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Abstract 
 
Finding groups of individuals with similar activity patterns 
(a sequence of activities within a given time period, usually 
24 hours) has become an important issue in models of 
activity-based approaches to travel demand analysis. This 
knowledge is critical to many activity-based models, and it 
aids our understanding of activity/travel behavior. This 
paper aims to develop a methodology for the clustering of 
these patterns. There is a large number of well-known 
clustering algorithms, such as hierarchical clustering, or 
k-means clustering (which belong to the class of 
partitioning algorithm). However, these algorithms cannot 
be used to cluster categorical data, so they do not suit the 
problem of clustering of activity patterns well. Several 
other heuristics have been developed to overcome this 
problem. The k-medoids algorithm, described in this paper, 
is a modification of the k-means algorithm with respect to 
categorical data. However, similar to the k-means 
algorithm, the k-medoids algorithm can converge to local 
optima. 
This paper approaches the medoids-based formulation of 
clustering problem using genetic algorithms (GAs), a 
probabilistic search algorithm that simulates natural 
evolution. The main objective of this paper is to develop a 
robust algorithm that suits the problem of clustering of 
activity patterns and to demonstrate and discuss its 
properties. 

1. INTRODUCTION 
Finding groups of individuals with similar activity patterns 
(a sequence of activities within a given time period, usually 
24 hours) has become an important issue in models of 
activity-based approaches to travel demand analysis. This 
knowledge is critical to many activity-based models, and it 
aids our understanding of activity/travel behavior.  
Previous research (Pas 1983, Ma 1997) gave us evidence 
that people with similar socio-demographic characteristics 
have also often similar schedules.  
One direction of research focuses on the microsimulation 
of the observed activity patterns (Kulkarni and McNally 
2000). An essential step in their modeling effort is to find 
an average or typical schedule that represents the 
activity/travel behavior of these individuals. The ultimate 

goal of this project, then, is to find a relatively small set of 
activity patterns that would represent all observed patterns 
in given data set.  
The problem as stated belongs to the so-called subset 
selection problem that is interpreted as a special case of 
cluster analysis. The number of different partitions of N 
objects into K clusters, p(N,K), is extremely large. Everitt 
et al. (2001) provides an equation of how to compute 
p(N,K). To illustrate the complexity, let’s look at the 
following examples: p(10,3)=9330, and p(50,4) ? 5.3 x 
1067. In our case, the size of the data set, N, as well as  the 
number of clusters, is expected to be even higher. For this 
reason we are not able to evaluate all possible 
combinations.  
The data used in this paper are of the categorical type (as 
will be shown in section two). Many well-known 
clustering algorithms , such as hierarchical clustering and 
k-means clustering (Everitt et al. 2001), are not suitable 
for this type of data. They are based on Euclidean 
distances, and they need to find an average of several 
patterns. In our case, however, there is not a simple and 
realistic way to find the average of several schedules.  
Several heuristics have been developed to overcome this 
problem. For example, Kaufman and Rousseeuw (1990) 
described a modification of the k-means algorithm to suit 
categorical data. This algorithm is called medoid-based 
clustering, and it is described in greater detail in this 
paper. 
Similar to the k-means algorithm, the medoid-based 
algorithm can converge to local optima. For this reason 
this paper uses an alternate heuristic for the same 
formu lation of the problem. It is based on the principles 
of genetic algorithms (GAs), probabilistic search 
algorithms that simulate natural evolution.  
The main objective of this paper is to develop a robust 
algorithm that suits the problem of clustering activity 
patterns, and to demonstrate its properties. The algorithm 
should suit relatively large data sets to enable its 
application to real-world problems.  
Approaches based on genetic algorithms have usually 
many parameters that need to be set, such as the size of 
population, number of runs, probability of mutation, and 
others. The performance of the algorithms is often very 
sensitive to the setting of these parameters, but at the 
same time no general guidance about the parameter 
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setting exists, since it is problem specific. This paper 
shows the performance of the developed algorithm for 
different settings of parameters. The objective is to provide 
recommendations concerning parameter settings that 
would enable the broader use of this tool without the need 
for further in-depth study.   

2. THE DATA 
Knowledge of the data set’s structure would help to 
evaluate the algorithm and also it would enable more 
truthful discussion of its properties. For this reason, 
artificially generated data rather than observed data are 
used in this preliminary phase of the project. 
Before we describe the data set used for this analysis, the 
representation of activity patterns used in this paper must 
be discussed. 

2.1. REPRESENTATION OF ACTIVITY PATTERNS 

The proposed algorithm will be evaluated on its ability to 
cluster activity patterns. An essential feature for forming 
the activity patterns is the type of each activity. Though 
there are many different activity types that an individual 
can perform, only a limited number of activities will be 
considered in this work, for simplicity. The activities 
considered are: Home (everything that is an in -home 
activity), Work (work, work related or school), 
Maintenance (dining out, shopping and others) and 
Discretionary (social events, recreation, visiting friends 
and others)1.  
Within this project we use a discretized representation of 
the activity patterns. For each individual in the sample, we 
look at his activity participation in regular time intervals 
(10 minutes in this project) and record it. It means that the 
whole 24 hour long activity pattern consists of 144 values. 
Each of the values corresponds to an activity type. Integer 
values from the range 1 to 4 are used to represent given 
activity types; Home(1),Work(2), Maintenance(3), and 
Discretionary(4). It must be clearly stated that these values 
do not have real numerical meaning. The activity types are 
clearly of a categorical nature.  
For example, we can see ten activity patterns in Figure 1. 
They correspond to different types of activity patterns as 
described in the next chapter. The x-axis in this figure 
represents time per day (hours) and the y-axis represents 
the four activity types as described above. For example, the 
first pattern shows the schedule of an individual who left 
from home to work at about 9:30 am, he went for lunch at 
about 11 am (maintenance activity) and returned back to 
work at about noon. This individual returned back home 
                                                                 
1 The algorithm developed in this project should be general enough to 
enable later extension to more activity types. We might want to 
distinguish if the four activities were undertaken alone or joint with some 
other family member1. This step will increase the number of activity types 
up to ten.  
 

shortly before 6 pm. The other patterns in Figure 1 can be 
understood similarly.  
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Figure 1: Examples of generated activity patterns. There 
are two patterns of each type; standard work (SW), power 
work (PW), late work (LW), work discretionary (WD), and 
various short activities (VSA), as described in chapter  2.2. 

2.2. SYNTHETIC DATA 

The data used in this paper are generated artificially so 
their structure is known, but at the same time they should 
realistically represent the observed patterns. In order to 
meet these objectives, five different groups of schedules, 
using results reported by Kulkarni and McNally (2000) 
were generated in this paper. Examples of two schedules 
from each group are shown in Figure 1.  
The first group is called standard work  (SW). As the 
name implies, people in this group work for about 8 
hours. Their work starts sometimes in the morning 
(between 7 am and 9 am). Some of these individuals go 
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for lunch at about noon (maintenance activity up to one 
hour long). 
The second group, called power work  (PW), contains of 
people whose schedules are similar to those in the previous 
group, only their work activity is in average two hours 
longer, for example from 8 am to 6 pm. 
The next group is called late work  (LW). People in this 
group also have, on average, an 8 hour-long working day 
(similar to SW), but their work starts in the afternoon, 
around 2 pm.  
The fourth group is called work discretionary (WD). 
People in this group have standard work starting in the 
morning, but they participate in some discretionary activity 
after work. Some people in this group go to the 
discretionary activity directly from work, some people first 
stop at home. 
The last group is called various short activities (VSA). 
People in this group participate in several activities (up to 
five per day). Their type varies randomly among work, 
maintenance and discretionary type. 
The code enables the user to set the number of schedules 
generated in each group, as well as set all probabilities (for 
example probability to go for lunch for the first two 
groups) and the starting and ending times for each activity. 
The data, as generated, are rather similar to the observed 
schedules of individuals. However, this brings also a 
challenge to the algorithm. The groups (or clusters) of the 
data are overlapping. It is not true that schedules in one 
generated group are the closest to each other based on the 
used dissimilarity measure. Unfortunately, this is also the 
case of any observed data.  

3. MEDOID BASED CLUSTERING  

The method in this paper is based on so called k-medoid 
clustering (Kaufman and Rousseeuw 1990, Huang 1997). 
Consider a set S={S1, …, SN} of N  objects (in our case 
activity patterns). Each object Si is a vector, containing of 
L integer values describing an activity type at particular 
time instant. Our objective is to find K objects, K<<N, 
which represent all objects in the data set. The remaining 
objects are then assigned to the nearest representative 
object, using a given dissimilarity measure.  
A simple example of 12 two-dimensional objects is shown 
in Figure 2. The arrows in this figure point to objects that 
represent each of the clusters. These representative objects 
are called medoids, because we expect them to be located 
in the center of each cluster. Each object in the data set 
belongs exactly to one medoid. All objects belonging to the 
same medoid form a cluster. The objects in each cluster are 
clearly more similar (based on given dissimilarity measure) 
to each other than to objects in any other group. 

Objects (activity patterns)Objects (activity patterns)
 

Figure 2: Suggested principle of k-medoid clustering 
approach 

The developed algorithm requires the number of clusters, 
K, to be known. In order to find the optimal number of 
clusters, the algorithm will be repeated for different 
numbers of clusters. The optimal number will be chosen 
off-line, after the clustering problem for different K will 
be performed. 
  
Mathematically, we are looking for a set of K objects that 
minimize the following objective function:  
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DK  is the sum of dissimilarities of the particular medoids 
to all other members of the same cluster. In case the 
arrows in Figure 2 represent the dissimilarity among 
objects, the objective function DK can be understood as 
sum of the length of all the arrows. We are seeking the 
medoids so that this sum is minimal.  

3.1. DISSIMILARITY MEASUR ES 

A very important issue in any clustering algorithm is 
definition of dissimilarity between two objects. We 
cannot use common Euclidean distance, because we deal 
with objects of a categorical type (activity types). The 
distance measure that used in this paper is defined in 
Huang (1997) as follows: The dissimilarity measure 
between two objects S1, and S2 reflects the total number 
of mismatches of activity types at a corresponding time 
index.  This can be written as:  
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and ls denotes the length of the schedule (in our case ls 
equals to 144). Therefore, the value of the dissimilarity 
measure between two patterns can range in our case from 
0 (the two patterns are the same) to 144 (totally different). 
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4. GA BASED APPROACH TO K-MEDOID 
CLUSTERING 

Several different representations have been used in the 
literature (for an overview see Lozano and Larranaga 1996, 
or Estivill-Castro and Murray 1997, Moraczewski et. al. 
1995, Maulik and Bandyopadhyay 2000, and others). The 
most suitable representation for the given problem 
(considering the size of the problem and also its categorical 
character) can be adapted, for example, from Lucasius, et 
al. (1993). 
Each chromosome is a vector of the length K (number of 
clusters), and every element is obtained from a uniform 
distribution in the range (1,N). The ith value is an index of 
the ith median. For example, if K equals 6, and the medoids 
are patterns with numbers 4, 23, 43, 54, 120, and 130, the 
result chromosome is, for example, the following vector [4, 
120, 43, 23, 54, 130] (there is more than just one 
representation of the same solution). The objective 
function of each chromosome is computed based on 
equation (1) in this paper.  
One advantage of integer representation is that we do not 
have to convert chromosomes into phenotypes before 
computing value of the objective function, and so we save 
computational time. 
 
Two different algorithms have been developed. Model 1 is 
an integer coded GA with (?+?) binary tournament 
selection (the symbols ? and ? are common in the GA 
related literature and represent the parent and children 
population respectively). 
Model 2 is a modification of model 1. It modifies the 
selection operator to maintain more diversity in the 
population. The principle of the selection operator is 
briefly described in this paragraph and also shown in the 
provided pseudo-code. Given two randomly selected 
parents, we apply a recombination and mutation operator 
and so produce two offspring. The selection operator is 
applied to the set of both parents as well as both offspring. 
Two best chromosomes are deterministically selected from 
this set. The pseudo-code for both models is provided in 
the section below. 
 
 
Notation: 
  GN ... number of generations 
  NP ... size of population 
  pi ... parent i 
  ci ... offspring i 
  PmB  ... probability of in-built mutation 
  P(t) ... population at time t 

 

 

Pseudo-code for Model 1: 

for t = 1: GN,    
      P(t) ß shuffle (P(t-1))  
     for j=1:NP/2-1, 

p1 = P2j+1(t) 
p2 = P2j+2(t) 
{c1,c2} ß recombine (p1,p2) 
{c1’,c2’} ß mutate (c1,c2) 
append {c1’,c2’} to matrix C 

       end  
Create matrix Q that combines both, 
parents and offsprings {P;C} 
Binary tournament selection (matrix Q) 

end 

Pseudo-code for Model 2: 

for t = 1: GN,     
P(t) ß shuffle (P(t-1))    
for j=1:NP/2-1,  

p1 = P2j+1(t) 
p2 = P2j+2(t) 
{c1,c2} ß recombine (p1,p2) 
{c1’,c2’} ß mutate(c1,c2) 
select 2 best individuals from the 
set { p1, p2, c1’,c2’} and place them 
to the new population P(t+1) 

end 
end 

4.1.1. Population Management 

In order to improve the performance of the algorithm, a 
method of multi-population approach similar to Reed 
(2002) is used. The algorithm performs several iterations. 
The population size is doubled in every iteration, by 
adding a randomly initiated population. The inserted 
population has the same size as the current population. 
This doubling of population aims to decrease the 
computational time, it helps to prevent premature 
convergence, and also it aims to decrease the sensitivity 
of the algorithm to the setting of its parameters, such as 
size of population, number of runs, or the random number 
seed used. 
Figure 3 shows an example of progress of the best and 
average fitness function for each generation. In this 
example there are 300 objects in the data set (N). The 
algorithm performs forty runs (GN) for each population 
size (NP = 10, 20, 40, and 80). 
The points of injection (every GN = 40 populations) show 
a large increase in the average fitness function. This 
reflects the fact that the diversity in the population 
increases by inserting random individuals. This also often 
leads to imp rovement of the best fitness function shortly 
after insertion of new random individuals. 
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Figure 3: The progress of the best and average fitness for 
DATA 300 and four iterations (3 injections) - example. 

4.2. DETAILED DESCRIPTION OF THE 
ALGORITHMS  

The whole initialization phase, as well as the 
recombination and mutation operator, is  the same for both 
developed models. The main difference is in the 
management of the population and in the selection process. 
The following paragraphs explain the elementary building 
blocks of the algorithm in more detail. 

 
Create initial population.  

The size of each population is denoted NP. The initial 
population is created randomly. Each value is an integer 
number in the range of 1 to N  (number of objects in the 
data set). It is ensured that the values within each 
chromosome are unique (not repeated). 

 
D_MX recombination with in-built mutation 

Several recombination operators were considered in 
this project. The use of the standard operators, such as 
uniform crossover, is problematic, because they 
produce infeasible offspring (the values in each 
chromosome cannot be repeated). The Random 
Respectful Recombination (R3) as described by Estivill-
Castro and Murray 1997 was also considered. Its 
principle is based on the theory of building blocks (De 
Jong et al. 1997). If a certain value is present in both 
parents, it must be present also in both children. The 
rest of the algorithm is the same as for uniform 
crossover (however, feasibility of offspring is ensured 
by this algorithm).  
The author decided not to use this operator, because it 
might decrease the diversity of offspring and lead to 
premature convergence to a suboptimal solution. This is 
true especially in case of clustering, when the length of 
each chromosome is short. 

The recombination operator, D_MX (Mixed Subset 
Recombination), used in this project was slightly 
modified from Lucasius et al. (1993). The “D” in its 
names reflects the fact that it is applied “directly” to 
the phenotype, rather than to the binary representation 
(genotype). The operator, when applied to two parent 
strings (P1, P2) produces two offspring (C1,  C2), and 
works as follows: 

1) Mix P1 and P2: 
a. Append copy of P1 at the end of P2, and 

form a vector Q.  

b. Randomly scramble the elements in Q.  
2) Apply the built-in mutation to all elements in Q 

(this step is different from Lucasius et al. (1993), 
who applies the built-in mutation only to the first 
k elements). If an element is chosen (with 
probability PmB), its value is replaced by some 
other random value, that points to some other 
medoid (random integer number in the range 1 to 
number of objects in the data set).  

3) Randomly scramble elements in Q again. 
4) Create first offspring, C1, by copying k elements 

from Q into C1, starting at the leftmost element. 
Elements that are already in C1 are skipped (to 
ensure the feasibility of offspring). 

5) Similarly, create second offspring, C2, by copying 
k elements from Q into C2, this time starting from 
the rightmost element.  

With a certain level of simplification, the operator can 
be considered to be a uniform crossover with in-built 
mutation that ensures generating of feasible offspring 
(feasibility for this application was discussed above). 

 
Selection Model 1 

In the previous literature, most of the researchers used 
roulette wheel selection (Lucasius et al. 1993). In 
order to improve its performance, a linear scaling had 
to be applied to the objective function. For the purpose 
of this project, we decided to apply the standard 
binary tournament selection . It is well supported by 
theory and previous work has shown its superiority to 
roulette wheel selection (for example, a “super 
solution” - solution with much higher fitness function 
than the rest of the population - would occupy most of 
the roulette wheel area, so the next generation would 
be occupied mostly by this solution (for more detailed 
comparison of different selection operators see, for 
example, De Jong 1997).  

 
Selection Model 2  

The two best solutions are deterministically selected 
from a set of parents and their offspring {p1, p2,  c1, 
c2}. The application of the selection operator only on a 
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small subset of the population and not on the entire 
population should again increase diversity in the 
population and prevent preconvergence.  
In order to evaluate each solution, the objective 
function, DK, for each chromosome (solution) in the 
population is computed using equation 2. We use the 
dissimilarities among objects as stored in the 
dissimilarity matrix D.  

5. RESULTS 
All results were obtained using an original code developed 
in the software environment MATLAB, Mathworks, Inc. 
 
This paper focuses on showing properties of the algorithm 
for different sizes of data sets (from one hundred to one 
thousand). Also, it aims to provide recommendations 
concerning the setting of its parameters and so enable its 
usage for application.  
Because of the limited space available, the number of 
clusters is set to five. For future use, this number would not 
be known in advance and the results for different number 
of clusters would be compared. 
 
Approaches based on genetic algorithms are stochastic in 
nature. We do not obtain the same result every time we run 
the algorithm. For this reason we performed 10 runs for 
each setting of the algorithm. All tables in this chapter 
show the average values of these ten runs. 
 
Figure 4 shows the average objective function of the 
algorithm on DATA300 in case we did not use any 
injections. We can see results for both models (model 1 
and model 2), different sizes of initial population (NP = 50, 
100, and 150), and different number of generations (GN = 
50, 100, 150 and 200). 
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Figure 4: Fitness function (average of 10 runs) for both 
models (M1, M2), and different settings (NP,GN) on the 

DATA300. 

 The figure suggests that the performance is rather 
sensitive to the parameters of the algorithm. Also, the 
obtained results depend on the random seed used. In case 
we use a multiple population approach, the effect of 
random seed number, as well the sensitivity to particular 
parameters, is reduced. Results supporting this argument 
are provided in the following section. 

5.1. PERFORMANCE FOR VARIOUS SIZES OF 
THE DATA SETS 

In this part, I would like to show the performance of the 
algorithm for different sizes of data sets. We will consider 
the following data sets: DATA100, DATA300, 
DATA600, and DATA1000. Each number represents the 
size of particular data set. 
 
Notation used in Figure 5. 
 
: 
Model Type of model (1 or 2) 
NP Initial size of population 
FinalP Size of population at the end of run 
Iter Number of iterations 
GN Number of generations for each iteration 
PmB Probability of in-built mutation 
 
Evaluation: 
Fitness Average fitness function 
Time Computational time of the algorithm 
# of min How many times out of 10 runs did the 

algorithm reach the minimum fitness 
function 

 
The value of computational time provided in the results is 
only informative. It is clearly a function of population size 
and number of generations for each iteration. In some 
cases, the final solution can be found already in an initial 
phase of the computation, although the algorithm 
continues to run without any improvement of the solution. 
Termination criteria that are better than simply reaching 
the maximal number of generation should be used in 
order to improve the computational performance of the 
algorithm. However, since the algorithm does not have to 
perform in real time applications, the computational time 
is not the most important issue and its current values are 
satisfactory. 
   
All parts of Table 1Figure 5. 
 
 are ordered by the fitness function (the lowest solution 
first). It means that the settings in first rows of each table 
could be recommended for given data set.  
In the top of each of the tables above we provide the name 
of each data set used, as well as value of the minimum 
fitness function obtained. It is not guaranteed that this is a 
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global minimum. However, it indicates the minimal value 
obtained out of all runs of the algorithm. We could expect 
that this number is close to global optimal. This belief is 
supported also by the results discussed in description of 
Figure 5. 
 

Table 1: The obtained results for different sizes of data sets 
(100, 300, 600, and 1000) and for two types of models, and 

different parameter settings 

Model NP  FinalP Iter  GN  PmB Fitness
Time 
(sec)

# of 
min

2 20 320 5 60 0.05 1222 119 10
2 20 320 5 60 0.1 1222 115 10
2 10 640 7 50 0.05 1222 200 10
2 20 320 5 60 0.01 1223 124 8
2 10 160 5 50 0.05 1223.2 49 7
1 20 320 5 60 0.1 1223.5 124 8
1 10 160 5 50 0.05 1224 53 9
1 20 320 5 60 0.01 1224.5 135 7
1 10 640 7 50 0.05 1225.5 218 6
1 20 320 5 60 0.05 1226 130 6

DATA 100        Min Fitness = 1222

 
 

Model NP  FinalP Iter  GN  PmB Fitness Time
# of 
min

2 20 320 5 60 0.05 3721 135 10
1 30 1920 7 60 0.05 3721 1001 10
2 20 320 5 60 0.1 3721.7 123 7
2 20 320 5 60 0.1 3724 124 8
2 20 320 5 60 0.05 3724.2 127 8
1 30 1920 7 60 0.01 3727 929 8
1 20 320 5 60 0.1 3727.5 131 9
2 20 320 5 60 0.01 3729.9 133 4
1 20 320 5 60 0.1 3730 134 7
1 20 320 5 60 0.05 3733.7 141 5

DATA 300         Min Fitness = 3721

 
 

Model NP  FinalP Iter  GN  PmB Fitness Time
# of 
min

1 20 1280 7 60 0.05 7239.6 657 9
2 20 1280 7 60 0.05 7240.7 620 9
2 20 640 6 60 0.1 7242.5 308 9
2 20 640 6 60 0.01 7243.1 323 7
2 30 480 5 40 0.1 7243.4 145 4
1 20 640 6 60 0.05 7244.4 345 8
1 20 640 6 60 0.1 7244.4 313 8
2 30 480 5 40 0.05 7246 148 5
2 20 640 6 60 0.05 7247.9 315 7
1 30 480 5 40 0.1 7249.1 149 5

DATA 600       Min Fitness =  7239

 
 

Model NP  FinalP Iter  GN  PmB Fitness Time
# of 
min

2 30 480 5 40 0.1 11780 189 9
2 20 640 6 60 0.05 11794 414 9
1 20 640 6 60 0.05 11794 421 9
1 30 480 5 40 0.05 11802 184 4
1 30 480 5 40 0.1 11804 177 6
2 30 480 5 40 0.05 11817 194 2
1 10 160 5 60 0.05 11830 108 1
1 30 480 5 40 0.01 11842 190 4
2 10 160 5 60 0.05 11855 137 1
2 30 480 5 40 0.01 11900 197 1

DATA 1000   Min Fitness = 11780

 
 
 
An example of the resulting “typical patterns” (medoids) 
found by the algorithm is shown in Figure 5. Since the 
objective function does not have a very clear meaning, 
these medoids can serve as an additional evaluation of 
results. Clearly, the medoids really represent the five 
original groups, SW, PW, LW, WD, and VAS. Similar 
results were obtained in every run of the algorithm. 
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Figure 5: An example of the resulting medoids for DATA 
300, model 1, and 4 iterations. 

5.2. RECOMMENDED PARAMETER SETTING 

There are several suggestions that can be implied from 
Table 1. First we can look at performance of particular 
models. The majority of the best few solutions was 
obtained using model 2. Also, the computational time of 
the second model outperform the first model for the same 
settings. 
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The table also implies that the probability of in-built 
mutation, PmB, should be set in the range from 0.05 to 0.1, 
and values closer to 0.05 can be preferred.  
It is not surprising that the algorithm perfoms better with a 
larger population size, higher number of generations, and 
also higher number of iterations. All these parameters 
increase the size of space being searched. On the other 
hand, increasing these parameters also increases the 
number of function evaluations, and so leads to an increase 
in computation time. Finding the equilibrium between 
these two features is desirable. It will clearly depend on the 
desired precision. 
In general it is possible to recommend setting the initial 
population size, NP, equal to 20 or 30. The number of 
iterations, Iter, can be set in the range from 5 to 7, and the 
number of generations for each iteration, GN, can be set to 
50 or 60. All these parameters should have higher values 
for data sets of a larger size. 

6. CONCLUSION AND FUTURE 
RESEARCH 

In this paper, algorithms to cluster activity patterns were 
developed. These algorithms as designed can be used for 
clustering large data sets of categorical objects. A 
dissimilarity measure that suits categorical data was 
applied here.   
In general, the algorithm performs well even for large data 
sets. The algorithm as developed is not overly sensitive to 
the exact setting of its parameters. It performs reasonably 
well for a wide range of these parameters. This feature is of 
an important concern of all approaches based on genetic 
algorithms. The recommended setting of the parameters is 
provided in the previous part of this paper.  
In order to be able to evaluate its performance with more 
implications, the algorithm needs to be compared to other 
tools used for solving of the same problem. For example, 
the development of other heuristic for the k-medoid 
algorithm, such as CLARA (Kaufman and Rousseeuw 1990), 
should be considered for future research. 
Also, a more detailed study should be dedicated to the 
problem of dissimilarity among activity patterns. For 
example, the use of multidimensional sequence alignment 
method as described in Joh, and Arentze (2002) should be 
studied.  
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