
and Dynamics

General Terms
Performance

Keywords
Snake-robot, NSGA-II, Evolutionary Algorithms and robotics,
Pareto front

1. INTRODUCTION
∗This report has been prepared for the course project of Sys-
tem Optimization using Evolutionary Algorithms, CE 563

Lot of research has been done in the area of snake-robots
since Hirose [6]. Primary use of snake-robots is in surveil-
lance in rough terrains (e.g. deserts, mountains, pipes)
where wheeled, legged robots tends to be inefficient [4]. The
ability to move around fast with least power consumption is
an important issue for any autonomous robot. But a little
attention has been given to find out the optimal gait of the
robot under different operating conditions. This involves
finding the gait parameters that yield minimum power con-
sumption for a given forward speed. The power input and
the forward speed conflicts with each other. The efforts re-
ported so far [4, 10, 8] are based on a graphical technique.
In this method the search area is meshed into a fine grid and
the objective functions are calculated at these points. The
Pareto front and therefore the optimal gait parameters are
decided comparing the objective function at each of the val-
ues. The accuracy of the method depends on the resolution
of the grid considered. As the resolution is made finer, the
search becomes more exhaustive but it takes longer compu-
tational time for the optimization process.

Finding the Pareto front is a difficult problem for classi-
cal optimization [1]. The most popular method involves
weighted sum of the objective functions. The main draw-
back of this technique is the scaling issue. To overcome this
difficulty one needs to know the bounds on the objective
function, which may not be always possible. Moreover the
classical optimization methods demand the gradient of the
objective function. This is also hard to obtain for an im-
plicit, nonlinear objective function.

The problem, we are going to discuss, possesses both the
above described problems. There may exist a few orders of
magnitude difference between two objective functions and
because of the non-linear, implicit governing equations of
motion the gradient information is not available. We, there-
fore, seek an optimization method that can give perhaps
more accurate results or can provide a solution quicker for
the same accuracy of the graphical method. It can also serve
as a confirmation of the results obtained by the graphical
method.

There has been a huge development recently in the area
of evolutionary optimization where heuristic approaches are
used to find an optimum solution. The biggest advantage
of these methods is that they do not require the deriva-
tive of the objective function. An evolution algorithm for
multi-objective problems, Non-dominated Sorting Genetic

(x , y)i i

ui−1

θ
i

g

g

g

g

u

f

f

x

x

x

y

y

y

i
i

i

i

i

i−1

i−1

Figure 1: Free body diagram of ith link

Algorithm-II (NSGA-II), has been shown to work very good
with complex problems [3]. The problem of gait analysis
is analyzed using NSGA-II in this project. The remain-
ing report discusses the formulation of the objective func-
tion, polynomial approximation of the objective function,
parametrization of NSGA-II and the results from the anal-
ysis of the snake-robot dynamics for two case-studies.

2. FORMULATION OF OBJECTIVE FUNC-
TION

The detailed dynamics of the snake-robot is given in [10].
If a robot consists of n rigid links connected together with
(n− 1) joints, defining the coordinates of the center of mass
and global orientation of each link is given by,

x = [xi]n×1 (1)

y = [yi]n×1 (2)

θ = [θi]n×1 (3)

This representation is shown in Fig. 1. Let the mass, length
and the mass moment of inertia of each link be m, 2 · l, and
J (= m · l2/3) respectively. Newton’s laws are applied in
x-direction as well as in y-direction and the equations are
simplified. Defining the position of the center of mass of the
robot as w = 1/n · [Pxi

P
yi]
′, the resulting governing

differential equations of motion are given by

� J 0
0 m · I2

� �
θ̈
ẅ

�
+

�
C · θ̇2

0

�
−
� L′

E′

� �
fx

fy

�
+ τ =

�
D′

0

�
u (4)

where,

τ = cn(J/m)θ̇ (5)

J = J · In + Sθ ·H · Sθ + Cθ ·H · Cθ (6)

H = m · l2 · �A′ · (D ·D′)−1 ·A� (7)

M = n ·m (the total mass of the robot) (8)

C = Sθ ·H · Cθ − Cθ ·H · Sθ (9)

L =
�
Sθ ·N ′ · − Cθ ·N ′�′ (10)

N = l · �D′ · (D ·D′)−1 ·A� (11)

E =

�
e 0
0 e

�
(12)

e = [1 · · · 1]′ (13)

and In is the identity matrix of dimension n and u is the
torque input vector applied at the joints. Moreover

Sθ = diag(sin θ1, · · · , sin θn) (14)

Cθ = diag(cos θ1, · · · , cos θn) (15)

D =

264 1 −1 0
. . .

. . .

0 1 −1

375
(n−1)×n

(16)

A =

264 1 1 0
. . .

. . .

0 1 1

375
(n−1)×n

(17)

Also [fx fy]′ are the frictional forces acting on ith link.
There are various friction models considered in the literature
(e.g. see [8]). In this report, we consider only the viscous
friction model, where the frictional forces are proportional
to the velocity of the center of mass of the link. These forces
are then represented as�

fx

fy

�
= −Ωθ ·Df · Ω′θ

�
ẋi

ẏi

�
(18)

where

Df =

�
ct · In 0

0 cn · In

�
Ωθ =

�
Cθ −Sθ

Sθ Cθ

�
(19)

where ct and cn are the tangential and normal coefficients
of friction.

The governing equations of motion given in Eqn. 4 is nonlin-
ear, implicit differential equations, which may not be solv-
able directly for a given torque input. These equations are
modeled in Simulink and MATLAB’s in-built ODE solver
(ode45) is used to numerically calculate the coordinates of
the center of mass and the orientations of the links for a
given torque. Previous research has shown [6] that the a
gait similar to natural snake can be obtained if the joint
angles is given by

φi = α · sin (ωt + (i− 1) · β) (20)

where φi is the joint angle for joint i:

φi = θi+1 − θi, (21)

K K K
p d

i
s

s+ +
�
�
�
�_+

joint angles

Reference Control
input

Snake−robot

dynamics
Joint

torques

[D]

θ φ

Controller

Figure 2: Block diagram showing implementation of the closed-loop controller to generate joint tracking in
the simulations of snake locomotion

control
and

dynamics
Snake−robot P

v
in

x

α
β
ω

Figure 3: Structure of objective functions - inputs
(α, β, ω) and outputs (Pmin, vx)

α is the amplitude of the motion, ω is the frequency and β
is the phase difference between two consecutive joint angles.
The mathematical relation between the joint angles and the
input torque is very difficult to find. A numerical technique
is, therefore, implemented as shown in Fig. 2 using one of
the simplest controller (PID - Proportional Integral Deriva-
tive controller). The control parameters are chosen so that
the actual trajectory follows the reference trajectory very
closely.

The objective functions can now easily be determined by

Pin = Inputpower = u · φ̇ (22)

vx = Forward speed of the robot = w(1) (23)

The optimization problem is schematically shown in Fig.
3. It should be noted down here that the controller takes
several cycles (4, in this case [8]) to get to the steady state
value. Therefore the simulation is run for several (simu-
lation) seconds. At every time-step of the simulation nu-
merical integration is carried out, which makes the overall
calculation of optimization quantities time-costly.

In the present analysis two separate case studies are consid-
ered for two different friction models. For a ‘sliding’ contact
between the robot and the ground, the frictional torque (τ)
in Eqn. 4 is non-zero and is given by the Eqn. 5. While
if the contact between the robot and the ground is ‘rolling’,
the frictional torque is negligible and τ in Eqn. 4 is taken to
be zero. It has been shown that for these cases the values
of the optimum gait parameters are different [8].

3. OPTIMIZATION PROBLEM
In this section the optimization problem is formally defined.
A robot is considered to be efficient when it consumes min-
imum power at the desired speed. The only input variables
to the robot are α, ω and β. There must exist a combination
of these parameters, that can fulfill this requirement for a
given speed. Mathematically

min Pin

Subject to:

vx = vxdesired (24)

αmin ≤ α ≤ αmax

βmin ≤ β ≤ βmax

ωmin ≤ ω ≤ ωmax

where vxdesired is the desired speed of the robot, αmin, βmin

and ωmin are the lower bounds on the input variables (= 3
deg, 6 deg and 0.5 rad/s respectively) and αmax, βmax and
ωmax (= 90 deg, = 180 deg. and 5 rad/s respectively) are
the upper bounds on the input variables.

It is evident that if the input power is fixed then it is needed
to maximize the forward speed. This is the dual problem of
the above stated problem and it has the same optimum so-
lution as above [1]. The overall problem can be equivalently
represented as a min-max problem with two objective func-
tions,

min Pin

max vx (25)

Subject to:

αmin ≤ α ≤ αmax

βmin ≤ β ≤ βmax

ωmin ≤ ω ≤ ωmax

Many available optimization algorithms are developed for
min-min multi-objective problem (e.g. [3]). So the above
problem can also be written as

min Pin

min(vmax − vx) (26)

Subject to:

αmin ≤ α ≤ αmax

βmin ≤ β ≤ βmax

ωmin ≤ ω ≤ ωmax

where vmax is the maximum speed possible speed of the
robot with the given constraints on the gait parameters.
One need not have to know this number exactly; it only
has to be large enough to keep the objective function pos-
itive definite for all values of vx. To summarize Eqns. 26
are used hereafter to determine the desired Pareto front and
hence the optimal gait variables.

4. SOLUTION STRATEGY
This section describes the various techniques used to find the
solution of the multi-objective problem described above. It
first gives a general outline of a multi-objective evolutionary
algorithm, NSGA-II. To simplify and speed up the analysis,
an approximation of the objective function is suggested. Fi-
nally the computer implementation of these strategies are
discussed.

4.1 NSGA-II
Non-dominated Sorting Genetic Algorithm is a popular evo-
lutionary multi-objective algorithms (EMO’s). It is pre-
ferred because it has been shown that NSGA-II performs
better than the other EMO’s [3, 9]. In this algorithm, the
entire population is sorted according to their non-dominance
over the other solutions. Here a solution is dominated means
there exist a solution, which yields all the objective func-
tions better. All the solution on the Pareto front are non-
dominated. Based on the number of dominated solutions, a
rank is assigned to a particular member of the population. A
front comprises of the members having the same rank. The
front consisting members of rank 1 is the current best esti-
mate of the Pareto front. To preserve diversity among the
population of same generation, the crowding distance ap-
proach is used. The crowding distance is the largest cuboid
that encloses the current member but using the members on
the same front. The selection operator used is tournament
selection where both children and parents in the same gen-
eration compete each other. The members having a better
rank gets selected automatically. If any two members has
the same rank, one having greater crowding distance is se-
lected. This process is iterated till a sufficient number of
generations. Note that there is no convergence criteria ex-
cept the number of generations. Therefore it is important
to set an appropriate population size and maximum number
of generations in this algorithm.

4.2 Polynomial Approximation
As mentioned earlier the objective function calculation in-
volves numerical solution of ODE. It takes approximately
10-15 sec. to complete the simulation for one set of gait vari-
ables. It is therefore very time-costly to experiment with the
algorithm running the simulation every time. An approxi-
mate function can be used instead to speed up the calcu-
lations. In this approximation, the entire domain (search
space) is divided into a set of discrete points. The objec-
tive function value is calculated at these locations using the
actual simulation and its value is stored. To find the objec-
tive function for the design variables not on these locations,
polynomial interpolation is used. For a sufficiently high de-
gree of polynomial, the approximation is close to the actual
simulation. As the degree of the polynomial increases the
computational time also increases. In the current case, cubic
interpolation is found to be a good approximation.

4.3 Implementation
MATLAB is used as the platform for implementation. The
objective function is evaluated using the procedures described
in the earlier sections. The frictional coefficients, cn and ct,
are 10 and 0.1 respectively. The mass (m) and half-length
(l) are taken to be unity. The polynomial approximation is
implemented using MATLAB’s in-built function, interp3 [7].

For the meshing, α is varied from 3 deg. to 90 deg. in the
steps of 3 deg. , β is varied from 6 deg. to 180 deg. in the
steps of 6 deg. and ω is varied from 0.5 rad/s to 5 rad/s in
the steps of 0.5 rad/s. The objective function value other
than these points are determined by cubic interpolation us-
ing interp3.

NSGA-II is freely available on Deb’s website [2]. This pro-
gram is written in C. MATLAB’s in-built C-compiler mex is
used to interface NSGA-II with the objective function. This
requires two additional modules to the original code. The
listing of these modules are given in the Appendix.

5. RESULTS
In this section some results obtained by NSGA-II are pre-
sented. Various algorithm parameters are taken from the
literature. The results for two different friction models, for
sliding as well for rolling, are presented. To reduce the com-
putational load parametrization is carried out. Results for
all cases are reported.

5.1 Parameter Settings
The NSGA-II algorithm requires various parameters in the
program. The recommended values [3] are used in the present
work. Crossover probability (pc) is taken to be 0.9 and mu-
tation probability (pm) is taken to be 0.33 (= 1/nd, where
nd is number of design variables, 3). Suggested distribution
index for crossover and mutation operators are ηc = 20 and
ηm = 20, respectively. For polynomial approximation we
use the suggested population size (N) as 100. The number
of generations (ngen) are kept at 250 generations for polyno-
mial approximation. For the actual simulation these values
are found using parametrization as described later. vmax is
taken to be 7.5 for all cases, as it is found, by trial-and-error
and by [8, 10], that the maximum velocity attained by the
given physical properties lies somewhere between 7 to 7.5
m/s.

5.2 Results from Polynomial Approximation
The above parameters are set in the NSGA-II algorithm
and Pareto front is found using polynomial approximation
of the objective function. The Pareto front and the design
variables along the front are shown in Figs. 4, 5, 6 and 7.
These results involves the two friction cases viz. sliding con-
tact (where frictional torque is non-zero) and rolling contact
(where frictional torque is zero). The results are compared
with the literature ([10, 8]).

The results indicate that Pareto fronts obtained using NSGA-
II is quite close to the ones from the literature. This confirms
the potential of NSGA-II in the application of such problems
and the accuracy of the polynomial approximation. The op-
timum values of α and β are different in two friction cases.
This is also in accordance with the previously observed re-
sults [8]. The variation between vx and ω is linear and a
best-fit line can be found. The slopes of the best-fit lines for
sliding friction case and for rolling friction case are 0.8505
and 0.8551 respectively. Results from previous study [8] sug-
gest the slopes to be 0.8327 and 0.8841 respectively, which
shows a good agreement.

Note that these results are due to a single random seed. But

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

v
x
 (m/s)

P
in

 (
J/

s)

Known (sliding)
NSGA−II (sliding)
Known (rolling)
NSGA−II (rolling)

Figure 4: Estimation of Pareto front using NSGA-II
and polynomial approximation. The known fronts
are taken from the literature and the fronts from
NSGA-II are compared with them. It shows a good
agreement for both the friction cases.

0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

α and β (deg.)

ω
 (

ra
d/

s)

α

opt

β
opt

Figure 5: Design variables α and β along Pareto
front using NSGA-II and polynomial approximation
in the case of sliding friction. This shows that the
optimum value of α increases slightly from 15 - 25
deg. and the optimum value of β remains constant
around 60 deg. for ω varying from 0.5-5 rad/s.

0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

α and β (deg.)

ω
 (

ra
d/

s)

α
opt

β
opt

Figure 6: Design variables α and β along Pareto
front using NSGA-II and polynomial approximation
in the case of rolling friction. This shows that the
optimum value of α remains constant around 25 deg.
and the optimum value of β remains constant around
70 deg. for ω varying from 0.5-5 rad/s.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

v
x
 (m/s)

ω
 (

ra
d/

s)

Sliding case − slope = 0.85053
Rolling case − slope = 0.85513

Figure 7: Design variable ω along Pareto front es-
timated using NSGA-II and polynomial approxima-
tion for both the frictional cases. The slope of the
best-fit line is almost the same in two cases.

it is verified via numerical experiments that the results do
not vary much for different random seeds.

5.3 Parametrization of NSGA-II
The objective function calculation through in-situ actual
simulation takes longer computational time. The efforts de-
scribed in this section are to reduce the population size and
the number of generations. The experiments here are similar
to that of [9].

In this process, the initial population size and maximum
number of generations are kept to a small value (No = 12
and ngen,o = 20 in the present case). The algorithm is ex-
ecuted and the best possible Pareto front is determined.
This front is compared with the known Pareto front ([8,
10]). Similar to a method described for polynomial approx-
imation, the intermediate values are calculated using cubic
interpolation. So if Pcur and vcur are the vectors compris-
ing the current Pareto frontier and Pknown, Pvcur denotes
the power over the known Pareto front and the cubic in-
terpolated power for vcur (using Pknown) then the minimum
square error (MSE) is defined as

MSE =

s
1

N
·

NX
(Pvcur − Pcur)

2 (27)

After every execution of NSGA-II, MSE is calculated. If the
change in MSE in two consecutive iterations is greater than
5%, the population size (N) and the number of generations
(ngen) are incremented by No and ngen,o respectively. Oth-
erwise the process is terminated. According to Goh and Tan
[5], MSE is a performance metric for the proximity indica-
tion. There are two more performance metrics namely di-
versity indicator (DI) and distribution indicator (S). These
are adopted for the current problem as:

DI =

s�
min(Pmax

cur , Pmax
vcur)−max(Pmin

cur , Pmin
vcur)

(Pmax
vcur − Pmin

vcur)

�2
(28)

S =
1

N

s
1

N
·

NX�
abs(Pvcur − Pcur)− d̄

�2
(29)

where d̄ =
q

1
N
·PN abs (Pvcur − Pcur) and superscripts max

and min represents the maximum and the minimum value
of the objective function. The metrics MSE and S should
be as small as possible and DI should be close to unity.

The above procedure is run using polynomial approximation
of the objective function. The graph of % change in MSE
with number of parametrization cycles is shown in Fig. 8.
The results indicate that the change in MSE is less than 5
% after 4 iterations. This suggests the population size and
number of generations to be 48 and 80 respectively. The
population size and the number of generations are signifi-
cantly lower (52 % and 68% respectively) than the recom-
mended by Deb et al [3]. Fig. 9 shows that not only all
the performance metrics gets to a steady-state value but to
an acceptable value. This observation justifies the use of
parametrization.

5.4 Results from Actual Simulation

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

10

20

30

40

50

60

70

80

90

Number of parametrization cycles

%
 c

ha
ng

e
in

 M
S

E

Figure 8: The variation of % change in MSE over the
parametrization cycles. It has a decreasing trend.
This is expected with higher population and more
number of generations.

1 2 3 4
0

5

10

15

20

25

30

Number of parametrization cycles

P
er

fo
rm

an
ce

 m
et

ric
s

MSE
DI
S

Figure 9: The various performance metrics over the
parametrization cycles. The figure indicates that
all the performance metrics obtains a steady-state
value after 4 cycles.

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

v
x
 (m/s)

P
in

 (
J/

s)

Known (sliding)
NSGA−II (sliding)
Known (rolling)
NSGA−II (rolling)

Figure 10: Estimation of Pareto front using NSGA-
II and actual simulation. The known fronts are
taken from the literature and the fronts from NSGA-
II are compared with them. It shows a good agree-
ment for both the friction cases.

Table 1: Performance Metrics for Different Fric-
tional Cases and for Different Methods of evaluating
Objective Function

MSE DI S

Sliding friction
PA 2.8592 1.0000 0.0229
AS 2.1895 1.0000 0.0191

Rolling friction
PA 1.2107 0.9999 0.0104
AS 1.0295 0.9999 0.0090

Using reduced population size and the number of genera-
tions (48 and 80 respectively), the results for a single ran-
dom seed are presented in Figs. 10, 11, 12 and 13.

The reduced population size and maximum allowed gener-
ations did not worsen the results and they still show the
expected trend. The Pareto front is less populated as com-
pared to that from polynomial approximation. The varia-
tion in α and β along the Pareto front is seen to be similar
for both the cases. The slopes of best-fit line in ω − vx plot
are 0.8470 and 0.8418 for the sliding friction case and for
the rolling friction case respectively.

It is also interesting to compare the results obtained through
the polynomial approximation (PA) and through the actual
simulation (AS). The performance metrics defined in the
last section are calculated for these different cases and are
presented in Table 1. This shows that even after reducing
population size and total number of generations, the perfor-
mance of the solution is not affected.

6. CONCLUSIONS
The dynamics of the snake-robot and the gait variables for
optimum motion of the snake-robot is analyzed using an
multi-objective evolution algorithm, NSGA-II. Two frictional
cases are considered in the analysis and the results for both

0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

α and β (deg.)

ω
 (

ra
d/

s)

α

opt

β
opt

Figure 11: Design variables α and β along Pareto
front using NSGA-II and actual simulation in the
case of sliding friction. This shows that the optimum
value of α increases slightly from 15 - 25 deg. and
the optimum value of β remains constant around 60
deg. for ω varying from 0.5-5 rad/s.

0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

α and β (deg.)

ω
 (

ra
d/

s)

α
opt

β
opt

Figure 12: Design variables α and β along Pareto
front using NSGA-II and actual simulation in the
case of rolling friction. This shows that the optimum
value of α remains constant around 25 deg. and the
optimum value of β remains constant around 70 deg.
for ω varying from 0.5-5 rad/s.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

v
x
 (m/s)

ω
 (

ra
d/

s)

Sliding case − slope = 0.84699
Rolling case − slope = 0.8418

Figure 13: Design variable ω along Pareto front es-
timated using NSGA-II and actual simulation for
both the frictional cases. The slope of the best-fit
line is almost the same in two cases.

of them are presented. To speed up the numerical experi-
mentation of the algorithm, an approximate method to find
the objective function, called polynomial approximation, is
implemented. A small parametrization study is conducted
to find out a smaller population size and number of genera-
tions. Finally is algorithm is implemented for actual simu-
lation of the objective function and results are shown.

In the polynomial approximation as well as in the actual sim-
ulation, the results are in good agreement with the literature
for both the sliding friction model and for the rolling friction
model. This not only confirms the results published earlier
but also demonstrates the potential of NSGA-II for a fairly
complex problem. It is worth to note that NSGA-II gave
good results in spite the fact that the objective functions
has scaling issues. The algorithm parameters suggested by
the developers are found to be good starting points for the
optimization process.

For large population and high number of generations, the
algorithm gave results with a comparable accuracy with the
graphical method. The parameterized population size and
total number of generations are used for the optimization
through the actual simulation. Though these numbers are
considerably smaller than the earlier case, it is observed
that the performance remains unaffected. Noting that the
grid-search method took 9000 function evaluations while the
NSGA-II based optimization took only 3840 function evalu-
ations (approx. 57 % less), we feel that the objective of this
study is fulfilled.

7. REFERENCES
[1] A. Belegundu and T. Chandrupatla. Optimization

Concepts and Applications in Engineering. Prentice
Hall, 1998.

[2] K. Deb. http://www.iitk.ac.in/kangal/index.shtml.
website.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evol. Algo., 6(2):187–192,
2002.

[4] K. J. Dowling. Limbless Locomotion: Learning to
Crawl with a Snake Robot. PhD thesis, The Robotics
Institute Carnegie Mellon University 5000 Forbes
Avenue Pittsburgh, PA 15213, December 1997.

[5] C. K. Goh and K. C. Tan. Noise handling in
evolutionary multi-objective optimization. In IEEE
Congress on Evolutionary Computation, pages
1354–1361, 2006.

[6] S. Hirose. Biologically inspired robots: snake-like
locomotors and manipulators. Oxford University
Press, 1993.

[7] MATLAB.
http://www.mathworks.com/access/helpdesk/help/
techdoc/ref/interp3.html. website.

[8] V. Mehta, S. Brennan, and F. Gandhi. Rigid-link
snake robot dynamics and optimally efficient gait
confirmed by experimentation. Submitted to IEEE
Trans. Robotics Auto.

[9] P. Reed. System optimization using evolutionary
algorithms. Lecture Notes, Spring 2007.

[10] M. Saito, M. Fukaya, and T. Iwasaki. Serpentine
locomotion with robotic snakes. Control System
Magazine, pages 64–81, 2002.

APPENDIX
A. C MODULES TO COMPILE NSGA-II IN

MATLAB
The objective function is defined in following manner. Func-
tion ‘snakebot’ used here takes three inputs and spits two
outputs. It can be changed to any valid MATLAB function
name for any number of inputs and outputs.

void objfcn (double *xreal, double *xbin, int **gene, double
*obj, double *constr) {
mxArray *plhs, *prhs;
prhs = mxCreateDoubleMatrix(1, 3, mxREAL);
double *ptr = mxGetPr(prhs), *ptr1;
ptr[0] = xreal[0];
ptr[1] = xreal[1];
ptr[2] = xreal[2];
mexCallMATLAB(1, & plhs, 1, & prhs, ”snakebot”);
ptr1 = mxGetPr(plhs);
obj[0] = *ptr1;
obj[1] = *(ptr1+1);
mxDestroyArray(plhs);
mxDestroyArray(prhs);
}

The following subroutine is added to interface and compile
the C-program with MATLAB. This subroutine requires one
scaler value passed to the C-program, but it can be modified
to pass no value or more values.

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const
mxArray *prhs[]) {
double *x, *y;
int mrows, ncols;
if (nrhs != 1) mexErrMsgTxt(”One input required.”);

else if (nlhs > 1) mexErrMsgTxt(”Too many output argu-
ments”);
mrows = mxGetM(prhs[0]);
ncols = mxGetN(prhs[0]);
if (!mxIsDouble(prhs[0]) —— mxIsComplex(prhs[0]) ——
!(mrows == 1 & & ncols == 1))
mexErrMsgTxt(”Input must be a noncomplex scalar double.”);
plhs[0] = mxCreateDoubleMatrix(mrows,ncols, mxREAL);
x = mxGetPr(prhs[0]);
y = mxGetPr(plhs[0]);
nsga2r(y,x);
}

