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Abstract

The following article presents the applica-
tion of an evolutionary strategy to produce
nearly optimal design matrices, containing
the parameter settings to execute an exper-
iment. The properties of such matrices sig-
nificantly determine the precision of the op-
timization models used in Robust Parameter
Design (RPD). The methodology presented
allows the user to produce new experimental
design matrices. Some of the innovative evo-
lutionary designs obtained are presented and
compared to the corresponding benchmarks.

1 INTRODUCTION

Robust Parameter Design (RPD) is the field that con-
siders the optimization of an experiment by taking into
account controllable and noise factors. The term RPD
was coined by G. Taguchi, who introduced the concept
of robustness. RPD deals with the optimization of a
process in such a way that it remains insensitive to
changes in the noise factors.

Controllable factors are considered to be variables that
can be changed in the process to improve its perfor-
mance. On the other hand, noise factors are those
that can only be controlled in a laboratory. Exam-
ples of typical noise factors are wind, temperature and
humidity.

Specifically, the RPD approach tries to minimize the
sensitivity of a process to noise factors, subject to the
satisfactory attainment of a target value in the re-
sponse. The quality of the solution depends on the
precision of the model that has been optimized. So,
the main purpose in the rest of this article is to show
how to get precise models. The emphasis will be on
how to design matrices with nearly optimal properties.

In general, several design properties are desired. Typ-
ically designs with few runs, easy to use and with a
good spatial distribution of the runs across the de-
cision space are preferred. But regardless of this, we
need to plan and perform our experiments. To execute
the experiment, the settings for every run are arranged
in a matrix. These specifications tell the experimenter
how to change the factors on each experimental run.
We denote this array as the design matrix D. In prac-
tice, experimental designs have been implemented for
two purposes:

1. Perform a multiple regression analysis and do
some prediction (e.g. fit the experimental data
to a linear, quadratic or cubic regression model).

2. Optimize a process according to some specific as-
sumed model.

As will be shown later, the properties of the matrix
D determine how accurate our prediction will be for a
particular region of the search space. A more accurate
prediction will provide better estimates for our model;
hence our optimization will be more reliable.

In order to choose the best design matrix D, the user
needs to provide the following inputs: 1) Number of
runs, 2) Number of factors (controllable and noise) and
3) The model (linear, quadratic, RPD).

Designing experiments is ironically, something omit-
ted in experimentation. This field has been intensively
studied for more than 50 years and several standard
designs have been developed for the most common ap-
plications. For a quadratic response surface model,
Central Composite designs have been commonly used.

Standard designs for standard situations have saved
the experimenter the burden of having to design a ma-
trix. Consequently, these designs have been blindly
and indiscriminately implemented in situations where



they should not be used. Such is the case of RPD and
problems with constraints in the decision space.

The history of optimal designs goes back to Kiefer [12]
who in 1959 introduced two of the most important
performance measures for matrix design, D-efficiency
(Degr) and G-efficiency (Geg). Currently, these mea-
sures are the standard way to compare two different
designs.

In 1980, Taguchi [17] introduced the concept of noise
factors. He developed the idea of robustness to changes
in noise factors and with this RPD was born as a disci-
pline. He defined the first designs for RPD, known as
crossed arrays, but the large number of runs required
by his designs quickly proved their inconvenience in
practice. Since Taguchi’s revolutionary work, only a
few authors including Lucas [1, 13], Box and Jones [5],
and Myers et al. [16] suggested the use of single factor
arrays as alternatives to crossed arrays.

But perhaps some of the best designs made with
the RPD model in mind, correspond to the work of
Borkowski and Lucas [4] who developed Mixed Resolu-
tion designs. More recently, Del Castillo [6] has shown
how to generate designs for RPD using a new criterion,
noise factor separation. His approach combines this
new criterion with the power of Genetic Algorithms.

During the last 20 years, Simulated Annealing and
GAs have found their way into the field of design of ex-
periments. In 1986, Bohachevsky et al. [3] formulated
a generalized simulated annealing procedure and used
the algorithm to find D-optimal designs (matrices with
maximum Deg). Inspired by this work, Haines [8],
Meyer et al. [14] applied Simulated Annealing in dif-
ferent ways to solve a similar problem.

In 1992, Govaerts and Rubal [7] were the first to im-
plement GAs to find D-optimal designs. Their work
was improved by Montepiedra [15] in 1998, and more
recently by Heredia-Lagner [10] in 2003. But none of
their work was in the field of RPD.

1.1 AN ILLUSTRATIVE EXAMPLE

Consider the optimization of a chemical process were
there are only two factors in play, temperature and
concentration of one of the reactants. The objective
is to choose the temperature and concentration levels
that maximize the yield of the chemical process.

Assuming there is a quadratic relationship between the
product yield and the controllable factors, a design for
two factors is needed. The quadratic regression model
is displayed next:

Y = By + B121 + Boxa + Brax172 + Priai + Bozas

This model can also be written in matrix form as
Y = fo+ B’z + x'’Bx. A standard design for this
situation is the Central Composite Design (CCD) with
eight runs which is shown in Fig. 1. The columns cor-
respond to the settings of each one of the two factors
r1 and xs.
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Figure 1: Design Matrix For Two Factors

Note that the entries of the matrix D are in coded
units. In order to transform the matrix to the original
units of each factor we apply Eq. 1:

‘f - dij . (Smax - fmin) /2 + (fmax + gnlin) /2» (1)

where d;; is the (i, )" entry of D, and &pax and Epin
are the maximum and minimum values in natural units
for each factor.

Notice that when d;; = 1 we get that { = {max and
when d;; = —1, £ = {min. This implies, that the ex-
perimenter should carefully choose the values of & ax
and &y in such a way that when the entry is greater
than 1 (or smaller than -1) the value in natural units
is feasible.

After choosing the design matrix, it is transformed ac-
cording to the assumed model. This matrix is called
the matrix in model-form and is denoted with an X.
The X matrix is used to evaluate the design; another
important feature of this matrix is that it contains a
column for every parameter in the assumed model.

Fig. 2 shows the transformation of the matrix D in
Fig. 1 according to the quadratic model presented.
Observe that the 1% column corresponds to the in-
tercept of the model, the 2"¢ and 37¢ columns are ex-
actly D, the next column corresponds to the interac-
tion term and it is the product of columns 2 and 3.
Finally the last two columns correspond to z? and 3.

Section 2 reviews the basics of an RPD model, which
is a generalization of the quadratic model presented in
this section. To motivate this analysis, suppose that
in the last example a very important factor was not
considered, say humidity. If humidity turns out to
be a significant factor, imagine the consequences of
optimizing an incomplete model.
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Figure 2: Matrix In Model Form

2 THE RPD MODEL

Early work in Robust Parameter Design includes the
research done by Taguchi, Box and Jones, and Myers
who proposed the following model.

Let ' = [x1,22,...,xk] be the k controllable factors
and let 2’ = [z1, 22, ..., 2] be a vector of r noise vari-
ables; the model we assume is:

Y(x,2) =6 +x'B+x'Bx+2'v+x'Az (2

where Y is the observed value of the response given
a fixed value of the noise variables z, and the corre-
sponding values of the controllable factors x.

The parameters of the model are 8 = {5y, 8, B, ~,
and A}. They are all estimated using the matrix X;
hence, the properties of the model depend on the X
chosen. These properties include variance, the number
of runs, Deg and Geg.

As mentioned before, this model is a generalization
of the quadratic model. Without any noise vari-
ables taken into consideration, this model reduces to
a quadratic model. The complete model is quadratic
in the controllable factors and linear in the noise vari-
ables, in addition to the corresponding interactions be-
tween noise and controllable factors.

3 OPTIMAL DESIGN THEORY

Optimal Design Theory was originally developed by
Kiefer [12] as a hardcore mathematical tool which
practitioners found of no use at all. Years later, the sci-
entific community started to understand Kiefer’s the-
ory and its applicability to Design of Experiments.

As we have iterated above, the choice of design has an
impact in the quality of the prediction/optimization
model we derive from X. For instance, the variabil-
ity of the coefficients in the regression problem de-
pend on X. We can show that Var (0) = ¢%(X'X)"?!
is the variance-covariance matrix. Based on this, the

D-optimality criterion tries to achieve a spatial distri-
bution of points in the decision space in such a way
that the coefficients’ variances are minimized. It can
also be shown that by maximizing |X’X]|, we minimize
|(X/X) 1]

Since the variability of the coefficients (8) of the op-
timization model depend on (X’X)~1, it makes sense
to minimize this determinant.

D-efficiency may be defined in several ways, but the
most common approach to compare two different de-
signs with different number of runs is the following:

X'X

Deff = ‘M(§)|

where N is the number of runs and p the number of
model parameters. We refer to M(£) as the moment
matrix of the design &.

Another way of defining Deg is by using the follow-
ing relation, Deg = (|M(€)|/max |[M(£*)|)*/?, where
the denominator is the maximum determinant over all
possible moment matrices.

The second criterion used is G-efficiency. This is a
measure of the prediction variance, v(x), within the
experimental region. Once again, the design chosen
will determine the variance in the predictions made
with the obtained model. G-efficiency is defined as
follows:

p p
Gegf = = 4
T~ max v(x) max Nx'(X'X) " 'x )
TER zER

where p is the number of parameters in the model, and
x is any of the rows of the X matrix.

Unfortunately, optimizing both criteria is not an easy
task. The D-optimality criterion tries to maximize
the volume spanned by the columns of X; while,
G-optimality tries to distribute the points homoge-
nously across the region of experimentation. Therefore
in the neighborhood of fractions of the decision space
where no runs are allocated, the predictive variance
will be expected to be high.

4 IMPLEMENTING CMA-ES: A
SINGLE OBJECTIVE PROBLEM

The main goal is to implement an evolutionary strat-
egy to design new matrices for the RPD model dis-
played in the last section. The heuristic selected is the
Covariance Matrix Adaptation-Evolutionary Strategy
(CMA-ES) developed by Hansen and Ostermeier [9].
The objective is to develop competitive matrices that



outperform the designs that have been implemented in
Robust Parameter Design for the last two decades.

4.1 DESCRIPTION OF THE ALGORITHM

CMA-ES is a self-adaptive algorithm developed by
Hansen et al. for continuous parameter optimization
of nonlinear functions. In essence, the algorithm gen-
erates the offspring from a “learning” Normal distribu-
tion that adjusts its parameters to better fit the best
individuals from each generation.

The two main elements of this Normal distribution are
its mean m(®) and its covariance matrix X. The mean
is a linear combination (weighted average) of the best
solutions from each generation, and represents the cen-
troid of the search; on the other hand, ¥ determines
how broad the search should be.

During each generation, the algorithm adapts the co-
variance matrix of the Normal distribution, estimat-
ing the inverse Hessian matrix in such a way that it
speeds up the convergence of the algorithm towards an
improving direction; this adaptation allows the algo-
rithm to align the search for optimum to the contour
lines of the objective function.

For more details on the algorithm, the reader may refer
to Hansen 2004 [11], as well as the Tutorial for the
MATLAB version of his code.

4.2 PROBLEM REPRESENTATION
(QUADRATIC MODEL)

The representation of this problem considers three dif-
ferent spaces: i) decision space, ii) model-form space
and iii) objective space. This is done because the vari-
ables are contained in the matrix D, but the model-
form X is required to compute the fitness of each so-
lution. Another issue is that CMA-ES’ solutions are
vectors, and what we need is a matrix (See Fig. 3).
In order to use CMA-ES, each matrix is “vectorized”,
so an n X p matrix is transformed back and forth to a
np x 1 vector.

The decision variables are the entries of the design
matrix D; so the design displayed in Fig. 1 exhibits
a total of 16 variables (8 runs x 2 factors). Fig. 3
shows that for every function evaluation matrix D is
transformed to matrix X to map the decision space
into the objective space.

The design matrix D is the final output of this opti-
mization process. D is an n x k matrix where £ is
the number of factors in the experiment, and n the
number of available runs. Once this is given, we need
to specify the model. With these three pieces of in-

Domain of selection, mutation,
crossover.

Figure 3: Decision And Objective Spaces

formation we construct the matrix X that is used to
evaluate the objective function.

Considering a quadratic regression model, the formu-
lation is the following;:

Maximize f = |X'X]
Subject to:

Geﬁ > Gmin =0.95
p /[ n 2

> ( dij) —0.

j=1 \i=1

Or equivalently as a single objective minimization
problem:

f = XX |1 (Gon = 095) 42 3 (S ) 6)

where the two constraints are introduced to the objec-
tive function with penalties w1, wo and the d;; are the
n x k decision variables of the matrix D.

Notice that the first constraint tries to achieve G-
optimality, while the second is a balance constraint.
The 0.95 was chosen to pressure the algorithm to pro-
vide almost G-optimal designs.

Having a constrained single objective problem is jus-
tified because the |X’X| criterion should be the main
driver of the optimization and the constraints should
only refine the solutions provided by the |X'X]| term.
Recall that by minimizing -|X’X|, we maximize D-
efficiency.

In addition, constraints were incorporated to derive
designs with better properties, high G.g and small
number of levels. Because of the scale of the terms
in the objective function, the optimization is driven
primarily by the |X’X] term.



4.2.1 Parameter Setup

The default parameters of CMA-ES seemed to work
well across several problems solved. Since we are not
trying to solve a problem with unique features, i.e.
same number of runs (n) and factors (k), optimizing
the parameters makes no sense.

Instead, focus was centered at computing the penalty
weights of the objective function. Notice the values
displayed on Table 1 are all clearly on a different scale.
In addition, the maximum value of the determinant
will be unknown in most of the cases analyzed.

Table 1: Minimum And Maximum Values For The
Objective Function Terms.
Objective terms Minimum Maximum
|X'X]| 0 Max. problem
Geﬂ - Gmin -0.95 0.05

p-n?

> (X diy) 0

To scale the terms of the objective function, perform
the following steps:

1. Define the objective function as f = —|X’X]| and
optimize this without any constraints.

2. Once we have the maximum value (detyay), scale
the penalty weights as w; = detyay /0.05 and
wy = detmax /(p - n?).

The convergence criterion used was to stop the algo-
rithm when the changes in the best solution (x) from
generation to generation were smaller than e.

4.2.2 Results

For two factors, the design displayed in Fig. 4 was
found; notice that the eight external points are lying in
a circle with the center runs in the origin. This makes
sense, because in this situation the model is symmetric.
Therefore, the algorithm finds a symmetric design to
fit the corresponding quadratic model.

Figure 5 displays the variance of the regression model
obtained with the EVO1 design. The y axis displays
the variance. On average the variance of the design is
below p and only the maximum variance is beyond p
after moving 1.2 units away from the origin.

The comparison of this design with some of the bench-
marks previously established is summarized in Table 2.
The second column corresponds to the total number of
runs and the number between parenthesis is the cen-
ter runs included in the total. The determinant of the

Evolutionary design for a quadratic model

x2
=)
°

Figure 4: Evolutionary Design For k=2 Factors
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Figure 5: Variance Dispersion Graph For EVO1

moment matrix is displayed in the third column, so
anyone can replicate our results. From the third col-
umn, D-efficiencies were computed.

Table 2: Design Comparison On A Cuboidal Region.

Design  Runs |M(€)] D Ges
32 design  9(1) 9.8x107% 100 82.76
Composite  9(1) 2.41x107* 53.92 66.67

10(2) 2.56 x 107%  54.47 96
EVO1 9(1) 25x107% 79.64 66.67
10(2) 2.6x1073 80.16 96

The best solutions are given by the 32 and the EVO1
designs. Clearly, they outperform the Central Com-
posite design for two factors. We have beaten the
benchmark and created a new design, which has good
optimality properties, a small number of levels and a
desired symmetry.

A reliability analysis using 100 random seeds, 10k-+100
for kK = 1,2,...,100, shows convergence to the exact
same solution in 80% of the cases.



4.3 PROBLEM FORMULATION(RPD
MODEL)

Once again consider the model displayed in Eq. 2. The
noise parameters (v, A) in the model are crucial in the
optimization of the RPD model.

It can be shown that in order to make a process in-
sensitive to noise, levels in the controllable factors are
chosen to minimize the variance of the process. This
variance can be computed from:

Var, . [Y(x,2)] =

(y+A'%)' 2, (v + A'x) + 0% (6)

From Eq. 6 observe that the variance is a function

of the controllable variables x, and not of the noise
variables.

To achieve the minimum there must exist some cor-
relation between the Noise Effects (N), or v, and the
Noise-Controllable interactions (NxC), or A. In other
words N and NxC should not be orthogonal; oth-
erwise we can not select levels of x that minimize
the term (v + A’x). Similarly, there has to be non-
orthogonality between the NxC interaction terms.

These constraints will be handled through a penalty
function, just like before. The formulation of the prob-
lem is:

2
Min. — |X'X| — w; (G — 0.95) +ws > (Z dij)
Subject to:
U>0 ¢&>0
—1<d; <1

where ¥ is the sum of squares of the elements in the
matrix (X’X) ™! corresponding to the orthogonality of
the N and NxC terms. A sum of squares close to zero
indicates that the matrix is nearly orthogonal. Sim-
ilarly, @ is equal to the sum of squares of the NxC
terms. To create a design in coded units, the decision
variables d;; are constrained as shown in the formula-
tion.

To include the additional constraints in the objective
function we consider the weights w3 and w4. With this
scheme, scaling issues will also arise.

4.3.1 Parameter Setup

Similarly to what was done in Section 4.2.1, the default
parameters of CMA-ES are utilized. For the same rea-
son as before, only the weights of the objective func-
tion were considered. Only this time some exact D-
optimum values are available in Borkowski [2].

Several issues were observed when the new constraints
were weighted accordingly to the maximum determi-
nant (D-optimum values). It turned out that when the
same scale was used for each term, the optimization
was too noisy as each term carried the optimization
towards a different path. Therefore, a scaled objective
function only on the first three terms, that considers
in addition the satisfaction of the constraints was im-
plemented.

4.3.2 Results

Results were obtained for one of the simplest cases,
two controllable factors and one noise variable. Unfor-
tunately, in the literature no one has ever published re-
sults for this case. Our designs had 20 runs (plus two
center points) and high optimality features, such as
Deg = 99.3% and Geg = 91.34%. There are currently
no benchmarks for this case, but still the properties of
the design are notoriously very good.

Table 3 includes one of our best designs and compares
it with the corresponding benchmarks. The case an-
alyzed takes into consideration two controllable and
two noise factors, i.e. k=2, r=2.

Table 3: RPD Design Comparison On A Cuboidal Re-
gion (k=2, r=2).

Design Runs |M (&) Do  Gesr
CMR, 4A* 23(3) 0.0046 100  88.81
Hoke D6 22(3) 1.06 x 107* 73.11 61.02
Box-Behnken  27(3) 1.63x 1077 42.63 78.05
Hybrid 416A* 19(3) 2.5 x 1073  93.32 67.07
Notz 18(3) 7.1x107° 70.70 70.67
k2r2n18 18(-) 0.0022 94.16  76.19
EVO02-2 18(2) 0.00202  93.48 91.16

The designs marked with a star are not directly com-
parable to the other designs since they contained runs
beyond the experimental region (beyond +1). This
obviously increases the determinant; so their apparent
good properties are not a consequence of an optimal
spatial distribution of their runs.

To illustrate this, the CMR 4A design was scaled into
a hypercube. As a result, its D.g was reduced to
35.47%!

The methodology presented consistently provides good
designs that have both high D and G efficiencies. In
addition, notice that this has been accomplished with
only 18 runs. In industries were experimentation is
expensive, this might be a crucial decision factor.

Further results are presented in Table 4. Once again,



the CMR 5A design has points outside the hypercube,
and therefore its superiority is only apparent. With
28 runs, the design proposed EVO3-2 achieves better
properties.

Table 4: RPD Design Comparison On A Cuboidal Re-
gion (k=3, r=2).

Design  Runs |M ()] Dot Genr
CMR 5A*  25(3) 52x107° 93.17 82.82
Notz 24(3) 1.31x 1077 66.80 80.65
Hoke 29(3)  1.69 x 107° 5247 67.56
k3r2n24  24(-) 7.05x 1077 73.36 75.0
EVO3-2  28(2) 3.82x107° 91.58 76.42
30(2) 6.66 x 107° 94.45 78.56

5 CONCLUSIONS

Traditionally the problem of designing an experiment
is avoided by the practitioner due to the existence of
a vast variety of designs for several kinds of models.
Catalogues of design matrices may be easily found.

However, there is still a lot of work to be done. Nice
theoretical results have been derived, but the work
done previously has been limited to designs with a
finite support (specific points in the decision space).
Also, most of the designs currently used are modifi-
cations/adaptations of designs that were initially con-
ceived with a different model in mind.

The continuous nature of the problem and the infinite
number of designs have limited the analysis of statisti-
cians and scientists to finite search spaces, constraining
the potential of the decision space. The lack of com-
putational power was another important obstacle, but
now all of this can be easily overcome.

Take for instance, the quadratic model in two dimen-
sions which is a well-studied problem. Using CMA-ES
(a continuous search heuristic) we derived a new design
with good properties that may be easily implemented
in practice.

So far, no one has included the G-optimality criterion
in their optimization procedure. This is a strength in
particular of our procedure, which includes center runs
a priori and optimizes with this taken into account.

Some concerns about using CMA-ES arose because of
the multimodality nature of our objective function, es-
pecially in high dimensions (200 or more variables).
This was noticed while optimizing the penalty weights
of the objective function; small changes in the weights,
drastically provided different results.

Another concern is the implementation of constraints
in the optimization, since every solution derived from
the Normal distribution needs to be feasible. Espe-
cially in high dimensional problems, solutions had to
be brute-forced until feasibility was reached. This
slows down the optimization as the number of vari-
ables involved increases.

There is also a limit in the number of decision vari-
ables considered, as this quantity grows geometrically
as the number of factors (controllable and noise) and
runs increase. The number of decision variables for
a particular problem is computed from the following
equation:

n{(k+1)(k+2)+2r (k+1)]
2

Decision variables =

Hence, for problems with a a total of more than
eight factors, CMA-ES will not provide satisfying solu-
tions. Nevertheless, in practice, most experimentation
is done for a small number of factors.
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