
 - 1 -

Clustering of Activity Patterns Using Genetic Algorithms

Ondrej Pribyl
Pennsylvania Transportation Institute & Pennsylvania State University

201 Transportation Research Bldg., University Park, PA 16802
e-mail: oxp112@psu.edu; phone:(814)863-5493

Abstract

Finding groups of individuals with similar activity patterns
(a sequence of activities within a given time period, usually
24 hours) has become an important issue in models of
activity-based approaches to travel demand analysis. This
knowledge is critical to many activity-based models, and it
aids our understanding of activity/travel behavior. This
paper aims to develop a methodology for the clustering of
these patterns. There is a large number of well-known
clustering algorithms, such as hierarchical clustering, or
k-means clustering (which belong to the class of
partitioning algorithm). However, these algorithms cannot
be used to cluster categorical data, so they do not suit the
problem of clustering of activity patterns well. Several
other heuristics have been developed to overcome this
problem. The k-medoids algorithm, described in this paper,
is a modification of the k-means algorithm with respect to
categorical data. However, similar to the k-means
algorithm, the k-medoids algorithm can converge to local
optima.
This paper approaches the medoids-based formulation of
clustering problem using genetic algorithms (GAs), a
probabilistic search algorithm that simulates natural
evolution. The main objective of this paper is to develop a
robust algorithm that suits the problem of clustering of
activity patterns and to demonstrate and discuss its
properties.

1. INTRODUCTION
Finding groups of individuals with similar activity patterns
(a sequence of activities within a given time period, usually
24 hours) has become an important issue in models of
activity-based approaches to travel demand analysis. This
knowledge is critical to many activity-based models, and it
aids our understanding of activity/travel behavior.
Previous research (Pas 1983, Ma 1997) gave us evidence
that people with similar socio-demographic characteristics
have also often similar schedules.
One direction of research focuses on the microsimulation
of the observed activity patterns (Kulkarni and McNally
2000). An essential step in their modeling effort is to find
an average or typical schedule that represents the
activity/travel behavior of these individuals. The ultimate

goal of this project, then, is to find a relatively small set of
activity patterns that would represent all observed patterns
in given data set.
The problem as stated belongs to the so-called subset
selection problem that is interpreted as a special case of
cluster analysis. The number of different partitions of N
objects into K clusters, p(N,K), is extremely large. Everitt
et al. (2001) provides an equation of how to compute
p(N,K). To illustrate the complexity, let’s look at the
following examples: p(10,3)=9330, and p(50,4) ? 5.3 x
1067. In our case, the size of the data set, N, as well as the
number of clusters, is expected to be even higher. For this
reason we are not able to evaluate all possible
combinations.
The data used in this paper are of the categorical type (as
will be shown in section two). Many well-known
clustering algorithms , such as hierarchical clustering and
k-means clustering (Everitt et al. 2001), are not suitable
for this type of data. They are based on Euclidean
distances, and they need to find an average of several
patterns. In our case, however, there is not a simple and
realistic way to find the average of several schedules.
Several heuristics have been developed to overcome this
problem. For example, Kaufman and Rousseeuw (1990)
described a modification of the k-means algorithm to suit
categorical data. This algorithm is called medoid-based
clustering, and it is described in greater detail in this
paper.
Similar to the k-means algorithm, the medoid-based
algorithm can converge to local optima. For this reason
this paper uses an alternate heuristic for the same
formu lation of the problem. It is based on the principles
of genetic algorithms (GAs), probabilistic search
algorithms that simulate natural evolution.
The main objective of this paper is to develop a robust
algorithm that suits the problem of clustering activity
patterns, and to demonstrate its properties. The algorithm
should suit relatively large data sets to enable its
application to real-world problems.
Approaches based on genetic algorithms have usually
many parameters that need to be set, such as the size of
population, number of runs, probability of mutation, and
others. The performance of the algorithms is often very
sensitive to the setting of these parameters, but at the
same time no general guidance about the parameter

Ondrej Pribyl Clustering of Activity Patterns Using Genetic Algorithms

 - 2 -

setting exists, since it is problem specific. This paper
shows the performance of the developed algorithm for
different settings of parameters. The objective is to provide
recommendations concerning parameter settings that
would enable the broader use of this tool without the need
for further in-depth study.

2. THE DATA
Knowledge of the data set’s structure would help to
evaluate the algorithm and also it would enable more
truthful discussion of its properties. For this reason,
artificially generated data rather than observed data are
used in this preliminary phase of the project.
Before we describe the data set used for this analysis, the
representation of activity patterns used in this paper must
be discussed.

2.1. REPRESENTATION OF ACTIVITY PATTERNS

The proposed algorithm will be evaluated on its ability to
cluster activity patterns. An essential feature for forming
the activity patterns is the type of each activity. Though
there are many different activity types that an individual
can perform, only a limited number of activities will be
considered in this work, for simplicity. The activities
considered are: Home (everything that is an in -home
activity), Work (work, work related or school),
Maintenance (dining out, shopping and others) and
Discretionary (social events, recreation, visiting friends
and others)1.
Within this project we use a discretized representation of
the activity patterns. For each individual in the sample, we
look at his activity participation in regular time intervals
(10 minutes in this project) and record it. It means that the
whole 24 hour long activity pattern consists of 144 values.
Each of the values corresponds to an activity type. Integer
values from the range 1 to 4 are used to represent given
activity types; Home(1),Work(2), Maintenance(3), and
Discretionary(4). It must be clearly stated that these values
do not have real numerical meaning. The activity types are
clearly of a categorical nature.
For example, we can see ten activity patterns in Figure 1.
They correspond to different types of activity patterns as
described in the next chapter. The x-axis in this figure
represents time per day (hours) and the y-axis represents
the four activity types as described above. For example, the
first pattern shows the schedule of an individual who left
from home to work at about 9:30 am, he went for lunch at
about 11 am (maintenance activity) and returned back to
work at about noon. This individual returned back home

1 The algorithm developed in this project should be general enough to
enable later extension to more activity types. We might want to
distinguish if the four activities were undertaken alone or joint with some
other family member1. This step will increase the number of activity types
up to ten.

shortly before 6 pm. The other patterns in Figure 1 can be
understood similarly.

2 4 6 8 10 1 2 14 16 18 2 0 22 24

H
W
M
D

Example of the generated schedules

2 4 6 8 10 1 2 14 16 18 2 0 22 24

H
W
M
D

2 4 6 8 10 1 2 14 16 18 2 0 22 24

H
W
M
D

2 4 6 8 10 1 2 14 16 18 2 0 22 24

H
W
M
D

2 4 6 8 10 1 2 14 16 18 2 0 22 24

H
W
M
D

2 4 6 8 10 1 2 14 16 18 2 0 22 24

H
W
M
D

2 4 6 8 10 1 2 14 16 18 2 0 22 24

H
W
M
D

2 4 6 8 10 1 2 14 16 18 2 0 22 24

H
W
M
D

2 4 6 8 10 1 2 14 16 18 2 0 22 24

H
W
M
D

2 4 6 8 10 1 2 14 16 18 2 0 22 24

H
W
M
D

time (hours)

SW

SW

PW

PW

LW

LW

WD

WD

VSA

VSA

Figure 1: Examples of generated activity patterns. There
are two patterns of each type; standard work (SW), power
work (PW), late work (LW), work discretionary (WD), and
various short activities (VSA), as described in chapter 2.2.

2.2. SYNTHETIC DATA

The data used in this paper are generated artificially so
their structure is known, but at the same time they should
realistically represent the observed patterns. In order to
meet these objectives, five different groups of schedules,
using results reported by Kulkarni and McNally (2000)
were generated in this paper. Examples of two schedules
from each group are shown in Figure 1.
The first group is called standard work (SW). As the
name implies, people in this group work for about 8
hours. Their work starts sometimes in the morning
(between 7 am and 9 am). Some of these individuals go

Ondrej Pribyl Clustering of Activity Patterns Using Genetic Algorithms

 - 3 -

for lunch at about noon (maintenance activity up to one
hour long).
The second group, called power work (PW), contains of
people whose schedules are similar to those in the previous
group, only their work activity is in average two hours
longer, for example from 8 am to 6 pm.
The next group is called late work (LW). People in this
group also have, on average, an 8 hour-long working day
(similar to SW), but their work starts in the afternoon,
around 2 pm.
The fourth group is called work discretionary (WD).
People in this group have standard work starting in the
morning, but they participate in some discretionary activity
after work. Some people in this group go to the
discretionary activity directly from work, some people first
stop at home.
The last group is called various short activities (VSA).
People in this group participate in several activities (up to
five per day). Their type varies randomly among work,
maintenance and discretionary type.
The code enables the user to set the number of schedules
generated in each group, as well as set all probabilities (for
example probability to go for lunch for the first two
groups) and the starting and ending times for each activity.
The data, as generated, are rather similar to the observed
schedules of individuals. However, this brings also a
challenge to the algorithm. The groups (or clusters) of the
data are overlapping. It is not true that schedules in one
generated group are the closest to each other based on the
used dissimilarity measure. Unfortunately, this is also the
case of any observed data.

3. MEDOID BASED CLUSTERING

The method in this paper is based on so called k-medoid
clustering (Kaufman and Rousseeuw 1990, Huang 1997).
Consider a set S={S1, …, SN} of N objects (in our case
activity patterns). Each object Si is a vector, containing of
L integer values describing an activity type at particular
time instant. Our objective is to find K objects, K<<N,
which represent all objects in the data set. The remaining
objects are then assigned to the nearest representative
object, using a given dissimilarity measure.
A simple example of 12 two-dimensional objects is shown
in Figure 2. The arrows in this figure point to objects that
represent each of the clusters. These representative objects
are called medoids, because we expect them to be located
in the center of each cluster. Each object in the data set
belongs exactly to one medoid. All objects belonging to the
same medoid form a cluster. The objects in each cluster are
clearly more similar (based on given dissimilarity measure)
to each other than to objects in any other group.

Objects (activity patterns)Objects (activity patterns)

Figure 2: Suggested principle of k-medoid clustering
approach

The developed algorithm requires the number of clusters,
K, to be known. In order to find the optimal number of
clusters, the algorithm will be repeated for different
numbers of clusters. The optimal number will be chosen
off-line, after the clustering problem for different K will
be performed.

Mathematically, we are looking for a set of K objects that
minimize the following objective function:

∑ ∑
=

=
K

k kmedoidtoassignedi
iK SkdD

1 __

),((1)

DK is the sum of dissimilarities of the particular medoids
to all other members of the same cluster. In case the
arrows in Figure 2 represent the dissimilarity among
objects, the objective function DK can be understood as
sum of the length of all the arrows. We are seeking the
medoids so that this sum is minimal.

3.1. DISSIMILARITY MEASUR ES

A very important issue in any clustering algorithm is
definition of dissimilarity between two objects. We
cannot use common Euclidean distance, because we deal
with objects of a categorical type (activity types). The
distance measure that used in this paper is defined in
Huang (1997) as follows: The dissimilarity measure
between two objects S1, and S2 reflects the total number
of mismatches of activity types at a corresponding time
index. This can be written as:

))(),((),(21
1

21 jSjSSSd
ls

j
∑

=

= δ , (2)

where

=
1
0

))(),((21 jSjSδ ()
())()(

)()(

21

21

jSjS
jSjS

≠
=

and ls denotes the length of the schedule (in our case ls
equals to 144). Therefore, the value of the dissimilarity
measure between two patterns can range in our case from
0 (the two patterns are the same) to 144 (totally different).

Ondrej Pribyl Clustering of Activity Patterns Using Genetic Algorithms

 - 4 -

4. GA BASED APPROACH TO K-MEDOID
CLUSTERING

Several different representations have been used in the
literature (for an overview see Lozano and Larranaga 1996,
or Estivill-Castro and Murray 1997, Moraczewski et. al.
1995, Maulik and Bandyopadhyay 2000, and others). The
most suitable representation for the given problem
(considering the size of the problem and also its categorical
character) can be adapted, for example, from Lucasius, et
al. (1993).
Each chromosome is a vector of the length K (number of
clusters), and every element is obtained from a uniform
distribution in the range (1,N). The ith value is an index of
the ith median. For example, if K equals 6, and the medoids
are patterns with numbers 4, 23, 43, 54, 120, and 130, the
result chromosome is, for example, the following vector [4,
120, 43, 23, 54, 130] (there is more than just one
representation of the same solution). The objective
function of each chromosome is computed based on
equation (1) in this paper.
One advantage of integer representation is that we do not
have to convert chromosomes into phenotypes before
computing value of the objective function, and so we save
computational time.

Two different algorithms have been developed. Model 1 is
an integer coded GA with (?+?) binary tournament
selection (the symbols ? and ? are common in the GA
related literature and represent the parent and children
population respectively).
Model 2 is a modification of model 1. It modifies the
selection operator to maintain more diversity in the
population. The principle of the selection operator is
briefly described in this paragraph and also shown in the
provided pseudo-code. Given two randomly selected
parents, we apply a recombination and mutation operator
and so produce two offspring. The selection operator is
applied to the set of both parents as well as both offspring.
Two best chromosomes are deterministically selected from
this set. The pseudo-code for both models is provided in
the section below.

Notation:
 GN ... number of generations
 NP ... size of population
 pi ... parent i
 ci ... offspring i
 PmB ... probability of in-built mutation
 P(t) ... population at time t

Pseudo-code for Model 1:

for t = 1: GN,
 P(t) ß shuffle (P(t-1))
 for j=1:NP/2-1,

p1 = P2j+1(t)
p2 = P2j+2(t)
{c1,c2} ß recombine (p1,p2)
{c1’,c2’} ß mutate (c1,c2)
append {c1’,c2’} to matrix C

 end
Create matrix Q that combines both,
parents and offsprings {P;C}
Binary tournament selection (matrix Q)

end

Pseudo-code for Model 2:

for t = 1: GN,
P(t) ß shuffle (P(t-1))
for j=1:NP/2-1,

p1 = P2j+1(t)
p2 = P2j+2(t)
{c1,c2} ß recombine (p1,p2)
{c1’,c2’} ß mutate(c1,c2)
select 2 best individuals from the
set { p1, p2, c1’,c2’} and place them
to the new population P(t+1)

end
end

4.1.1. Population Management

In order to improve the performance of the algorithm, a
method of multi-population approach similar to Reed
(2002) is used. The algorithm performs several iterations.
The population size is doubled in every iteration, by
adding a randomly initiated population. The inserted
population has the same size as the current population.
This doubling of population aims to decrease the
computational time, it helps to prevent premature
convergence, and also it aims to decrease the sensitivity
of the algorithm to the setting of its parameters, such as
size of population, number of runs, or the random number
seed used.
Figure 3 shows an example of progress of the best and
average fitness function for each generation. In this
example there are 300 objects in the data set (N). The
algorithm performs forty runs (GN) for each population
size (NP = 10, 20, 40, and 80).
The points of injection (every GN = 40 populations) show
a large increase in the average fitness function. This
reflects the fact that the diversity in the population
increases by inserting random individuals. This also often
leads to imp rovement of the best fitness function shortly
after insertion of new random individuals.

Ondrej Pribyl Clustering of Activity Patterns Using Genetic Algorithms

 - 5 -

0 50 100 150

3800

4000

4200

4400

4600

4800

5000

5200

Model 2 - Progress of the f i tness

N = 300, K = 5, # of i terations = 4,
NP = 10, FinalP = 80,
GN = 40, Best Fi tness = 3747

Populat ion Number

T
he

 fi
tn

es
s

fu
nc

tio
n

Best Fi tness
Average Fitness*

Figure 3: The progress of the best and average fitness for
DATA 300 and four iterations (3 injections) - example.

4.2. DETAILED DESCRIPTION OF THE
ALGORITHMS

The whole initialization phase, as well as the
recombination and mutation operator, is the same for both
developed models. The main difference is in the
management of the population and in the selection process.
The following paragraphs explain the elementary building
blocks of the algorithm in more detail.

Create initial population.

The size of each population is denoted NP. The initial
population is created randomly. Each value is an integer
number in the range of 1 to N (number of objects in the
data set). It is ensured that the values within each
chromosome are unique (not repeated).

D_MX recombination with in-built mutation

Several recombination operators were considered in
this project. The use of the standard operators, such as
uniform crossover, is problematic, because they
produce infeasible offspring (the values in each
chromosome cannot be repeated). The Random
Respectful Recombination (R3) as described by Estivill-
Castro and Murray 1997 was also considered. Its
principle is based on the theory of building blocks (De
Jong et al. 1997). If a certain value is present in both
parents, it must be present also in both children. The
rest of the algorithm is the same as for uniform
crossover (however, feasibility of offspring is ensured
by this algorithm).
The author decided not to use this operator, because it
might decrease the diversity of offspring and lead to
premature convergence to a suboptimal solution. This is
true especially in case of clustering, when the length of
each chromosome is short.

The recombination operator, D_MX (Mixed Subset
Recombination), used in this project was slightly
modified from Lucasius et al. (1993). The “D” in its
names reflects the fact that it is applied “directly” to
the phenotype, rather than to the binary representation
(genotype). The operator, when applied to two parent
strings (P1, P2) produces two offspring (C1, C2), and
works as follows:

1) Mix P1 and P2:
a. Append copy of P1 at the end of P2, and

form a vector Q.

b. Randomly scramble the elements in Q.
2) Apply the built-in mutation to all elements in Q

(this step is different from Lucasius et al. (1993),
who applies the built-in mutation only to the first
k elements). If an element is chosen (with
probability PmB), its value is replaced by some
other random value, that points to some other
medoid (random integer number in the range 1 to
number of objects in the data set).

3) Randomly scramble elements in Q again.
4) Create first offspring, C1, by copying k elements

from Q into C1, starting at the leftmost element.
Elements that are already in C1 are skipped (to
ensure the feasibility of offspring).

5) Similarly, create second offspring, C2, by copying
k elements from Q into C2, this time starting from
the rightmost element.

With a certain level of simplification, the operator can
be considered to be a uniform crossover with in-built
mutation that ensures generating of feasible offspring
(feasibility for this application was discussed above).

Selection Model 1

In the previous literature, most of the researchers used
roulette wheel selection (Lucasius et al. 1993). In
order to improve its performance, a linear scaling had
to be applied to the objective function. For the purpose
of this project, we decided to apply the standard
binary tournament selection . It is well supported by
theory and previous work has shown its superiority to
roulette wheel selection (for example, a “super
solution” - solution with much higher fitness function
than the rest of the population - would occupy most of
the roulette wheel area, so the next generation would
be occupied mostly by this solution (for more detailed
comparison of different selection operators see, for
example, De Jong 1997).

Selection Model 2

The two best solutions are deterministically selected
from a set of parents and their offspring {p1, p2, c1,
c2}. The application of the selection operator only on a

Ondrej Pribyl Clustering of Activity Patterns Using Genetic Algorithms

 - 6 -

small subset of the population and not on the entire
population should again increase diversity in the
population and prevent preconvergence.
In order to evaluate each solution, the objective
function, DK, for each chromosome (solution) in the
population is computed using equation 2. We use the
dissimilarities among objects as stored in the
dissimilarity matrix D.

5. RESULTS
All results were obtained using an original code developed
in the software environment MATLAB, Mathworks, Inc.

This paper focuses on showing properties of the algorithm
for different sizes of data sets (from one hundred to one
thousand). Also, it aims to provide recommendations
concerning the setting of its parameters and so enable its
usage for application.
Because of the limited space available, the number of
clusters is set to five. For future use, this number would not
be known in advance and the results for different number
of clusters would be compared.

Approaches based on genetic algorithms are stochastic in
nature. We do not obtain the same result every time we run
the algorithm. For this reason we performed 10 runs for
each setting of the algorithm. All tables in this chapter
show the average values of these ten runs.

Figure 4 shows the average objective function of the
algorithm on DATA300 in case we did not use any
injections. We can see results for both models (model 1
and model 2), different sizes of initial population (NP = 50,
100, and 150), and different number of generations (GN =
50, 100, 150 and 200).

Average Fitness Function DATA300

3680

3700

3720

3740

3760

3780

3800

3820

50 100 150 200
Max # of generations

Fi
tn

es
s

Fu
nc

tio
n

M1 NP=50
M1 NP=100
M1 NP=150
M2 NP=50
M2 NP=100
M2 NP=150

Figure 4: Fitness function (average of 10 runs) for both
models (M1, M2), and different settings (NP,GN) on the

DATA300.

 The figure suggests that the performance is rather
sensitive to the parameters of the algorithm. Also, the
obtained results depend on the random seed used. In case
we use a multiple population approach, the effect of
random seed number, as well the sensitivity to particular
parameters, is reduced. Results supporting this argument
are provided in the following section.

5.1. PERFORMANCE FOR VARIOUS SIZES OF
THE DATA SETS

In this part, I would like to show the performance of the
algorithm for different sizes of data sets. We will consider
the following data sets: DATA100, DATA300,
DATA600, and DATA1000. Each number represents the
size of particular data set.

Notation used in Figure 5.

:
Model Type of model (1 or 2)
NP Initial size of population
FinalP Size of population at the end of run
Iter Number of iterations
GN Number of generations for each iteration
PmB Probability of in-built mutation

Evaluation:
Fitness Average fitness function
Time Computational time of the algorithm
of min How many times out of 10 runs did the

algorithm reach the minimum fitness
function

The value of computational time provided in the results is
only informative. It is clearly a function of population size
and number of generations for each iteration. In some
cases, the final solution can be found already in an initial
phase of the computation, although the algorithm
continues to run without any improvement of the solution.
Termination criteria that are better than simply reaching
the maximal number of generation should be used in
order to improve the computational performance of the
algorithm. However, since the algorithm does not have to
perform in real time applications, the computational time
is not the most important issue and its current values are
satisfactory.

All parts of Table 1Figure 5.

 are ordered by the fitness function (the lowest solution
first). It means that the settings in first rows of each table
could be recommended for given data set.
In the top of each of the tables above we provide the name
of each data set used, as well as value of the minimum
fitness function obtained. It is not guaranteed that this is a

Ondrej Pribyl Clustering of Activity Patterns Using Genetic Algorithms

 - 7 -

global minimum. However, it indicates the minimal value
obtained out of all runs of the algorithm. We could expect
that this number is close to global optimal. This belief is
supported also by the results discussed in description of
Figure 5.

Table 1: The obtained results for different sizes of data sets
(100, 300, 600, and 1000) and for two types of models, and

different parameter settings

Model NP FinalP Iter GN PmB Fitness
Time
(sec)

of
min

2 20 320 5 60 0.05 1222 119 10
2 20 320 5 60 0.1 1222 115 10
2 10 640 7 50 0.05 1222 200 10
2 20 320 5 60 0.01 1223 124 8
2 10 160 5 50 0.05 1223.2 49 7
1 20 320 5 60 0.1 1223.5 124 8
1 10 160 5 50 0.05 1224 53 9
1 20 320 5 60 0.01 1224.5 135 7
1 10 640 7 50 0.05 1225.5 218 6
1 20 320 5 60 0.05 1226 130 6

DATA 100 Min Fitness = 1222

Model NP FinalP Iter GN PmB Fitness Time
of
min

2 20 320 5 60 0.05 3721 135 10
1 30 1920 7 60 0.05 3721 1001 10
2 20 320 5 60 0.1 3721.7 123 7
2 20 320 5 60 0.1 3724 124 8
2 20 320 5 60 0.05 3724.2 127 8
1 30 1920 7 60 0.01 3727 929 8
1 20 320 5 60 0.1 3727.5 131 9
2 20 320 5 60 0.01 3729.9 133 4
1 20 320 5 60 0.1 3730 134 7
1 20 320 5 60 0.05 3733.7 141 5

DATA 300 Min Fitness = 3721

Model NP FinalP Iter GN PmB Fitness Time
of
min

1 20 1280 7 60 0.05 7239.6 657 9
2 20 1280 7 60 0.05 7240.7 620 9
2 20 640 6 60 0.1 7242.5 308 9
2 20 640 6 60 0.01 7243.1 323 7
2 30 480 5 40 0.1 7243.4 145 4
1 20 640 6 60 0.05 7244.4 345 8
1 20 640 6 60 0.1 7244.4 313 8
2 30 480 5 40 0.05 7246 148 5
2 20 640 6 60 0.05 7247.9 315 7
1 30 480 5 40 0.1 7249.1 149 5

DATA 600 Min Fitness = 7239

Model NP FinalP Iter GN PmB Fitness Time
of
min

2 30 480 5 40 0.1 11780 189 9
2 20 640 6 60 0.05 11794 414 9
1 20 640 6 60 0.05 11794 421 9
1 30 480 5 40 0.05 11802 184 4
1 30 480 5 40 0.1 11804 177 6
2 30 480 5 40 0.05 11817 194 2
1 10 160 5 60 0.05 11830 108 1
1 30 480 5 40 0.01 11842 190 4
2 10 160 5 60 0.05 11855 137 1
2 30 480 5 40 0.01 11900 197 1

DATA 1000 Min Fitness = 11780

An example of the resulting “typical patterns” (medoids)
found by the algorithm is shown in Figure 5. Since the
objective function does not have a very clear meaning,
these medoids can serve as an additional evaluation of
results. Clearly, the medoids really represent the five
original groups, SW, PW, LW, WD, and VAS. Similar
results were obtained in every run of the algorithm.

2 4 6 8 10 12 14 16 18 20 22 24

H
W
M
D

Model 1 - Final Medoids: 3, 20, 25, 37, 48,

2 4 6 8 10 12 14 16 18 20 22 24

H
W
M
D

2 4 6 8 10 12 14 16 18 20 22 24

H
W
M
D

2 4 6 8 10 12 14 16 18 20 22 24

H
W
M
D

2 4 6 8 10 12 14 16 18 20 22 24

H
W
M
D

Figure 5: An example of the resulting medoids for DATA
300, model 1, and 4 iterations.

5.2. RECOMMENDED PARAMETER SETTING

There are several suggestions that can be implied from
Table 1. First we can look at performance of particular
models. The majority of the best few solutions was
obtained using model 2. Also, the computational time of
the second model outperform the first model for the same
settings.

Ondrej Pribyl Clustering of Activity Patterns Using Genetic Algorithms

 - 8 -

The table also implies that the probability of in-built
mutation, PmB, should be set in the range from 0.05 to 0.1,
and values closer to 0.05 can be preferred.
It is not surprising that the algorithm perfoms better with a
larger population size, higher number of generations, and
also higher number of iterations. All these parameters
increase the size of space being searched. On the other
hand, increasing these parameters also increases the
number of function evaluations, and so leads to an increase
in computation time. Finding the equilibrium between
these two features is desirable. It will clearly depend on the
desired precision.
In general it is possible to recommend setting the initial
population size, NP, equal to 20 or 30. The number of
iterations, Iter, can be set in the range from 5 to 7, and the
number of generations for each iteration, GN, can be set to
50 or 60. All these parameters should have higher values
for data sets of a larger size.

6. CONCLUSION AND FUTURE
RESEARCH

In this paper, algorithms to cluster activity patterns were
developed. These algorithms as designed can be used for
clustering large data sets of categorical objects. A
dissimilarity measure that suits categorical data was
applied here.
In general, the algorithm performs well even for large data
sets. The algorithm as developed is not overly sensitive to
the exact setting of its parameters. It performs reasonably
well for a wide range of these parameters. This feature is of
an important concern of all approaches based on genetic
algorithms. The recommended setting of the parameters is
provided in the previous part of this paper.
In order to be able to evaluate its performance with more
implications, the algorithm needs to be compared to other
tools used for solving of the same problem. For example,
the development of other heuristic for the k-medoid
algorithm, such as CLARA (Kaufman and Rousseeuw 1990),
should be considered for future research.
Also, a more detailed study should be dedicated to the
problem of dissimilarity among activity patterns. For
example, the use of multidimensional sequence alignment
method as described in Joh, and Arentze (2002) should be
studied.

ACKNOWLEDGEMENT

The author would like to thank to Dr. Patrick Reed for
providing many valuable comments and additional
references concerning this paper.

7. REFERENCES
Everitt, B.S., S. Landau, and M. Leese. Cluster Analysis . Fourth
Edition: Arnold, A member of the Hodder Headline Group,
London, 2001.

Estivill-Castro, V. and A.T. Murray. “Spatial Clustering for
Data Mining with Genetic Algorithms.”
http://citeseer.nj.nec.com/estivill-castro97spatial.html: NEC
Research Institute. (1997)

De Jong, K., D. Fogel, and H.-P. Schwefel. Handbook of
Evolutionary Computation. IOP Publishing Ltd. and Oxford
University Press, 1997.

Goldberg, D.E. "The Race, the Hurdle, and the Sweetspot:
Lessons From Genetic Algorithms for the Automation of Design
Innovation and Creativity.," IlliGAL Report No. 98007. April
1998.

Huang, Z. "Clustering Large Data Sets with Mixed Numeric and
Categorical Values." In Proceeding of the First Pacific-Asia
Conference on Knowledge Discovery and Data Minning
(Singapore, World Scientific) (1997).

Joh, Ch-H., T. Arentze, F. Hofman, and H. Timmermans.
"Activity Pattern Similarity: a Multidimensional Sequence
Alignment Method." Transportation Research, Part B (Elsevier
Science Ltd.) 36 (2002): 385-403.

Kaufman, L., and P.J.Rousseeuw. Finding Groups in Data, An
Introduction to Cluster Analysis . John Willey & Sons, Inc.,
1990.

Kulkarni, A.A., and M.G. McNally. "An Activity-Based Travel
Pattern Generation Model.," Institute of Transportation Studies,
University of California, Irvine, December, 2000. UCI-ITS-AS-
WP-00-6.

Lozano, J.A., and P. Larranaga. "Using Genetic Algorithms to
Get the Classes and Their Number in a Partitional Cluster
Analysis of Large Data Sets."
http://citeseer.nj.nec.com/457425.html: NEC Research Institute.

Lucasius, C.B., A.D.Dane, and G.Kateman. "On k-Medoid
Clustering of Large Data Sets with the Aid of a Genetic
Algorithm: Background, Feasibility and Comparison." Analytica
Chimica Acta (Elsevier Science Ltd) 282 (1993): 647-669.

Ma, June. “An Activity-Based Approach and Micro-simulated
Travel Forecasting System: A Pragmatic Synthetic Scheduling
Approach.” PhD Thesis, The Pennsylvania State University,
Department of Civil and Environmental Engineering, University
Park, Pennsylvania (1997).

Maulik, U., S. Bandyopadhyay. "Genetic Algorithm-Based
Clustering Technique." Pattern Recognition 33 (2000): 1455-
1465.

Moraczewski, I.R., W. Borowski, and A. Kierzek. "Clustering
Geobotanical Data with the Use of a Genetic Algorithm."
COENOSES (C.E.T.A., Gorizla, Italy) 10, 1 (1995): 17-28.

Pas, E.I. "A Flexible and Integrated Methodology for Analytical
Classification of Daily Travel-Activity Behavior."
Transportation Science (Operations Research Society of
America) 17, 4 (1983): 405 - 429.

Reed, P.M., “Striking the Balance: Long-Term
Groundwater Monitoring Design for Multiple Conflicting
Objectives”, PhD Thesis, Graduate College of the University of
Illinois at Urbana-Champaign, Urbana, Illinois (2002).

