
Hybridized arrival time control approach to JIT job-shop scheduling

Nazrul I. Shaikh
Industrial Engineering Dept.

Penn State University
University Park, PA 16802

Vittaldas V. Prabhu
Industrial Engineering Dept.

Penn State University
University Park, PA 16802

Patrick Reed
Civil Engineering Dept.
Penn State University

University Park, PA 16802

Abstract
There is a need for highly flexible, low complexity
systems with that can handle the large scale real time
scheduling problems. In this work, two approaches,
artificial intelligence (AI) based genetic algorithms (GA)
and control theoretic based arrival time control (ATC)
have been combined to achieve the objective of just in
time (JIT) scheduling in a job-shop. GA and ATC
compliment each other and the hybrid system, relying on
its massively parallel architecture can handle large-scale
JIT scheduling problems efficiently. The required number
of function evaluations decrease drastically and scale
polynomially as the problem size increases. Initial results
show a 21% improvement in soultion quality over simple
ATC and 0.5% improvement over heurisitcal solutions for
a sample problem considered here.

1. INTRODUCTION

Scheduling for just in time (JIT) delivery is fast becoming
the de facto requirement in many small to medium scale
manufacturing shop floors. Over the last few years,
researchers and practitioners have approached the
problems that arise in job shop scheduling when the
objectives are earliness-tardiness related. Combinatorial
optimization techniques (e.g., Ventura, 1995, Pinedo,
1995, Baker, 1974), control theoretic approaches (e.g.,
Prabhu, 2003, Kogan and Khmelnitsky, 2001), and
artificial intelligence (AI) based approaches (Scholl et al,
1995) have been proposed. The implementations of these
scheduling approaches, however, are not that widespread
in industry.

Researchers focus on complexity analysis, rigorous
analysis of exact procedures, or heuristics for
mathematically tractable special cases of the real
problems. Most large-scale, real-time scheduling
problems do not fall into these special categories. Large
and complex search spaces for solutions, dynamic shop
floor conditions, and a multitude of shop floor conditions
are the factors that set these problems apart. There is a
need for highly flexible systems with low complexity that
can handle such problems. It is also essential that the
system be robust enough to handle variations in shop
floor conditions and scalable to handle real size problems.
The focus of this work is on combining features of

evolutionary strategies and control theoretic approaches
and developing a hybrid approach for JIT scheduling. The
goal is to develop a scalable, robust, and low complexity
approach that generates efficient schedules.

The proposed hybrid approach relies on problem
partitioning and local search for developing schedules.
Arrival time control (ATC) formulation (Prabhu, 2003)
transforms the scheduling problem into a continuous
variable control problem and eliminates combinatorial
complexity. Though ATC has an exponential convergence
rate towards local attractors, it cannot guarantee
optimality for most scheduling problems. In this work,
ATC has been used to partition the problem and generate
initial populations near local attractors. Genetic
algorithms (GAs) have been applied within these
partitions on the populations of solutions to seek superior
solutions adaptively. Offline analysis is conducted and the
best solution is archived for generating the final schedule.

This paper has been organized as follows: The job-shop
scheduling problem with earliness-tardiness penalties has
been described in Section 2. The complexity of the
problem using traditional approaches, simple GA, simple
ATC and the hybrid approach has been discussed. ATC
algorithm has been described in Section 3 and GA in
Section 4. The proposed hybrid algorithm is presented in
Section 5. Results are presented in Section 6 and future
research in Section 7.

2. SCHEDULING AND COMPLEXITY
Within the domain of production control, scheduling
refers to the specific activity of timetabling the operations
dictated by the process plans so as to achieve desired
levels of performance at the shop floor level (Rodammer
and White, 1988). The job-shop scheduling problem is
that of scheduling a set of jobs that have to be
processed on machines, where the processing of each
job consists of operations performed on these machines
in a specified sequence. The operation of job i has to be
performed on machine with deterministic processing
time . A machine can process only one job at a time,
and an operation cannot be preempted. The objectives can
be one or more, including minimization of makespan,
tardiness, or maximize machine utilization, customer
satisfaction, etc. The focus of this work is on earliness-

n
m
m

j
ijt

 1

tardiness related objectives in JIT systems, i.e.,
minimize , the mean squared deviation (Equation (1)),
subject to Equations (2), (3), (4), and (5).

D

=

= 1

+ it

ijkY

tij

ijkX

n×

mn×

O

∑∑
= =

−
1 1

2)(
i j

ijij cdDMin (1)

Subject to:

∑
=

TC

k
ijkX

1
 j i, ∀ (2)

∑ ∑
= =

++ ≤
TC

k

TC

k
kjijijk kXkX

1 1
)1()1(1-J1,...,j and i =∀ (3)

1)'(
1 1

)1max,min(

1'
'

1 1
≤+ −

= =

−+

+== =
∑ ∑ ∑∑ ∑ kkij

I

i

J

j

tkTC

kk
ijmijk

I

i

J

j
ijm YXX ξ

km, ∀

(4)

kMijk −≥ξ , and k j i, ∀ (5)
Here, d is the due date for the step of the part,

is the completion time of the step of the
part, indicates whether the step of the part

is completed in the k time step, Y indicates whether
the step of the i part requires machining by the

 machine, is the total time horizon, refers to
the processing time the step of the i part. Equation
(2) ensures that all the operations for a part are completed,
Equation (3) ensures that operations are performed in the
right order, and Equations (4) and (5) ensure that the
machining constraints are not violated.

ij

thj

thj

thj
ijm

thi
thi

ijc
thi

thm

thj

th

th
th

TC ijt
thj

It has been shown that even the simplest models that deal
with earliness tardiness penalties are NP-Complete
(Cheng and Gupta, 1989). The number of possible
schedules exceeds O . Most of the solution
techniques for JIT scheduling problems rely on relaxation
techniques and heuristic methods for this very reason. The
complexity estimate for simple GA following the
parameterization guidelines of Reed et. al, 2000 is of the
order O . The function evaluations occurring in
the ATC algorithm during an iteration is of the
order O . Therefore for I iterations, the function
evaluations are of the order , though without
any guarantee for optimality. The hybrid approach
proposed here uses ATC to partition the problem and
multi-population GAs to seek an optima in each partition.
A conservative approximation for the required number of
function evaluations for the proposed approach is of an
order of . The
first term represents the function evaluations made for the
ATC algorithm for partitioning step and the second term
involves the function evaluations made by GA sub-
populations. K is the number of iterations used for the
hybrid approach. It may be noted that as the problem size
i.e., increases, the hybrid approach with

 and

substantially reduces the
problem complexity.

))!((mn

(O

()Im +×

() mnm ×××

))((22m

)(

((nK

)(mn ×

()(KImn +××

)Imn ××

()mK ××

)) 2 O<<

)) 2mn××

m

)((22mn×)(KO

))!(())((22 mnOmnO <<×

))(()(ijijcij dcdKta −= ∫ ττ

a

)1(()(TkcdKkTa ijcij −−=

3. ATC IN SCHEDULING
ATC is a simulation-based algorithm that transforms the
scheduling problem into a continuous variable control
problem. As the name suggests, the algorithm calculates
the schedule for all the parts by manipulating their arrival
times. Given the expected processing time and the due
date for each part, the algorithm tries to minimize the
deviation of completion time from the due date by
adjusting the part arrival time in the next simulation run.
Essentially, for a n part m machine problem, there will be
m resulting systems (1 for each machine), and each
comprising of n-dimensional multivariable control
systems, where due date, completion time, due date
deviation, and arrival times are n-dimensional vectors
acting as the command, output, error and manipulated
vectors respectively (Prabhu, 2003). The logic is
graphically illustrated in Figure 1.

Figure 1. Feedback Control for ATC

The algorithm calculates the completion time of each part
(which is nothing but the sum of arrival time of the part
and the processing times of each of the parts that arrived
before it and the queuing time). Based on the total time
for the completion of all the parts, deviation from the
actual due-date is calculated and the arrival times for the
parts at next iteration are changed according to the
deviations. Equation (6) represents the mathematical
expression for the ATC controller.

)0(ija+

K

 (6)

Where, ij is the arrival time, c is the control system
gain, On further simplification the above equation
transforms into Equation (7) where T is the discrete time
step. The schedule with the best performance discovered
in these iterations is saved and used to schedule events.

))1(() Tkaij −+ (7)

It may be noted that queuing introduces discontinuity in
the system. Parts are processed in the order in which they
arrive and if a part arrives when another part is being
processed at the machine, it incurs queuing time. If a part
arrives when the machine is idle, this queuing time is
zero. All the parts that are processed by a machine
between two consecutive machine idle times form a
fragmented queue and are part of an “active sub-

 2

problem”. The simulation identifies these fragmented
queues as the arrival times for the parts in the active sub-
problem converge to steady-state values. The relative
order of processing within each queue fragment however
continues to change as ATC keeps searching for better
schedules based on the processing sequence change. This
phenomenon known as chattering (illustrated in Figure 2)
occurs as ATC is oblivious to optimal.

Figure 2. Chattering in ATC

After the convergence of the arrival times and formation
of active sub-problems, the part m machine job-shop
scheduling problem can be seen as

n
iα iαl part 1 machine

sequencing problems, where there are l parts in the
sub-problem. Recent work has focused on developing

techniques to design systems to improve scheduling
performance and predictability (Cho and Prabhu, 2002).
Attempts are being made to incorporate a global system
view with the ATC algorithm (Hong, et al, 2003).This
work relies on GA for introducing a global perspective
into ATC based scheduling.

iαth
iα

4. GA FOR JOB-SHOP SCHEDULING
The GA is a heuristic search procedure for solving
complex combinatorial problems. Inspired by biological
evolution, GAs propagates new strings from parent
chromosomes via stochastic operators. Chromosomes
with high fitness values survive and those with low fitness
values die off generation by generation (Holland, 1975;
Goldberg, 1989). While most stochastic search methods
operate on a single solution to the problem at hand, the
GA operates on a population of solutions; it can
efficiently sequence the operations that have been
included in the population. Some of the aspects that make
the GA a favorable tool for combining with ATC are:

1. Flexibility: GAs can effectively handle problems that
many traditional optimization algorithms cannot include:
(1) discrete spaces, (2) non-linear, discontinuous
evaluation functions, and (3) nonlinear discontinuous
constraints. GA has the ability to extract an initial

population and display rapid convergence even in
discontinuous regions.

2. Scalability: The favorable scaling of evolutionary
algorithms as a function of the dimension of the search
space makes them particularly effective in comparison
with other search techniques for large search spaces.

3. Robustness: GAs use a population rather that a single
point in the search space for evolution. This incorporates
robustness into the search procedure as well as fault
tolerance when inter-process communication is used.

Besides the fact that GA is efficient in the discontinuous
region, the approach blends well with the distributed
architecture that ATC maintains. Local populations can be
generated for each individual zone of discontinuity. The
details have been presented in Section 5.

To use GA, however, one must first represent the problem
in the right structure. It may be noted that ATC is a
simulation-based approach and the machine capacity
constraints (Equations (4) and (5)) are implicitly defined
in the simulations. Equations (4) and (5) are satisfied in
the partitions that are created by ATC. Constraints (2) and
(3) however, have to be included in the representation that
is selected. The procedure then applies selection and
variational operators to these individuals in the population
to generate new individuals. The GAs use various
selection criteria so that it picks the best individuals for
mating so as to produce superior solutions by combining
parts of parent solutions intelligently. The objective
function of the problem being solved determines show
good each individual is. In this work, we use the
following specifications for GA.

4.1 REPRESENTATION
Several chromosome-encoding schemes have been
discussed in literature for sequencing and scheduling of
operations. These include operation-based, job-based,
preference list based, machine based, or random keys
based representations (Pongcharoen et al, 2003). These
representations tend to become complicated as the
problem size and the complexity increases. In this work, a
variation of the alphanumeric representation has been
used.

In the proposed hybrid approach, the partitioning stage
generates sub-problems that involve sequencing of
parts on a single machine. Since each sub-problem is
specific to that machine, ordinal values of the entity types
in a sub-problem are mapped into each chromosome of
the sub-population. Essentially, a sub-population

iαl

iα will
be comprised of chromosomes of length having
unique integer numbers from 1 to . For example, if
there are 9 parts in an active schedule for a machine, a
chromosome for that sub-population can be represented
as: 1 2 3 4 5 6 7 8 9, where “1” is the ordinal value of an
entity in that sub-problem.

iαl

iαl

 3

4.2 INITIALIZATION
The chromosomes in the initial sub-populations are
generated randomly. Heuristic rules such as SPT (shortest
processing time first) or FIFO (first in first out) could be
applied for initial population generation, but these
heuristics perform well only in the common due date
problems and so cannot be generalized for a sub-
population. The initialization process for sub-problem iα
has two stages:

1. Strings of length l , having integer numbers
sequences from 1 to are generated. Essentially, if N
strings have to be created for a sub-population with 9
entities, N strings of characters 1 2 3 4 5 6 7 8 9 will be
generated

iα
iαl

2. The numbers in each chromosome string are then
mixed randomly within the string itself, and new
sequences containing all the numbers in a random order
are generated. These are then used as inputs as new
members of the population. For example, 2 8 4 7 1 3 9 6 5
is a new chromosome.

4.3 SELECTION
A modified “N best” reproduction scheme (Cheng, et al,
1996) has been used for generating the children
population and determining the population for the next
generation. In this scheme,η off springs are produced
from the previous population of size N. The N best
chromosomes out of the η+N old ones constitute the
population for the next generation. A fixed number of
randomly generated chromosomes λ are also injected into
the population after every κ generation to add diversity
and search pressure (Reed, 2000, 2002). Therefore,

λ+→ NN after every κ generations.

4.4 DIVERSITY OPERATORS

4.4.1 Crossover
Each chromosome in has length iα and comprises of

iα unique integer numbers ranging from 1 to iα . This
property should be maintained in the child population that
is generated after the crossover and mutation operations.
The “uniform order based crossover” is considered to be a
good fit to this kind of constraints (Lee and Choi, 1995).
This crossover operator considers both the absolute and
relative positions of genes in the parent chromosomes for
generating the children. The crossover operation is
conducted in four steps:

l
l l

1. Pick two parent chromosomes. The parents can be
picked based on their fitness function values, using the
roulette wheel selection, or randomly. In this work, they
are randomly picked.

2. Generate a binary string of length iαl , the length of
the chromosomes in the population (9 in this case). A
binary template could be as follows: 1 1 0 0 0 0 1 0 1

3. Fill in the positions in Child 1 (or Child 2) by copying
them from Parent 1 (or Parent 2) whenever the bit strings
contain a 1 (or 0). For example, suppose the following
parents are selected for crossover:

Parent 1: 1 2 3 4 5 6 7 8 9 and Parent 2: 2 3 5 4 1 8 9 7 6

And the Binary template is 1 1 0 0 0 0 1 0 1, then the
resultant intermediate children chromosomes are:

Child 1: 1 2 _ _ _ _ 7 _ 9 and Child 2: _ _ 5 4 1 8 _ 7 _
respectively

4. List the genes from parent 1 (or parent 2) associated
with a 0 (or 1) in the binary template and permute these
genes so that they appear in the same order as they appear
in on parent 2 (or parent 1). Thus, the crossover yields the
following final children:

Child 1: 1 2 3 5 4 8 7 6 9 and Child 2: 2 3 5 4 1 8 6 7 9

4.4.2 Mutation
Intra-string mutation has been used for introducing
variability in the system. The mutation operator chooses
two jobs in a chromosome at random and exchanges their
positions. For example, if the parent is: Parent 1: 1 2 3 4 5
6 7 8 9 and the probability of mutation is 0.1, the child
can be: Child 1: 1 9 3 4 5 6 7 8 2

4.4.3 Time Continuity
Time continuity has been proposed as an added tool for
introducing diversity and variability (Goldberg, 2002).
The population injection method, described in Section 4.3
is a form of time continuitation that adds diversity.

4.5 SWAPPING
Before the objective function value associated with a
chromosome can be evaluated, it is required that the local
feasible of the sequence be tested. Although a l part 1
machine problem is being solved in each active sub-
problem, for re-entrant lines, etc, there is possibility that
there are some precedence constraints that need to be
adhered to. The swapping operator swaps the two genes if
it is violated. For example if in parent 1, the ordinal
values 2 and 9 represent the same part, but different
processing steps, and the operation indicated by ordinal
value 2 has to be performed before the operation indicated
by 9, and the position of the two genes are interchanged in
the final chromosome.

iα

Child initial: 1 9 3 4 5 6 7 8 2

Child final: 1 2 3 4 5 6 7 8 9

It may be noted that the final child and the parent
chromosome represent the same sequence. This is quite
common and can lead to pre-convergence. Steps such as
population injection are therefore recommended.

 4

4.6 FITNESS EVALUATION
Each chromosome in a sub-population represents an
active schedule for the machine for a given time frame.
The arrival time of the first part is determined from the
ATC partition and since the schedule is active, there is no
inserted idle time.

The part in a given sequence incurs a waiting time of
 after that the machine processes it for a duration of

 and then completes it at . The completion time for
the part in the sequence can therefore be expressed as

thj

thj

ijw
ijt ijc

)()()()(1 tttwtatc ijijiij ++= (8)

and because of zero inserted idle time,

)(...)()()()()1(211 tttttttatw jiiiiij −++++= (9)

From Equations (8) and (9), completion time can be
expressed as

)(...)()()()(211 tttttttatc ijiiiij ++++= (10)

The fitness criteria, the due date deviation is then
calculated as

∑
=

−=
i

j
ijij tctdD

1

2))()((
αl

 (11)

5. THE HYBRID APPROACH
The proposed approach can be represented as shown in
Figure 3. The approach involves six basic steps:

5.1 DATA CODING
This step involves converting the problem from a

part, m machine, processing step into a n m mn× part
machine problem, that is suitable for the proposed

algorithm. Unique part ids and process ids are assigned to
each of the n entities. This forms the primary key that
uniquely identifies each part and the processing step that
it needs to undergo. Alphanumeric coding scheme
suggested by (Pongcharoen et al, 2003) has been used in
this work as it can be extended easily and interpretation is
straightforward. It may be noted that each of the initial

parts can have unique process plans with any number of
processing steps. The assumption of m processing steps
per part has been taken for simplicity and clarity in
expression and demonstration.

m

n

m×

5.2 DUE DATE ASSIGNMENT
This step involves assignment of due dates to each of the

entities. Due dates of the processing steps for
all the parts are fixed (or predetermined). Due dates for
the remaining parts can be assigned using different
heuristics depending upon the goals and constraints of the
shop floor; the due dates can be uniformly spaced in the
planning horizon, or assigned based on the allowed
makespan for the part. It is essential for the due date
assignment rule to not contradict the precedence

constraints that exist in the process plans or because of
other shop floor constraints such as setup. In this work, a
common intermediate due date has been assigned to all
the parts for illustration of the overall algorithm.

mn× thm
n

ATC based Partitioning

Inverse Mapping

Sub-problem
mapping

Sub-problem
mapping

Sub-population
generation

Sub-population
generation

OperationsOperations

Function
evaluation

Function
evaluation

Explicite
enumeration

Figure 3. Hybrid Algorithm

5.3 ATC BASED PARTITIONING
Given the n m× entities, their processing times and due
dates, and the shop floor conditions (constraints and
machine states), the next step involves executing the ATC
algorithm to partition the problem into active sub-
problems. From Figure 2, it can be seen that the ATC
converges in approximately 45 iterations. We fix

50=I for this work. In general, we can take TI 10≈ ,
where T is the discrete time step used in Equation (7).

5.4 SUB-PROBLEM MAPPING
This step involves identification of the partitions and the
sub-problems. Entities separated by an idle time of τ or
greater duration in a machine schedule are assumed to be
in different partitions. The value of τ has to be less than
or equal to the smallest processing time of an entity in the
active schedules separated by that τ . Once the partitions
have been determined, mapping tables as shown in Tables
1 and 2 can be developed.

5.5 GA BASED SEQUENCING
This step involves creation of a sub-population of GA for
the active sub-problems that have been created. To
improve efficiency, sub-populations are not associated
with all the active sub-problems. For a sub-problem iα
with entities, explicit enumeration involves !l
function evaluations. For the same size problem, GA
based approach will require function evaluations,

iαl iα

gN ×

 5

where is the population size andN g is the number of
generations. Both andN g are dependent on . Making
conservative estimates and using heuristics mentioned in
competent GA literature (Reed, 2000, 2002, Goldberg,
2002), the number of function evaluations can be
approximated to . Sub-populations are
created only when the number of function evaluations
using explicit enumeration far exceeds the number of
function evaluations required by GA, i.e.,

. This happens when . It
the number of entities in an active sub-problem is greater
than 7, sub-populations are created. The details of this
step have been described in detail in Section 4.

iαl

αl

ii αα ll 8.

!iα

2×2

l≤102 ii αα ll ×8.2× 7≥i

5.6 INVERSE MAPPING
After a fixed number of iterations/generations/time, the
best solutions in each of the sub-population is taken and
reinserted into the ATC model. Infeasibilities, if any, are
eliminated.

6. RESULTS
6.1 PROBLEM DEFINITION
The problem taken up to illustrate the application of the
hybrid approach comprises of 9 parts with 2 processing
steps each, and to be processed on 2 machines. The
common due date for all the parts is 320 time units. The
processing times and the Part ids (primary key) are
presented in Table 3. The desired schedule should
minimize the deviations from the due dates. The common
due date problem has been selected because the solution
lies in the discontinuous region and ATC is inefficient in
converging to a solution.

Table 3. Problem Definition

6.2 ATC BASED PARTITIONING

The inntial 9 part, 2 machine, 2 processing step problem
(Gantt Chart shown in Figure 5) was converted to a 18
part 2 machine problem. The due dates and part Id.
assigned to the intermediate steps have been presented in
Tables 1 and 2. The Gantt chart of the modified problem
is presented in Figure 6. ATC was then used to partition
the solution space. The mean squared deviation (MSD)
performance of the algorithm is presented in Figure 6.
The solution space partitions are illustrated in Figure 7.

M 2

Figure 4. Initial Gantt Chart for Original Problem

M 1

M 2

Figure 5. Initial Gantt Chart for Modified Problem

Figure 6. MSD performance of ATC

M 1

M 2

Figure 7. Solution Space Partitioning by ATC

The Gantt Charts created by the ATC algorithms are
presented in Figure 8. The problem comprises of two
local attractors and can be partitioned into two sub-
problems. GA is then used in the sub-populations to

 6

optimize the sequencing of the arrival times of the parts in
each local sub-population.

M 2

M 1

Figure 8. Final Gantt Chart for Modified Problem

6.3 GA BASED SEQUENCING
The mapping tables have been presented in Tables 1 and
2. These are used as inputs for the GA sub-populations.
The representation and opertors presented in Section 5
were used for each sub-population thus created (in this
case, 2). The parameters used in the sub-population are
presented in Table 4. The MSD minimization
performance in the sub-populations have been presented
in Figure 9 and Figure 10.

Table 4. GA Paramteres

Figure 9. MSD performance of GA in Sub-Population 1

Figure 10. MSD performance of GA in Sub-Population 2

6.4 COMPARISON AND VERIFICATION
Initial results for the proposed hybrid approach have been
presented in Table 5. There is an approximately 21%
improvement from the solution that is given by using
ATC alone, and 0.5% improvements from solution given

by the heuristics for earliness-tardiness minimization
heuristics (Ventura and Weng, 1995). Gantt chart
displayed in Figure 11 shows the V-shaped alignment of
the parts around the common due date as predicted by the
heuristic developed by Ventura, 1995.

Table 5. MSD Performance of Algorithms

M 1

M 2

Figure 11. Hybrid Algorithm

7. CONCLUSIONS AND FUTURE WORK
ATC algorithm has an exponential convergence rate
towards local basins of attraction in due date based
scheduling problems. However, ATC is oblivious to
optimal. The proposed hybrid algorithm introduces a
global system view in the ATC algorithm by using GAs.
ATC is used to partition the problem and generate initial
populations near the local attractors. GAs are then applied
within these partitions on the populations of solutions to
seek superior solutions adaptively.

GA is efficient in the discontinuous region and blends
well with the distributed architecture that ATC maintains.
Local populations of chromosomes are generated for each
individual zone of discontinuity, thereby limiting the
length of the chromosome. For a n part m machine, m
processing step job shop scheduling problem, a
conservative approximation for the required number of
function evaluations for the proposed approach is order

and
. Offline analysis is conducted

and the best solution is archived for generating the final
schedule.

))mn((O))mn()mK()Imn(K(O 222 ×<<×××+××
))!(())((22 mnOmnO <<×

Other advantasge of the proposed hybrid approach are:
•

•

Scalability: GA is efficient in the discontinuous
region and blends well with the distributed
architecture that ATC maintains. The
computations for ATC can be executed on a
separate processor in parallel, making them
inherently suitable for massively
parallel/distributed computing.
Robustness and Fault tolerance: This feature is
inherited from GA where the operations are on

 7

populations of points rather than at single points
in the search space.

Some aspects that are currently being explored for
enhancing the hybrid approach are:

•

•

•

A due date assignment strategy for the
intermediate stages of a part. This will probably
depend on the secondary objectives and
constraints related to makespan. The assigned
due dates for the intermediate stages dictates the
distance between the partitions and the number
of sub-problems.
Time continuum, choice between the Baldwinian
and the Lamarckian evolution, etc need to be
considered in details.
Improved synchronization strategies for ATC
and GA communication. This may be related to
the selected evolution strategy.

REFERENCE
Baker, K., “Introduction to Sequencing and Scheduling”,
New York, Wiley, 1974.
Cheng, T.C.E., and Gupta, M.C., “Survey of scheduling
research involving due date determination decisions”,
European Journal of Operations Research, v38, p156-166,
1989.
Cho, S. and Prabhu, V.V. “A Vector Space Model for
Variance Reduction in Single Machine Scheduling,” IIE
Transactions, Vol. 34, No. 11, pp 933–952, November
2002.
Brown, D.E., and Scherer, W.T, “Intelligent Scheduling
Systems”, Operations Research /Computer Science
Interfaces, 1994.
Cochran, J.K., Horng, S.M., and Fowler, J.W., “A multi-
population genetic algorithm to solve multi-objective
scheduling problems for parallel machined”, Computers
and Operations Research, In press article, 2002.
Lee, C.Y., and Choi, J.Y., “A genetic algorithm for job
sequencing problems with distinct due dates and general
early-tardy penalty weights”, Computers and Operations
Research, v22, n8, p857-869, 1995.
Lee, C.Y., and Kim, S.J., “Parallel genetic algorithms for
the earliness-tardiness job scheduling problem with
general penalty weights”, Computers in Industrial
Engineering, v28, n2, p231-243, 1995.
Li., Y., Ip, W.H., and Wang, D.W., “Genetic algorithm
approach to earliness and tardiness production scheduling
and planning problem”, International Journal of
Production Economics, v54, p65-76, 1998.

Lozano, J.A., Larranaga, P., Grana, M., and Albizuri,
F.X., “Genetic algorithms: bridging the convergence
gap”, Theoretical Computer Science, v229, p11-22, 1999.

Gershwin, S.B., “Hierarchical Flow Control: A
Framework for Scheduling and Planning Discrete Events
in Manufacturing Systems”, Proceedings of the IEEE 77,
1989, pp195-206.

Goldberg, D.E., “Genetic Algorithms in Search,
Optimization, and Machine Learning”, Reading, MA:
Addison Wesley, 1989.

Goldberg, D.E., “The Design of Evolution“, Kluwer
Academic Publishers, 2002.

Holland, J., “Adaption is Natural and Artificial Systems”,
Ann Arbor, MI: University of Michigan Press, 1975.

Kogan, K., and Khmelnitsky, E., “Scheduling: Control-
Based Theory and Polynomial-Time Algorithms”, Kluwer
Academic Publishers, 2001.

Montana, D., Brinn, M., Moore, S., and Bidwell, G.
“Genetic Algorithms for Complex, Real-Time
Scheduling”, IEEE Conference on Systems, Man, and
Cybernetics, 1998.

Morton, T.E., and Pentico, D.W., “Heuristic scheduling
Systems with applications to production systems and
project management”, Wiley Series in Engineering and
Technology Management, 1993.

Pinedo, M., “Scheduling Theory, Algorithms, and
Systems”, Prentice-Hall, Inc, 1995.

Pongcharoen, P., Hicks, C., and Braiden, P.M., “The
development of genetic algorithms for the finite capacity
scheduling of complex products, with multiple levels of
product structure”, European Journal of Operations
Research, (In Press), 2003.

Prabhu, V.V., “Distributed Control Algorithms for
Scalable Decision Making from Sensors to Suppliers,” in
Scalable Enterprise Systems: An Introduction to Recent
Advances (Eds V. Prabhu, S.Kumara, M. Kamath),
Kluwer Academic Press, to be published in 2003.

Reed, P., B. S. Minsker, and D. E. Goldberg, Designing a
competent simple genetic algorithm for search and
optimization, Water Resources Research, 36(12), 3757-
3761, 2000.

Reed, P., and Minsker, B.S., Making Genetic Algorithms
Work in the Real World: Guidelines from Competent GA
Theory, in the Genetic and Evolutionary Computation
Conference (GECCO) Tutorial Program, Erick Cantu-Paz
(ed.), New York, NY, 2002

Rodammer, F.A., and White, K.P., “A recent survey of
production scheduling” IEEE transactions on Systems,
man, and cybernetics, v 18, n 6, pp 841-851, 1988.

Ovacik, I.M., and Uzsoy, R., “Decomposition methods for
complex factory scheduling problems”, Kluwer Academic
Publishers, 1997.

Ventura, J.A., and Weng, M.X., “Minimizing the Single-
Machine Completion Time Variance”, Management
Science, 1995.

 8

	1. INTRODUCTION
	2. SCHEDULING AND COMPLEXITY
	3. ATC IN SCHEDULING
	4. GA FOR JOB-SHOP SCHEDULING
	4.1 REPRESENTATION
	4.2 INITIALIZATION
	4.3 SELECTION
	DIVERSITY OPERATORS
	Crossover
	Mutation
	Time Continuity

	4.5 SWAPPING
	4.6 FITNESS EVALUATION

	5. THE HYBRID APPROACH
	5.1 DATA CODING
	5.2 DUE DATE ASSIGNMENT
	5.3 ATC BASED PARTITIONING
	5.4 SUB-PROBLEM MAPPING
	5.5 GA BASED SEQUENCING
	5.6 INVERSE MAPPING

	RESULTS
	6.1 PROBLEM DEFINITION
	6.3 GA BASED SEQUENCING
	6.4 COMPARISON AND VERIFICATION

	CONCLUSIONS AND FUTURE WORK
	REFERENCE

