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Abstract 
In this work, multi-objective evolutionary 
algorithms are used to model and solve a three-
stage supply chain problem for Pareto 
Optimality. Typically all supply chain problems 
are characterized by decisions that are 
conflicting by nature. Modeling these problems 
using multiple objectives gives the decision 
maker a set of Pareto optimal solutions from 
which to choose. This paper discusses some 
literature in supply chain optimization and 
proposes the use of multi-objective evolutionary 
algorithms to solve for Pareto-optimality in 
supply chain optimization problems. This work 
specifically deals with the implementation of the 
Non-dominated Sorting Genetic Algorithm–II 
(Deb et al, 2002) (NSGA-II) to a hypothetical 
but realistic supply chain problem having three 
stages. It is followed by a discussion on 
evolutionary algorithms and performance of 
NSGA-II for this application. 

1 INTRODUCTION 
Ensuring competitiveness in today’s globally connected 
marketplace is very demanding and calls for different 
business strategies than what were employed by 
businesses in the past. Today’s businesses have to be 
more adaptive to change. In order to stay competitive and 
continue to subsist they need to be better suited to handle 
fluctuations in an ever-changing market than their 
competitors. Production and manufacturing 
establishments are also faced with such challenges in 
addition to managing and fine-tuning their supply chains. 
As described by Hicks, 1999 supply chains can be defined 
as “...real world systems that transform raw materials and 
resources into end products that are consumed by 
customers. Supply chains encompass a series of steps that 
add value through time, place, and material 
transformation. Each manufacturer or distributor has 
some subset of the supply chain that it must manage and 
run profitably and efficiently to survive and grow.” 

From the above definition it is comprehensible that there 
are many independent entities in a supply chain each of 

which try to maximize their own inherent objective 
functions (or interests) in business transactions. Many of 
their interests will be conflicting. Thus, a specific scenario 
giving an optimal design configuration using traditional 
approaches could actually be a non-optimal design of the 
supply chain when we look at the design from a systems 
optimization perspective (with respect to a single 
objective in a two-objective problem). When conflicting 
interests occur in a problem, modeling the system using 
traditional optimization techniques (where there exists 
one weighted objective function) does not commensurate 
intuitively with a robust formulation. The results could 
also be misleading in the very likely situation of a 
dynamic environment. 

The decision maker should ideally be presented with a 
vector of Pareto-Optimal solutions (also called efficient 
solutions), and depending on what his/her own intrinsic 
objective function is with respect to each objective 
function, he/she can choose the best design from the 
efficient set of solutions. As recent researchers rightly 
mention, supply chain problems are complex and difficult 
to solve (Truong and Azadivar 2003). The reasons could 
be the number of entities in the supply chain (length), the 
lead times at each node (Cakravastia et al, 2002), 
inventory management (Giannoccaro and Pontrandolfo, 
2002) , stochastic demand (Layth et al, 2003), logistics 
(Lummus et al, 2001) to mention a few. 

Genetic algorithms have been very reliable when 
combined with simulation techniques and other heuristic 
methods. Joines et al, 2002 use genetic algorithms 
together with a supply chain simulator to optimize 
ordering of products and raw materials. Truong and 
Azadivar, 2003 use genetic algorithms, mixed integer 
programming methods and simulation methods in a 
hybrid optimization technique in designing optimal 
supply chain configurations. Essentially many of the 
problems that occur in supply chain optimization are 
combinatorial in nature and picking the optimal solution 
or set of optimal solutions in the case of multi-objective 
formulations requires a robust and efficient algorithm that 
can efficiently search the entire objective space while at 
the same time using small amounts of computation time. 
Evolutionary algorithms perform well in this respect and 
have been reported in literature to give robust results 



when applied to many combinatorial problems. Another 
example is in which Jellouli and Chatelet, 2001 present a 
work where simulation methods and genetic algorithms 
were used for supply chain management in stochastic 
environments (stochastic demand, delivery times, and 
quantity shipped between nodes). 

This paper specifically deals with the modeling and 
optimization of a three-stage supply chain using the Non-
dominated Sorting Genetic Algorithm-II (Deb et al, 
2002). The three stages used in this study are suppliers, 
manufacturing plants and customer zones in order of their 
contributions to the chain. Effective description of supply 
chain problems requires for optimization of two or more 
objective functions simultaneously. This work considers a 
highly constrained two-objective problem formulation for 
the supply chain and proposes the utility of using 
evolutionary algorithms for supply chain analysis. 

2 SUPPLY CHAIN OPTIMIZATION 
The supply chain can be defined as an integrated system 
or network which synchronizes a series of inter-related 
business processes in order to: 

1. Acquire raw materials. 

2. Add value to the raw materials by transforming 
them into finished/semi-finished goods. 

3. Distribute these products to distribution centers 
or sell to retailers or directly to the customers. 

4. Facilitate the flow of raw materials/finished 
goods, cash and information among the various 
partners which include suppliers, manufacturers, 
retailers, distributors and third-party logistic 
providers. (Weber and Current, 1993) 

Thus the main objective of the supply chain is to 
maximize the profitability of not just a single entity but 
rather all the entities taking part in the supply chain. This 
can only be done if all the entities wish to optimize 
performance of the supply chain as a whole (system 
optimization) and do not place their individual 
preferences (individual optimization) above that of the 
system. There must also be complete integration among 
all the entities so that information can be shared in real-
time in order to meet the highly fluctuating demand of the 
customers. The important issues driving the supply chain 
and governing its design are: 

1. Inventory management 

2. Transportation and logistics 

3. Facilities location and layout 

4. Flow of information 

Therefore, to maximize the profitability of the entire 
supply chain it is definitely not enough to optimize these 
individual drivers separately. Objective functions 
capturing these drivers have to be optimized 
simultaneously. Using a goal programming approach  to 
optimization, for each of these individual drivers a 

tradeoff must be made so as to achieve the main objective 
or goal which is given the highest priority i.e. there should 
be no deviation from this goal or this goal has to be 
achieved irrespective of the other conflicting objectives. It 
is very obvious that in the above case it is not possible to 
get a unique solution that satisfies either all the criteria or 
the objectives because if all the objectives are satisfied 
then the solution obtained could be a non-Pareto optimal 
point. Hence we have to find a solution that will come as 
close as possible to satisfying the other stated goals in the 
order of preference specified in the goal programming 
model. 

Given the nature of the problem and inherent complexity 
associated with it, it is surprising that very little work has 
been done in this area. Some of the early attempts to 
model an integrated supply chain were mostly with single 
objective functions (Glover et al; Cohen and Lee, 1998; 
Arntzen et al, 1995). Recently researchers have started 
developing models based on multi-objective functions 
(Ashayeri and Rongen, 1997; Min and Melachrinoudis, 
2000; Nozick and Turnquist, 2001). These models do not 
however use an evolutionary algorithm perspective in 
developing the non-dominated Pareto front. Goal 
programming methodologies have also been used by 
researchers for many similar problems; but using goal 
programming methodologies one cannot develop the 
entire Pareto front. However, solutions to a goal 
programming problem involving multiple objectives are 
Pareto-Optimal solutions. Though goal programming has 
been used for individual problems like the vendor-
selection problem (Buffa and Jackson, 1983) or the trans-
shipment problem (Lee and Moore, 1973), it has not been 
used to model the entire supply chain. 

2.1 PROBLEM DESCRIPTION 
This problem attempts to capture the dynamics of a single 
product being manufactured out of three different 
components. There are five suppliers, three manufacturing 
plants and four customer zones as shown in Figure 1. As 
illustrated in Figure 1, the entities labeled S1-S5 denote  

Figure 1: Entities in the supply chain and flow of goods 

the five suppliers, those labeled P1-P3 denote the  three 
manufacturing establishments (plants) and entities labeled 
C1-C4 denote the four customer zones. The flow of goods 
is also shown for a general formulation where all the 



suppliers can supply all the plants with the components. 
In a more general formulation of this problem the three 
different components can be supplied by any of the five 
suppliers. These components can be shipped to any of the 
three plants where the product is made. Then they are 
shipped to the customer zones based on the demand. To 
mimic a realistic supply chain; some suppliers would be 
preferred over others depending on their policies which 
impact their previous performance, quality and timeliness 
of goods delivered. This argument is also valid in the case 
of the plants. Similarly depending on the amount of 
importance that is placed on a certain customer zone it 
would be beneficial to ensure that supply never falls short 
of demand at important customer zones, but to an extent it 
can fall short at less important ones. In this situation 
however a scenario is considered where only certain 
suppliers can supply certain plants. Thus they are 
predetermined and the algorithm does not need to choose 
suppliers to optimize the supply chain. 

Instead of a single objective function that is used in most 
traditional approaches this formulation has two 
conflicting objectives. Thus, we can obtain the entire 
Pareto front using NSGA-II (Deb et al, 2002). By 
changing our objective functions we can evaluate several 
different sets of objective functions. The algorithm can 
handle more than two objective functions, but in many 
real-life scenarios, objective functions might have 
interaction effects and analyzing two objectives at a time 
from a larger set of objectives helps simplify evaluation 
of the problem.  

2.2 PROBLEM DEFINITION 
Presented below is the formulation for the supply chain 
problem. A short description of the data values 
(constants) and variables are presented in this section. The 
principal set of indices used to denote the entities and the 
interactions between entities in the supply chain is given 
in Table 1. 

Table 1:  Indices Used In The Formulation 

Index Meaning Total 

i Component 3 

j Supplier 5 

k Plant 3 

l Customer Zone 4 

  

2.2.1 Derived Data Sets 
Using the indices from Table 1 we can derive sets which 
elicit the interactions between the different entities in the 
supply chain. These sets are: 

(i, j): Component-Supplier 

(i, j, k): Component-Supplier-Plant 

(k, l): Plant-Customer Zone 

The utility of these data sets will become clearer in 
subsequent sections. 

2.2.2 Data 
The following representation for data is used in this 
formulation. The data used in this model applies to 
suppliers, plants and customer zones. They can be fitted 
into two main categories i.e. costs and capacities. They 
are shown in Table 2. 

Table 2: Notation For Data 

 

2.2.3 Variables 
There are three kinds of variables used in this 
formulation; they are vendor shipment variables, plant 
shipment variables and inventory variables. They are 
listed in Table 3. There are a total of 36 variables. 

Table 3: Notation For Variables 

Variable Meaning 

Xi, j, k Amount of component ‘i’ from supplier ‘j’ to 
plant ‘k’ 

Yk, l Amount of product shipped from plant ‘k’ to 
customer zone ‘l’ 

Ii, k Inventory of component ‘i’ at plant ‘k’ 

2.3 PROBLEM FORMULATION 
This section provides for a discussion of the inequalities 
(or equalities) and linear formulations depicting the 
constraints and objective functions respectively. These 

Entity Notation Meaning 

Supplier L (i , j) Capacity of supplier ‘j’ for 
component ‘i’ 

Supplier CS (i, j) Cost of making a component 
‘i’ by supplier ‘j’ 

Supplier STC (i, j, k) Transportation cost of a 
component ‘i’ from supplier 
‘j’ to plant ‘k’/unit 

Plant U (k) Capacity of plant ‘k’ 

Plant LC (k) Labor cost of plant ‘k’/unit 

Plant MC (k) Manufacturing cost of plant 
‘k’/unit 

Plant IC (k) Inventory cost of plant 
‘k’/unit 

Plant PTC (k, l) Plant transportation cost 
from plant ‘k’ to customer 
zone ‘l’/unit 

Customer 
Zone 

D (l) Demand at customer zone ‘l’ 

Customer 
Zone 

SP (l) Selling price at customer 
zone ‘l’/unit 



formulations use four sets of two objective functions and 
different sets of constraints depending on which set of 
objective functions are used. 

2.3.1 Constraints 
The constraints listed below model the plant capacities, 
supplier capacities, inventory-balancing and total 
operating cost. 

These six sets of equations depict the constraints used in 
the problem. Set of equations (1) and (2) depict plant and 
supplier capacity respectively. Set of equations (3), (4) 
and (5) depict inventory balancing constraints for 
components 1, 2 and 3 respectively. The last equation, (6) 
depicts the total operating cost (TOC) which is a sum of 
the transportation costs from suppliers to plants and plants 
to customer zones (TC), total manufacturing costs [TMC; 
which include the plant labor, inventory (IC) and 
manufacturing costs (MC)] and supplier costs (SC). Note 
that in the above constraints a variable S(i, j) is present. In 
a more generic formulation of this problem, S(i, j) would 
be a binary variable denoting whether component i can be 
supplied by supplier j or not. However, in this 
formulation, the S(i, j) values are fixed. 

2.3.2 Objective Functions 
Four sets of objective functions are used in this 
formulation are as follows: 

Set 1: 

Objective Function 1: Min TOC 

Objective Function 2: Min MC/TOC 

A justification for using these objective functions is as 
follows. Minimizing the total operating cost is an 
important performance metric in supply chain 
management problems. The second objective function 
denotes minimizing the ratio of manufacturing costs to 
total operating cost. We would like to ensure that our 
manufacturing costs fall within a certain permissible 

bound as a percentage of the total operating cost. The 
decision maker based on his/her knowledge and expertise 
would be able to make an intelligible decision in choosing 
a solution. 

Set 2: 

Objective Function 1: Max Profit 

Objective Function 2: Min MC 

As can clearly be seen from Set 1 the two objective 
functions are conflicting because total operating cost 
features in the denominator in the second objective. In 
this set, the conflict is not so easily seen. The analysis will 
highlight the trade-off between the objectives. 

Set 3: 

Objective Function 1: Max Revenue 

Objective Function 2: Min MC 

In this set of objective functions the impact of the total 
operating cost is not taken into consideration. Only the 
revenue generated at the customer zones is considered. Its 
impact on the manufacturing costs is analyzed. In this set, 
the conflict in objectives cannot easily be seen from the 
equations that describe them. It is intuitive however that 
there will be conflict of interest when revenues and costs 
are studied. 

Set 4: 

Objective Function 1: Max Revenue  

Objective Function 2: Min TC 

This set of objectives is similar to that of set 3 except that 
here transportation costs are minimized, which feature as 
a necessary cost in every supply chain that has to be 
incurred in order to ensure interactions between the 
entities that make up the supply chain. 

3 MULTI-OBJECTIVE 
EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms are optimization algorithms that 
use the Darwinian theory of natural selection (Fogel, 
1997, Darwin, 1859, ch. 6) as basis for optimization. 
Evolution, which is a result of natural selection, is an 
optimization method (Fogel, 1997, Mayr, 1988, p 104) 
which has had the luxury of having many years to 
complete its optimization or at least reach some kind of 
stable equilibrium. Evolutionary algorithms mimicking 
this behavior were first thought of for use in optimization 
by Prof. John H. Holland of The University of Michigan 
at Ann Arbor [for more information, see Holland, 1975].  
There are many different types of evolutionary algorithms 
like genetic algorithms, evolutionary strategies (Rudolph, 
1997), genetic programming and evolutionary 
programming (Porto, 1997). Genetic algorithms can also 
be combined with other artificial intelligence techniques 
like neural networks (Yao, 1999). Other examples of 
evolutionary algorithms include ant colony optimization 
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(Dorigo et al, 1996) and simulated annealing (Kirkpatrick 
et al, 1983) to mention a few. 

In this application, evolutionary algorithms falling under 
the class of genetic algorithms (GAs) are used. Genetic 
algorithms (and similarly other evolutionary algorithms) 
are iterative and require a certain number of iterations (or 
generations) to converge to the optimal solution. Genetic 
algorithms work on the following principle: 

1. Create a random population of n individuals 

2. These solutions are then evaluated against a 
fitness function 

3. Create new members for the next population 
using the reproductive operators: crossover and 
mutation 

Fundamental to genetic algorithms are the three 
operators’ viz. selection, crossover and mutation. The 
crossover and mutation operators are diversity operators 
that bring diversity to the present population. Crossover is 
more explorative reproduction operator where traits from 
two individuals (parents) are combined to give traits for 
the new individual in the next generation (offspring or 
children). Mutation is a less explorative and is performed 
on a single parent by mutating one or more parameters. 
Individuals that perform better when evaluated with the 
fitness function continue to the next generation and less 
fit individuals die out [natural selection, Darwin, 1859].  

Genetic algorithms have traditionally been binary coded 
(handle binary representation of variables). However 
there are algorithms that can handle both real and binary 
coded variables. These traditional genetic algorithms 
could not handle multiple objectives and were meant to be 
used only for single objective optimization. Research in 
multi-objective genetic algorithms came about with the 
development of VEGA (Vector Evaluated Genetic 
Algorithm, Schaffer, 1984) and MOGA (Multi-Objective 
Genetic Algorithm, Fonseca and Fleming, 1993). Each of 
these algorithms suffered from their own setbacks. VEGA 
was a slight modification of traditional genetic algorithms 
and given m objectives, it randomly divides the 
population into m equal subpopulations. VEGA showed to 
be heavily biased toward one of the objectives functions 
in two-objective optimization problems. MOGA used 
stochastic universal selection, single point crossover and 
jump mutation. For fitness, MOGA used non-domination 
ranking and niching. It optimized the rank of the solution 
for lower rank. MOGA did not give robust results because 
it assigned ranks to individuals placed in non-dominated 
fronts (the front closest to the Pareto front) and higher 
ranks to those placed in fronts behind the 1st front. Since it 
essentially optimized ranks, individuals in later fronts 
eventually died out. This proved to be a potential problem 
for the rest of the analysis, because individuals in later 
fronts might be having information that can eventually 
help the algorithm find all the solutions in the Pareto Non-
Dominated front. 

Srinivas and Deb, 1994 presented NSGA (Non-dominated 
Sorting Genetic Algorithm) which was based exactly on 

MOGA except for a few changes in fitness assignment 
leaving the rest of MOGA unchanged.  NSGA uses fitness 
sharing and ranking. It also ensures that all solutions 
placed in fronts closest to the non-dominated front will 
have higher fitness values than solutions placed in later 
fronts. When using a niching method such as fitness 
sharing it is essential to define a value, �share which is a 
distance metric. If the distance between two individuals is 
greater than or equal to �share the individuals do not affect 
each other’s fitness (Mahfoud, 1997). NSGA also 
implements the O(MN2) non-dominated sorting algorithm. 
Thus for M objectives, one would need at the most O(N2) 
comparisons where N is the population size. NSGA was 
able to deliver very good results and found solutions that 
almost completely filled the true Pareto front when 
evaluated with test functions. But disadvantages with 
NSGA lied with the specification of �share, and that 
stochastic universal selection is a non-elitist selection 
method which does not provide for sufficient selection 
pressure.  

This paper utilizes the NSGA-II (Deb et al, 2002). 
NSGA-II uses a completely different methodology and 
implementation as compared to NSGA. NSGA-II 
implements elitism and crowded tournament selection. 
Elitism is a mechanism that ensures the best-fit 
individuals in a population are retained and thus one can 
be assured that good fitness obtained does not get lost in 
subsequent generations. Crowded tournament selection is 
a selection mechanism based on tournament selection 
whereby, a group of individuals takes part in a tournament 
and the winner is judged by the fitness levels (a 
combination of rank and crowding distance) that each 
individual brings to the tournament (Blickle, 1997). As 
noted by the authors, NSGA-II (Deb et al, 2002) handles 
the problems faced by earlier implementations of multi-
objective evolutionary algorithms by incorporating 
elitism, using O(MN2) non-domination sorting complexity 
and eliminating the need for specifying �share.  

A brief explanation of the steps involved in NSGA-II is 
presented below: 

1. A parent population called Pt is randomly 
generated and an offspring population Qt is 
created from it.  

2. Both populations Pt and Qt and combined into 
population of size 2N where N is the population 
size. This new population is called Rt. 

3. The population Rt undergoes non-dominated 
sorting where all members are classified and put 
into fronts. 

4. The best N individuals from Rt are selected using 
the crowding tournament selection operator and 
from the parent population of the next generation 
Pt+1. 

5. The steps 1-4 are repeated until the termination 
criteria have been satisfied. 

 



A typical mathematical formulation of a multi-objective 
optimization problem is as follows: 

  

 

 

 

 

 

As can be seen, the formulation presented in section 2.3 
agrees with the general template of equations (7) 
presented. 

The source code for NSGA-II is freely available for 
research purposes at the KanGal (Kanpur Genetic 
Algorithms Laboratory) website. The website is 
maintained by Dr. Kalyanmoy Deb and is a portal to his 
continuing research in GAs. The code is implemented in 
the C programming language. The motivation for using 
NSGA-II  in this paper is because it’s performance has 
been tested on several test functions and has given 
accurate results in generating the Pareto front as can be 
seen in Deb et al, 2002 and it is well supported by 
literature having been used in many real-world 
applications. 

4 IMPLEMENTATION AND RESULTS 
4.1 NSGA-II PARAMETER SETTINGS 
In Reed et al, 2000, a Three-Step Design Methodology is 
presented which helps to specify the parameters required 
by NSGA-II (Deb et al, 2002). These parameters are: 

1. Population size 

2. Crossover probability 

3. Mutation probability 

4. Number of generations 

For this paper, the crossover probability was set to 0.9 to 
allow for good explorative ability for the algorithm. The 
writers of NSGA-II suggest a range between 0.5 and 1.0 
for crossover probability. All the variables are real-coded 
and the code-writers suggest a mutation probability 
between 0 and (no. of variables)-1 [0.278]. To balance the 
heavy exploration of crossover, the mutation probability 
was set to 0.01. The suggestions provided in Reed et al, 
2000 for setting the population size are used. A small 
initial population size is used in the beginning and the 
population size is increased where at each step the 
percentage increase in the number of non-dominated 
solutions with respect to the previous step is noted. If this 
percentage increase falls below a certain pre-specified 
amount, then further increase in population size is not 
necessary. The formula used is as follows: 

 

 

Where, �ND is the pre-specified limit for percentage 
increase, K is the number of non-dominated solutions 
obtained in the run i+1 and A is the number of non-
dominated solutions obtained in the run i. The results for 
this preliminary analysis are shown in Figure 2. 

Figure 2 illustrates the finding that the percentage 
increase in the number of non-dominated solutions 
decreases with an increase in the population size. It was 
observed that beyond a population size of 100, the 
percentage increase in the number of non-dominated 
solutions was too low. Thus, it would not justify the 
overhead of additional computational complexity that 
would be incurred if a higher population size were to be 
chosen. Therefore a population size of 100 was chosen for 
all the analyses that follow this discussion. 

 

 

Figure 2: Change in the number of non-dominated 
solutions vs. population size.  

 

In the subsequent section the results for the optimization 
are presented for the two sets of objective functions. The 
population size used is 100 and the change in the Pareto 
front is evaluated for number of generations: 250, 500, 
700 and 1000. 

 

4.2 RESULTS 
NSGA-II gave good results and provided for a well 
populated Pareto front which a decision maker can use in 
making his/her analysis in choosing the solution that best 
embodies his/her intrinsic value for each objective. The 
results are presented for generation sizes of 500 and 700 
only. For objective functions Set 1 the results are 
presented in Figures 3 and 4 for generations of 500 and 
700 respectively. For objective functions Set 2 the results 
are presented in Figures 5 and 6 for generations of 500 
and 500 respectively. The results for objective functions 
Set 3 are presented in Figures 7 and 8 for generations of 
500 and 700 respectively and for objective functions Set 4 
in Figures 9 and 10, also for generations of 500 and 700 
respectively. 
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Figure 3: Trade-off between TOC and MC/TOC for 
Population Size = 100 & Number of Generations = 500 

 

 

Figure 4: Trade-off between TOC and MC/TOC for 
Population Size = 100 & Number of Generations = 700 

 

As is illustrated from Figures 3 and 4, the Pareto front of 
efficient solutions is well populated for both generation 
sizes and the total operating cost (TOC) seems to vary 
between the values of 80,000 and 130,000 while the ratio 
of MC/TOC varies between the ranges of 0.3 to 0.45. The 
results presented here are for a single random seed. It can 
also be seen from Figures 3 and 4 that increasing TOC 
causes a decrease in MC/TOC. There is a clear trade-off 
in this set of objective functions. The decision maker can 
thus use intelligible decision making based on expertise to 
evaluate the Pareto front and choose those solutions that 
would be most beneficial to the system from a systems 
optimization perspective. 

In general when a clear-cut decision cannot be made as to 
which solution is to be chosen, that solution which is 
closest (in terms of a pre-specified distance metric) to the 
extremum point which in this case would be the origin 
can be chosen as a candidate solution. This point (the 
origin) can be used as a reference point to evaluate the 

solutions presented on the Pareto optimal front. The 
decision maker can then evaluate the performance of this 
solution on the entire supply chain and then choose to 
accept or reject the solution for a better one. 

 

Figure 5: Trade-off between Profit and MC for Population 
Size = 100 & Number of Generations = 500 

 

Figure 6: Trade-off between Profit and MC for Population 
Size = 100 & Number of Generations = 700 

 

Figures 5 and 6 illustrate that the Pareto front of efficient 
solutions is well populated for both generation sizes and 
the values for profit vary between the 76,000 and 271,000 
while the values for manufacturing cost (MC) vary 
between 43,7000 and 132,000. The results presented here 
are also for a single random seed. It can also be seen from  
Figures 5 and 6 that increasing Profit causes a subsequent 
increase in MC. There results also show a clear trade-off 
in the given set of objective functions. 

In this case, the extremum point for the trade-off between 
a maximization-minimization problem would be the 
extreme point that gives the maximum profit and the 
minimum manufacturing cost. This is also a reference 
point that can be used for comparison when evaluating 
solutions. 



 

Figure 7: Trade-off between Revenue and Manufacturing 
Cost for Population Size = 100 & Number of Generations 
= 500 

 

Figure 8: Trade-off between Revenue and Manufacturing 
Cost for Population Size = 100 & Number of Generations 
= 700 

 

Figure 9: Trade-off between Revenue and Manufacturing 
Cost for Population Size = 100 & Number of Generations 
= 500 

 

Figures 7 and 8 present the trade-offs between revenue 
and manufacturing cost for a single random number seed. 
The Pareto front shows an almost linear profile, but the 
results indicate a clear trade-off between the two 
objectives where maximization of revenue gives a high 
manufacturing cost. 

 

Figure 10: Trade-off between Revenue and 
Manufacturing Cost for Population Size = 100 & Number 
of Generations = 700 

 

Figures 9 and 10 illustrate the trade-offs between revenue 
and transportation costs for a single random number seed. 
The results show that higher numbers of generations do 
not necessarily lead to more populated Pareto fronts in the 
case of some objective function combinations as is clear 
from Figure 10. However the results do indicate a clear 
trade-off between the two objective functions. 

 

4.3 PERFORMANCE 
A random seed analysis was performed for both sets of 
objective functions to obtain an idea about the stochastic 
nature of the results obtained through evolutionary 
computation. The runs were performed for a generation 
size of 500 and population size of 100 with other 
parameter settings remaining unchanged. The data is 
presented in Table 4 for Set 1 and in Table 5 for Set 2. 
The total number of random seeds in both analyses was 
51.  The results for Set 3 are presented in Table 6 and that 
for Set 4 in Table 7. A total of 54 random number seeds 
were used for the random seed analysis for Set 3 and 51 
random seeds were used for the analyses for Set 4. The 
random seeds were generated by a random number 
generator written in the C programming language and fed 
to NSGA-II one at a time to obtain the results. 

The results for performance include the maximum and 
minimum values of the objective functions over all values 
of random seeds and the corresponding values for the 
other objective at those maxima and minima. The results 
also contain values for the mean, standard deviation and 
the 95% confidence interval for each objective function 
set. The results provide for a synopsis of the random seed 



analysis and also contain a range for each objective 
fucntion.  

 

Table 4: Random Seed Analysis for Objective Function 
Set 1 

 Objective 
Function 

Corresponding 
Value 

Statistic TOC MC/TOC 
Max 175129.609375 0.327840 
Min 51477.074219 0.384800 

Mean 107536.784915  
Std. Dev 25380.061538  
95% Con 701.175982  

 MC/TOC TOC 
Max 0.494218 111098.085938 
Min 0.168562 87393.148438 

Mean 0.356052  
Std. Dev 0.051778  
95% Con 0.004525  

 

Table 5: Random Seed Analysis for Objective Function 
Set 2 

 Objective 
Function 

Corresponding 
Value 

Statistic Profit MC 
Max 280994.187500 129756.703125 
Min 52039.582031 37570.750000 
Mean 188021.082475  
Std. Dev 45594.950157  
95% Con 1260.279687  
 MC Profit 
Max 135679.109375 267313.718750 
Min 35442.843750 53814.980469 
Mean 87696.929625  
Std. Dev 18810.017051  
95% Con 519.9234197  

 

Table 6: Random Seed Analysis for Objective Function 
Set 3 

 

 Objective 
Function 

Corresponding 
Value 

Statistic Revenue MC 
Max 464739.875000 116392.10156300 
Min 284256.718750 69288.17968800 
Mean 386805.191991  
Std. Dev 39446.818147  
95% Con 1052.114310  
 MC Revenue 
Max 116392.101563 464739.87500000 
Min 69288.179688 284256.71875000 
Mean 95844.675456  
Std. Dev 10250.941854  
95% Con  273.4102021  

Table 7: Random Seed Analysis for Objective Function 
Set 4 

 

 
 

Objective 
Function 

Corresponding 
Value 

Statistic Revenue TC 
Max 497068.62500000 80233.38281300 
Min 308609.46875000 47546.85546900 
Mean 436037.48765828  
Std. Dev 36426.07053919  
95% Con 1032.84958016  
 TC Revenue 
Max 82803.61718800 493821.8750000 
Min 47546.85546900 308609.4687500 
Mean 66736.92726940  
Std. Dev 6267.46296005  
95% Con 177.71190774  

 

5 CONCLUSIONS 
This paper presents results for a hypothetical but realistic 
supply chain optimization problem. As can clearly seen 
by figures, NSGA-II provides a Pareto frontier of efficient 
solutions and these solutions can be used by the decision 
maker to design the supply chain. Tables 4 through 7 give 
a clear indication of the stochasticity involved. The 
potential to solve highly combinatorial problems using 
evolutionary algorithms is very large. Genetic algorithms 
have been under-utilized in this respect and hopefully, 
this paper illustrates that multi-objective evolutionary 
algorithms can be used to successfully model a supply 
chain. 

Notations 
MC : Manufacturing Cost 

TC : Transportation Cost 

TOC : Total Operating Cost 

6 FUTURE WORK 
The work elaborated in this paper is essentially work-in- 
progress and is ongoing. Future research initiatives 
include; 

1. Modeling the entities in the supply chain as agents. In 
this approach, the entities would be independent 
autonomous agents each trying to maximize its own set of 
objective functions by playing non-zero sum games. Non-
zero sum games can be used to incorporate co-ordination. 
In such games one player’s winnings does not necessarily 
have to come at the other player’s complete expense. In a 
two-player game, they can both gain by learning the set of 
parameters that will cause this co-ordination. Genetic 
algorithms would be well suited for such a combinatorial 
problem. 



2. Introducing a stochastic demand at each node (for each 
entity). In real-life scenarios, demand is more or less 
stochastic with a seasonal nature that encompasses it. 
Forecasting and other prediction methods can only help to 
estimate what demand might be like in a particular 
quarter, month or week. For robustness to be incorporated 
in a supply chain model, stochasticity of demand is an 
important characteristic that needs to be implemented. 

With both these characteristics implemented, multi-
objective system optimization of the supply chain is a 
challenging and interesting initiative. It would be apt to 
realize results which are similar to those elaborated in this 
work which would enable the decision maker is making 
even better choices of solutions. 
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