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Abstract 
 

In this paper multi-objective evolutionary 
algorithm is proposed to design a universal 
electric motor. Designing a product often 
incorporates multiple objectives. Designing a 
product family has an added tradeoff, between 
commonality and individual product 
performance. The presence of multiple 
objectives gives rise to a set of Pareto-optimal 
solutions for individual products as well as the 
product family. The multi-objective evolutionary 
algorithm is used to help design a universal 
electric motor with competing design 
requirements. This is a step towards designing a 
family of electric motors with an acceptable 
balance between commonality in the product 
family and desired performance of individual 
products. 

1 INTRODUCTION 
The consumer market today is more turbulent and varied. 
Robust economy but cautious consumers; increasing 
globalization; increasing competition, often using new 
technology; diversified society of better educated and 
informed individuals; and many other factors has created 
a demand for unique custom products and services. 
Consumers no longer prefer to get directed to purchase 
pre-built products; rather, they want to have products and 
services that meet their particular needs. According to 
Pine (1993), “Customers can no longer be lumped 
together in a huge homogeneous market, but are 
individuals whose individual wants and needs can be 
ascertained and fulfilled”.  

By introducing higher levels of commonality within a 
product family, a manufacture is able to reduce the part 
inventory, reduce the procurement cost, be more capable 
of handling volatility in consumer demand, and increase 
diversity in product offerings. The only snag being that 
increased commonality has an associated trade-off in 
individual product performance. The argument being, a 
single product designed specifically for a set of 
requirements is capable of performing better than a 

product belonging to a family of products that shares 
components. The components designed to be shared 
among different products will not perform as good as a 
custom component. When designing a product family the 
focus is more on the fa mily as a whole rather than a 
particular member of the family. Consequently decision 
maker has to make a tradeoff between commonality and 
performance during product family design. The tradeoff 
between commonality and performance is generally 
captured using one or more of the many commonality 
indices for product family design (Jio and Tseng, 2000; 
Kota, et al., 2000; Martin and Ishii, 1997; Siddique, et al., 
1998; Simpson, et. al., 2001b) based on the direct and 
indirect benefits of commonality. Numerous exa mples of 
successful product families can be found in the literature: 
Swiss army knives and Swatch Watches (Ulrich and 
Eppinger, 2000), Xerox (Paula, 1997) and Cannon 
(Yamanouchi, 1989) photocopiers, Dell Computers 
(Schonfeld, 1998), Hewlett Packards printers (Feitzinger 
and Lee, 1997), Kodak (Wheelwright and Clark, 1995), 
Volkswagen (Bremmer, 1999), and Sony Walkmans 
(Sanderson and Uzumeri, 1995). 

Many design researchers have started to use multi-
objective optimization to examine the trade-off between 
commonality and individual product performance. 
Gonzalez-Zugasti, et al. (1999), use real options concepts 
to help select the most appropriate product family design 
from a set of alternatives; they also investigate the use of 
multi-objective optimization to design modular product 
platforms (Gonzalez-Zugasti and Otto, 2000; Gonzalez-
Zugasti  et al., 2000). Simpson et al., (2001) proposed a 
formal method that facilitates the synthesis and 
exploration of a common Product Platform Concept that 
can be scaled into an appropriate family of products 
known as Product Platform Concept Exploration Method 
(PPCEM). The product platform is modeled as a 
compromise Decision Support Problem (DSP) to model 
the necessary constraints and goals for the product 
platform. The compromis e DSP is a multi-objective 
mathematical construct which is a hybrid formulation 
based on mathematical programming and goal 
programming (Mistree et al., 1993).  

Genetic Algorithms are well suited for solving 
combinatorial problems. Li and Azarm (2002) present a 
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two stage approach that employs a multiobjective genetic 
algorithm for product line design selection under 
uncertainty and with competitive advantage.  D'Souza and 
Simpson (2003) present a method of using non-dominated 
sorting genetic algorithm (NSGA) to design a family of 
General Aviation Aircraft while optimizing the 
performance of the individual products. 

In this paper a Universal Electric motor is optimized 
using NSGA -II (Deb et al., 2000) as a step towards 
designing a family of Universal motors. The designing of 
a Universal Electric motor involves simultaneous 
optimization of multiple objectives that are competing in 
nature. The aim of using NSGA -II is to find out the 
Pareto-optimal or noninferior solutions of designing the 
motor. The problem is also highly constrained. Genetic 
Algorithm is used to explore the design space so that it 
can direct the designers towards feasible design variables 
that can later be used in designing the product family. The 
problem will later be extended to find commonality 
between different motors. 

2 THE UNIVERSAL MOTOR PROBLEM 
Universal electric motors are so named for their capability 
to function on both direct current (DC) and alternating 
current (AC). Universal motors deliver more torque for a 
given current than any other kind of AC capable motor 
(Chapman, 1991). The high performance characteristics 
and flexibility of universal motors have led to a wide 
range of applications, especially in household use where 
they are found in, e.g. electric drills and saws, blenders, 
vacuum cleaners, and sewing machines (Veinott and 
Martin 1986). 

According to Meyer and Lehnerd (1997), in the 1970s 
Black & Decker developed a family of universal motors 
for its power tools in response to a new safety regulation: 
double insulation. Prior to that, they used different motors 
in each of their 122 basic tools with hundreds of 
variations, from jig saws and grinders to edgers and hedge 
trimmers. Through redesign and standardization of the 
product line, they were able to produce all of their power 
tools using a line of motors that varied only in the stack 
length and the amount of copper wrapped within the 
motor. As a result, all of the motors could be produced on 
a single machine with stack lengths varying from 0.8 in to 
1.75 in, and power output ranging from 60 to 650 W. By 
paying attention to standardization and exploiting 
platform scaling around the motor stack length, material 
costs dropped from $0.77 to $0.42 per motor while labor 
costs fell from $0.248 to $0.045 per motor, yielding an 
annual savings of $1.82 million per year. Tool costs 
decreased by as much as 62%, boosting sales, increasing 
production volumes, and further improving savings. 
Furthermore, new designs were developed using 
standardized components such as the redesigned motor, 
which allowed products to be introduced, exploited and 
retired with minimal expense related to product 
development. Our goal is to demonstrate the use of the 

Genetic Algorithms to design a family of universal motors 
in a similar manner, starting with designing a single motor. 

A schematic of a universal motor is shown in Figure 1. As 
shown in the figure, a universal motor is composed of an 
armature and a field which are also referred to as the rotor 
and stator, respectively. The armature consists of a metal 
shaft and slats (armature poles) around which wire is 
wrapped longitudinally as many as thousands times. The 
field consists of a hollow metal cylinder within which the 
armature rotates. The field also has wire wrapped 
longitudinally around interior metal slats (field poles) as 
many as hundreds of times.  

In this example problem, the design variables of interest 
for the universal motor are: the wire cross-sectional areas 
and numbers of turns in both the field and the armature; 
the radius, thickness, and stack length of the motor; and 
the current drawn by the motor. 

Several textbooks are available for analyzing the 
performance of universal motors (Shultz 1992; Nasar and 
Unnewehr 1983; Veinott and Martin 1986; Chapman 
1991). Such texts make use of the performance equations 
in terms of variables and constants (such as the magnetic 
field strength, the magnetic flux, and the motor constant 
K) which vary with respect to the physical dimensions of 
the motor; however, they do not detail the specific 
relationships between the physical dimensions of the 
motor and the resulting performance parameters. 

A more sophisticated approach is presented by Kawanda 
(1965) to analyze the design factors associated with 
universal motor. The approach is based upon 
measurements of an existing universal motor, and it is 
neither intended, nor applicable, to an original design 
problem. Similarly, Dickin-Zangger (1962) presents a 
method for estimating the distribution of energy in a 
universal motor based on purposeful testing, as a basis for 
analytical and comparison of existing universal motor 
designs. Again, this approach does not provide 
relationships between physical motor dimensions and 
performance before a motor is actually built. In summary, 
the design literature of universal motors, where available, 
does not include a model (of any complexity) which 
relates physical parameters to resulting performance as 
we seek to develop. 

 

 
Figure 1: Universal motor schematic (GS Electric 1997) 
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For more detailed motor schematics, see Figure 2. 

 
Figure 2: Detailed Universal motor schematic (Simpson et 

al., 2001) 

In design related work, Wijenayake et al. (1995) develop 
a model for design optimization of permanent magnet 
motors that is rather complex with 53 input variables and 
36 output variables. It is not applicable to universal motor 
design because permanent magnet motors use permanent 
magnets instead of wire coils to create a magnetic field. 
Boules (1990) present a similar approach for the design 
optimization of permanent magnet motors. Therefore, in 
order to provide computer simulation of universal motors, 
a mathematical model needs to be developed with input of 
physical motor dimensions and output of motor 
performance measures. Such a model is derived next. 

In order to minimize power losses within the core of the 
motor when operating on AC power, a universal motor is 
constructed with slightly thinner laminations in both the 
field and the armature and less field windings. However, 
the governing electromagnetic equations for the operation 
of a series DC motor and a universal motor running on 
DC current are identical (Chapman 1991). The 
performance at full-load torque of a universal motor 
running on AC current is only slightly less than the 
performance of the same motor running on DC current. 
This discrepancy in performance is due to losses caused 
by the inherent oscillation in alternating current; for an 
overview of the losses associated with AC operation (see 
Chapman 1991). 

These extra losses incurred in AC operation of a universal 
motor are difficult, if not impossible, to model 
analytically; thus, complicated finite element analyses are 
becoming more popular for modeling motor behavior 
under AC current. Since such a detailed analysis is 
beyond the scope of this work, the derived model for the 
performance of the universal motor is for DC operation 
for which simple analytical expressions are known or can 
be derived. Moreover, several texts indicate that the 
performance of universal motors under AC and DC 
conditions is quite comparable up until full load torque 
(Shultz 1992; Nasar and Unnewehr 1983; Veinott and 
Martin 1986; Chapman 1991); Shultz states that 
"Universal motors ... will operate either on DC or AC up 
to 60 Hz. Their performance will be essentially the same 
when operated on DC or AC at 60 Hz." For this work, all 
motors are designed for operation at full-load torque. 

Thus, it is assumed that designing a universal motor for 
DC conditions yields satisfactory performance for AC 
conditions as well.  

The formulae used for calculation of motor outputs, such 
as, power, torque, mass, and efficiency are illustrated in 
the following sections. 

2.1 POWER 

The basic equation for power output of a motor is the 
input power minus losses, where the input power is the 
product of the voltage (V) and current (I). 

P = Pin – Plosses = VI – Plosses   (1) 

For a universal motor, power is lost in (i) the copper wires 
as they heat-up (copper losses), (ii) at the interface 
between the brushes and the armature (brush losses), (iii) 
in the core due to hysteresis and eddy currents (core 
losses), (iv) in mechanical friction in the bearings 
supporting the rotor (mechanical losses), (v) in heating up 
the core and copper which adversely effects the magnetic 
properties of the core (vi) and the current carrying ability 
of the wires (thermal losses). For this analysis thermal 
losses, core losses, mechanical losses, and stray losses are 
neglected. The combined effects of all the aforementioned 
neglected losses will, conversely, decrease the output 
power and efficiency fro m the predicted value from the 
model. However, the following equations serve as a 
sufficiently accurate model for the DC operation of a 
universal motor. 

Plosses = Pcopper + Pbrush  (2) 

Pcopper = I2(Ra  + Rs) (3) 

Ra and Rs are the resistances of the armature and field 
windings. 

Pbrush = 2I (4) 

2.2 TORQUE 

Te torque of a DC motor is given by the product of a 
motor constant, K, the magnetic flux, f, and the current, I. 

T = K f I (5) 

2.3 MASS 

The mass of the motor includes mass of the stator, 
armature, and windings. The motor is modeled as a solid 
steel cylinder with length L for the armature and a hollow 
steel cylinder with length L, outer radius ro, and inner 
radius (ro-t) for the stator. 

Mstator = ∏ . (r0
2

 – (r0 - t)2.L. ρ steel (6) 

Marmature =∏. ( r0 – t - lgap)2.L. ρ steel (7) 

Mwindings =∏. ( r0 – t - lgap)2.L. ρ steel (8) 

2.4 EFFICIENCY 

The basic equation for efficiency, expressed as a decimal 
and not a percentage, is given by, 
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inP
P

=η  (9) 

 

For more detailed motor schematics, operation and 
performance measure see Simpson et al. (1999, 2001). 

3 EVOLUTIONARY ALGORITHMS 
AND NSGA II 

Evolutionary Algorithms (EAs) are search and 
optimization algorithms inspired by the process of natural 
evolution. Current evolutionary approaches include 
Evolutionary Programming, Evolution Strategies, Genetic 
Algorithms, and Genetic Programming (Fonseca and 
Fleming, 1998).  

The Genetic Algorithm (GA) technique was first 
conceived by Professor John Holland of University of 
Michigan, Ann Arbor in 1975. GAs are adaptive 
stochastic optimization algorithms involving search and 
optimization.  Instead of working with a single solution at 
each iteration, a GA works with a number of solutions 
(collectively known as a population). GAs are based on 
the notion of the “survival of the fittest”, and they operate 
by searching for and choosing optimal solutions in much 
the same way that natural selection occurs. GAs only use 
the objective function while searching for optimized 
result and not the derivatives, therefore it is a direct 
search method. GAs work with a coding of the parameter 
set (set of strings/individual chromosomes), and not the 
parameters themselves and use probabilistic transition 
rules (Goldberg, 1989).  

Usually there are only two main components of most 
genetic algorithms that are problem dependent: the 
problem encoding and the evaluation function. When the 
GA is implemented it is usually done in a manner that 
involves the following cycle:  Evaluate the fitness of all of 
the individuals in the population. Create a new population 
by reproduction. The reproduction process for a pair of 
chromosomes involves duplicating the two individual 
chromosomes (the “parents”) and then choosing a place 
(site) on the chromosomes to crossover (or switch) 
information between them. This results in two new 
“children” chromosomes in the population, which could 
have higher fitness values than their "parents". Mutation 
can also occur when decision variable values in a 
chromosome are randomly changed. Then the old 
population is discarded and iteration is started using the 
new population. Every iteration of the algorithm is 
referred to as a generation. 

The exchange of information between chromosomes 
during crossover allows the algorithm to converge to a 
global, rather than a local, optimum (Goldberg, 1989). 
Even though the operators are simple, GAs are highly 
nonlinear, massively multifaceted, stochastic, and 
complex.  

The notion of Non-dominated Sorting Genetic Algorithms 
was first suggested by Goldberg (1989) and then 
presented by Srinivas and Deb (1995). Primarily, there are 
two tasks that a multi-objective GA should do well in 
solving multi-objective optimization problems (Deb, 
1999):  

1. Guide the search towards the global Pareto-optimal 
region, and  

2. Maintain population diversity in the current non-
dominated front. 

 

 

Figure 3: Working Principle of a NSGA  

(Dias and Vasconcelos, 2002) 

Weile et al. (1996), indicate that the NSGA finds more of 
the Pareto frontier and maintains diversity of the 
population in subsequent generations when compared 
with Niched Pareto GA and the Crowded Tournament 
Pareto GA. Figure 1 shows the working principle of 
NSGA .  

Mathematically Multiobjective optimization problems are 
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and x is the vector of decision variables, y  is the objective 
vector, X is the decision space, and Y is called the 
objective space. The solution of (1) is usually no unique, 
but a set of equally efficient, noninferior or nondominated 
solutions (Dias and Vasconcelos, 2002). 

The effectiveness of the NSGA comes with an added 
computational expense due to its ranking and sharing 
functions. The NSGA arranges all solutions into fronts 
that are Pareto optimal with respect to the multiple 
objectives, and the NSGA can generate a Pareto tradeoff 
curve faster than it would take a simple GA using the 
weighted sum or constraint methods, which are more 
traditional multiobjective optimization techniques. In 
order to sort a population size N according to the level of 
non-domination, each solution must be compared with 
every other solution in the population to find if it is 
dominated. This requires O(mN) comparisons for each 
solution where m is the number of objectives. When this 
process is continued to find the members of the first non-
dominated class for all population members, the 
complexity is O(mN2). At this stage, all individuals in the 
first non-dominated front are found. In order to find the 
individuals in the next front, the solutions of the first front 
are temporarily discounted, and the procedure is repeated. 
in worst case, the task of finding the second front also 
requires O(mN2) computations. The procedure is repeated 
to find the subsequent fronts. As can be seen, the worst 
case (when there exists only one solution in each front), 
the complexity of this algorithm is O(mN3). A fast non-
dominated sorting approach that requires at most O(mN2) 
computations is described next; it is part of the NSGA-II 
algorithm that is employed in this work. The source code 
for the NSGA -II algorithm is written in C and is available 
from Kanpur Genetic Algorithm Lab at: 
<http://www.iitk.ac.in/kangal/soft.htm>.  

The implementation of Non-dominated Sorting Genetic 
Algorithm is briefly explained in this section. First, for 
each solution two entities are calculated: (i) ni, the number 
of solutions which dominate the solution i, and Si, a set of 
solutions which the solution i dominates. All points that 
have ni= 0 are identified and placed in a list f1. This f1 is 
called the current front. Now, for eachsolution in the 
current front each member j is visited in its set Si and its 
nj count is reduced by one. In doing so, if for any member 
j the count becomes zero, it is placed in a separate list j. 
When all members of the current front have been checked, 
the members in the list f1 are declared as members of the 
firt front. This process is continued using the newly 
identified front H as the current front. This procedure is 
called the fast non-dominated sort method.  

In the NSGA -II, a random parent population P0 is first 
created. The population is then sorted based on the non-
domination. Each solution is assigned a fitness equal to its 
non-dominated level (1 is the best level) where, 
minimization of fitness is assumed. Binary tournament 
selection, recombination, and mutation operators are used 
to create a child population Q0 of size N. From the first 
generation onwards the procedure is different. 

For generations t =1, a combined population Rt = Pt U Qt 
is formed first, which is of size 2N. The population Rt is 
then sorted according to non-domination. The new parent 
population Pt+1 is formed by adding solutions from the 
first front until the size exceeds N. Thereafter, the 
solutions of the last accepted front are sorted according to 
=n, and the first N points are picked. This is how the 
population Pt+1 of size N is constructed. This population 
of size N is now used for selection, crossover, and 
mutation to create a new population Qt+1 of size N. It is 
important to note that a binary tournament selection 
operator is used, but the selection criterion is now based 
on the niched comparison operator =n.  

4 PROBLEM REPRESENTATION AND 
PARAMETER SELECTION 

There are eight design variables that are used to evaluate 
the motors. The following sections describe the design 
variables, as well as the constraints used in the design 
problem. 

4.1 DESIGN VARIABLES  

The design variables and ranges of interest for each motor 
are as follows. 

1. Number of wire turns on the motor armature, Nc  (100 
= Nc = 1500 turns) 

2. Number of wire turns on each field pole, Ns (1 = Ns = 
500 turns) 

3. Cross-sectional area of the armature wire, Awa (0.01 
= Awa = 1.0 mm2) 

4. Cross-sectional area of the field wire, Awf (0.01 = 
Awf = 1.0 mm2) 

5. Radius of the motor, ro (0.01 = ro = 0.10 m) 

6. Thickness of the stator, t (0.0005 = t = 0.10 m) 

7. Current drawn by the motor, I (0.1 = I =6.0 Amp) 

8. Stack length, L (1 = L =0.2 m) 

The terminal voltage, Vt, is fixed at 115 volts to 
correspond to standard household voltage, and the length 
of the air gap, lgap, is set to 0.7 mm which is considered 
the minimum possible air gap length. A minimum air gap 
length is always desired because it maximizes torque 
while minimizing mass. 

4.2 CONSTRAINTS 

The constraints for each motor are listed in Table 1. The 
constraint on magnetizing intensity ensures that the 
magnetic flux within each motor does not exceed the 
physical flux carrying capacity of the steel (Chapman 
1991). The constraint on feasible geometry ensures that 
the thickness of the stator does not exceed the radius of 
the stator since the thickness is measured from the outside 
of the motor inward. The required output power is taken 
as 300 W. This equality constraint is handled by putting it 
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in the objective function of NSGA II, which gave better 
results than formulating it as constraints. The objective 
for power was multiplied by a large factor to direct the 
search towards the targeted power. 

Table 1: Design Constraints 

Sl. 
No. 

Goal Constraint 
Type 

Value 

1 r0/t > 1 

2 P = 300 watt 

3 ?  = 0.7 

4 T = 0.05 Nm 

5 M = 2.0 Kg 

6 SAT = 5000 A turns/m 

4.3 GOALS 

There are three goals for the motor:  

1. Maximize Efficiency (?) 

2. Minimize Mass (M) 

3. Maximize Torque(T)  

As shown in Table 1, a lower bound for efficiency, and 
torque, and a upper bound for mass have been imposed 
for the motor.  

The equations to calculate the goals are derived from 
Chapman (1991) and Cogdell (1996) for DC electric 
motors unless otherwise noted. 

This genetic algorithm will later be extended to the family 
of motors and commonality between the products will be 
explored. 

4.4 NSGA II PARAMETERS 

Reed et al. (2000) present a 3-step methodology for the 
design of simple genetic algorithms that accounts for 
population sizing, selection pressure, and the influence of 
crossover and mutation on real-world computationally 
intensive applications.  

To determine the range of potential population sizes, in 
the first run a small population size was used and the 
population size was doubled with each successive run. 
The percentage change in number of nondominated 
individuals for two successive run is calculated for each 
successive run. The population size increase is no longer 
done when the percentage change in number of non 
dominated individual fell below a pre specified value (see 
equation 11). 

∆nd 
1

1 ||
100

−

−−
<

n

nn

I
II

  (11) 

Where, ∆ nd is the pre specified percentage change. In 
and In-1 are the number of non- dominated individuals in 
successive runs. The result of the analysis is shown in 

Figure 4. Majority of the applications use probability of 
crossover Pc between 0.6 and 0.9. To keep the disruptive 
effect of crossover for diversification, the crossover 
probability is kept at 0.7. Probability of mutation is taken 
as inverse of population. The number of real coded 
variables in the problem is eight with no binary 
representation. NSGA II code was modified to keep the 
first two variables, Nc and Ns, as integers by rounding off 
to the next integer value. 

 
Figure 4: Change in number of Non-dominated Solutions 

5 RESULTS 
The results of the NSGA II run gave good insight to the 
interdependencies of design variables. It was observed 
that there is a significant increase in the value of torque 
with increase in the mass of the motor. The Pareto front 
for only torque and mass is shown in figure 5. 

Figure 6 gives the 2D representation of the solution space 
for mass and torque.  

The efficiency of the motor doesn’t vary much over the 
solution space and it remains in the region of 0.7 to 0.96. 
As already mentioned in section 2, the efficiency of the 
motors will appear higher than the actual values due to the 
assumptions made in calculation of power loss.  

Figure 7 shows the Pareto front for only efficiency and 
mass, and Figure 8 shows the whole solution space. 

 
 Figure 5: Pareto front for Mass vs. Torque of the Motor 

It is clear from figure 5 that with increasing torque of the 
motor its mass increases.   
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Figure 6: Solution space for Mass vs. Torque of the Motor 

 
Figure 7: Pareto front for Mass vs. ? of the Motor 

Also, increase in efficiency results in increase in mass. 
But it can be concluded from the results shown in figure 
5-8 that it is easier to achieve the desired efficiency in the 
family of motors for a given mass than achieving the 
torque.  

 
Figure 8: Solution space for Mass vs. Torque of the Motor 

To find the common design variables in the search space a 
product family penalty function has to be introduced in 
the GA formulation which will try to find common design 
variables while maintaining the feasibility and desired 
output performance. 

Also, offline analysis of the results will yield better 
analysis of the solution space and the trade off between 
various design variables. 

6 CONCLUSIONS 
As seen from the results the outputs  form a Pareto frontier 
while designing the universal motor.  The complexity of 
the problem will rise with the introduction of Product 
Family Penalty Function (Messac et al., 2002) to design 
the product family of universal motors.  

The formulation of the problem will also change. Some of 
the possible methods of going forward are: 

1. Individually optimize the products and do an offline 
analysis of the results to figure out the product family 

2. Attach an extra binary header to each generation 
which will decide on which variables to keep 
common and which ones not, and then let the Genetic 
Algorithm find the product family  

3. Introduce a penalty function for each variable that 
will give preference to commonality in product 
variables in the phenotypic space. 

The decision regarding the parameters for the NSGA II 
for such a large problem will have to be carefully given to 
get any feasible results. 
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