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Abstract 
There is a need for highly flexible, low complexity 
systems with that can handle the large scale real time 
scheduling problems. In this work, two approaches, 
artificial intelligence (AI) based genetic algorithms (GA) 
and control theoretic based arrival time control (ATC) 
have been combined to achieve the objective of just in 
time (JIT) scheduling in a job-shop. GA and ATC 
compliment each other and the hybrid system, relying on 
its massively parallel architecture can handle large-scale 
JIT scheduling problems efficiently. The required number 
of function evaluations decrease drastically and scale 
polynomially as the problem size increases. Initial results 
show a 21% improvement in soultion quality over simple 
ATC and 0.5% improvement over heurisitcal solutions for 
a sample problem considered here. 

1.   INTRODUCTION 

Scheduling for just in time (JIT) delivery is fast becoming 
the de facto requirement in many small to medium scale 
manufacturing shop floors. Over the last few years, 
researchers and practitioners have approached the 
problems that arise in job shop scheduling when the 
objectives are earliness-tardiness related. Combinatorial 
optimization techniques (e.g., Ventura, 1995, Pinedo, 
1995, Baker, 1974), control theoretic approaches (e.g., 
Prabhu, 2003, Kogan and Khmelnitsky, 2001), and 
artificial intelligence (AI) based approaches (Scholl et al,  
1995) have been proposed. The implementations of these 
scheduling approaches, however, are not that widespread 
in industry.  

Researchers focus on complexity analysis, rigorous 
analysis of exact procedures, or heuristics for 
mathematically tractable special cases of the real 
problems. Most large-scale, real-time scheduling 
problems do not fall into these special categories. Large 
and complex search spaces for solutions, dynamic shop 
floor conditions, and a multitude of shop floor conditions 
are the factors that set these problems apart. There is a 
need for highly flexible systems with low complexity that 
can handle such problems. It is also essential that the 
system be robust enough to handle variations in shop 
floor conditions and scalable to handle real size problems. 
The focus of this work is on combining features of 

evolutionary strategies and control theoretic approaches 
and developing a hybrid approach for JIT scheduling. The 
goal is to develop a scalable, robust, and low complexity 
approach that generates efficient schedules.  

The proposed hybrid approach relies on problem 
partitioning and local search for developing schedules. 
Arrival time control (ATC) formulation (Prabhu, 2003) 
transforms the scheduling problem into a continuous 
variable control problem and eliminates combinatorial 
complexity. Though ATC has an exponential convergence 
rate towards local attractors, it cannot guarantee 
optimality for most scheduling problems. In this work, 
ATC has been used to partition the problem and generate 
initial populations near local attractors. Genetic 
algorithms (GAs) have been applied within these 
partitions on the populations of solutions to seek superior 
solutions adaptively. Offline analysis is conducted and the 
best solution is archived for generating the final schedule.  

This paper has been organized as follows: The job-shop 
scheduling problem with earliness-tardiness penalties has 
been described in Section 2. The complexity of the 
problem using traditional approaches, simple GA, simple 
ATC and the hybrid approach has been discussed. ATC 
algorithm has been described in Section 3 and GA in 
Section 4. The proposed hybrid algorithm is presented in 
Section 5. Results are presented in Section 6 and future 
research in Section 7.  

2.   SCHEDULING AND COMPLEXITY  
Within the domain of production control, scheduling 
refers to the specific activity of timetabling the operations 
dictated by the process plans so as to achieve desired 
levels of performance at the shop floor level (Rodammer 
and White, 1988). The job-shop scheduling problem is 
that of scheduling a set of  jobs that have to be 
processed on machines, where the processing of each 
job consists of operations performed on these machines 
in a specified sequence. The operation of job i  has to be 
performed on machine with deterministic processing 
time . A machine can process only one job at a time, 
and an operation cannot be preempted. The objectives can 
be one or more, including minimization of makespan, 
tardiness, or maximize machine utilization, customer 
satisfaction, etc. The focus of this work is on earliness-
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tardiness related objectives in JIT systems, i.e., 
minimize , the mean squared deviation (Equation (1)), 
subject to Equations (2), (3), (4), and (5).  
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kMijk −≥ξ       , and k j i, ∀ (5) 
Here, d is the due date for the step of the part,  

is the completion time of the step of the 
part,  indicates whether the step of the  part 

is completed in the k  time step, Y  indicates whether 
the step of the i  part requires machining by the 

 machine,  is the total time horizon,  refers to 
the processing time the step of the i  part. Equation 
(2) ensures that all the operations for a part are completed, 
Equation (3) ensures that operations are performed in the 
right order, and Equations (4) and (5) ensure that the 
machining constraints are not violated.  
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It has been shown that even the simplest models that deal 
with earliness tardiness penalties are NP-Complete 
(Cheng and Gupta, 1989). The number of possible 
schedules exceeds O . Most of the solution 
techniques for JIT scheduling problems rely on relaxation 
techniques and heuristic methods for this very reason. The 
complexity estimate for simple GA following the 
parameterization guidelines of Reed et. al, 2000 is of the 
order O . The function evaluations occurring in 
the ATC algorithm during an iteration is of the 
order O . Therefore for I iterations, the function 
evaluations are of the order , though without 
any guarantee for optimality. The hybrid approach 
proposed here uses ATC to partition the problem and 
multi-population GAs to seek an optima in each partition. 
A conservative approximation for the required number of 
function evaluations for the proposed approach is of an 
order of . The 
first term represents the function evaluations made for the 
ATC algorithm for partitioning step and the second term 
involves the function evaluations made by  GA sub-
populations. K is the number of iterations used for the 
hybrid approach. It may be noted that as the problem size 
i.e.,  increases, the hybrid approach with 

 and 

substantially reduces the 
problem complexity. 
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3.   ATC IN SCHEDULING 
ATC is a simulation-based algorithm that transforms the 
scheduling problem into a continuous variable control 
problem. As the name suggests, the algorithm calculates 
the schedule for all the parts by manipulating their arrival 
times. Given the expected processing time and the due 
date for each part, the algorithm tries to minimize the 
deviation of completion time from the due date by 
adjusting the part arrival time in the next simulation run. 
Essentially, for a n part m machine problem, there will be 
m resulting systems (1 for each machine), and each 
comprising of n-dimensional multivariable control 
systems, where due date, completion time, due date 
deviation, and arrival times are n-dimensional vectors 
acting as the command, output, error and manipulated 
vectors respectively (Prabhu, 2003). The logic is 
graphically illustrated in Figure 1.  

Figure 1. Feedback Control for ATC 

The algorithm calculates the completion time of each part 
(which is nothing but the sum of arrival time of the part 
and the processing times of each of the parts that arrived 
before it and the queuing time). Based on the total time 
for the completion of all the parts, deviation from the 
actual due-date is calculated and the arrival times for the 
parts at next iteration are changed according to the 
deviations. Equation (6) represents the mathematical 
expression for the ATC controller. 
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Where, ij  is the arrival time, c is the control system 
gain, On further simplification the above equation 
transforms into Equation (7) where T is the discrete time 
step. The schedule with the best performance discovered 
in these iterations is saved and used to schedule events. 

))1(() Tkaij −+              (7) 

It may be noted that queuing introduces discontinuity in 
the system. Parts are processed in the order in which they 
arrive and if a part arrives when another part is being 
processed at the machine, it incurs queuing time. If a part 
arrives when the machine is idle, this queuing time is 
zero. All the parts that are processed by a machine 
between two consecutive machine idle times form a 
fragmented queue and are part of an “active sub-
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problem”. The simulation identifies these fragmented 
queues as the arrival times for the parts in the active sub-
problem converge to steady-state values. The relative 
order of processing within each queue fragment however 
continues to change as ATC keeps searching for better 
schedules based on the processing sequence change. This 
phenomenon known as chattering (illustrated in Figure 2) 
occurs as ATC is oblivious to optimal.  

 

Figure 2. Chattering in ATC 

After the convergence of the arrival times and formation 
of active sub-problems, the  part m  machine job-shop 
scheduling problem can be seen as 

n
iα iαl  part 1 machine 

sequencing problems, where there are l parts in the 
sub-problem. Recent work has focused on developing 

techniques to design systems to improve scheduling 
performance and predictability (Cho and Prabhu, 2002). 
Attempts are being made to incorporate a global system 
view with the ATC algorithm (Hong, et al, 2003).This 
work relies on GA for introducing a global perspective 
into ATC based scheduling.   

iαth
iα

4.   GA FOR JOB-SHOP SCHEDULING 
The GA is a heuristic search procedure for solving 
complex combinatorial problems. Inspired by biological 
evolution, GAs propagates new strings from parent 
chromosomes via stochastic operators. Chromosomes 
with high fitness values survive and those with low fitness 
values die off generation by generation (Holland, 1975; 
Goldberg, 1989). While most stochastic search methods 
operate on a single solution to the problem at hand, the 
GA operates on a population of solutions; it can 
efficiently sequence the operations that have been 
included in the population. Some of the aspects that make 
the GA a favorable tool for combining with ATC are: 

1. Flexibility: GAs can effectively handle problems that 
many traditional optimization algorithms cannot include: 
(1) discrete spaces, (2) non-linear, discontinuous 
evaluation functions, and (3) nonlinear discontinuous 
constraints. GA has the ability to extract an initial 

population and display rapid convergence even in 
discontinuous regions. 

2. Scalability: The favorable scaling of evolutionary 
algorithms as a function of the dimension of the search 
space makes them particularly effective in comparison 
with other search techniques for large search spaces. 

3. Robustness: GAs use a population rather that a single 
point in the search space for evolution. This incorporates 
robustness into the search procedure as well as fault 
tolerance when inter-process communication is used. 

Besides the fact that GA is efficient in the discontinuous 
region, the approach blends well with the distributed 
architecture that ATC maintains. Local populations can be 
generated for each individual zone of discontinuity. The 
details have been presented in Section 5. 

To use GA, however, one must first represent the problem 
in the right structure. It may be noted that ATC is a 
simulation-based approach and the machine capacity 
constraints (Equations (4) and (5)) are implicitly defined 
in the simulations. Equations (4) and (5) are satisfied in 
the partitions that are created by ATC. Constraints (2) and 
(3) however, have to be included in the representation that 
is selected. The procedure then applies selection and 
variational operators to these individuals in the population 
to generate new individuals. The GAs use various 
selection criteria so that it picks the best individuals for 
mating so as to produce superior solutions by combining 
parts of parent solutions intelligently. The objective 
function of the problem being solved determines show 
good each individual is. In this work, we use the 
following specifications for GA.  

4.1   REPRESENTATION 
Several chromosome-encoding schemes have been 
discussed in literature for sequencing and scheduling of 
operations. These include operation-based, job-based, 
preference list based, machine based, or random keys 
based representations (Pongcharoen et al, 2003). These 
representations tend to become complicated as the 
problem size and the complexity increases. In this work, a 
variation of the alphanumeric representation has been 
used.   

In the proposed hybrid approach, the partitioning stage 
generates sub-problems that involve sequencing of  
parts on a single machine. Since each sub-problem is 
specific to that machine, ordinal values of the entity types 
in a sub-problem are mapped into each chromosome of 
the sub-population. Essentially, a sub-population 

iαl

iα will 
be comprised of chromosomes of length  having 
unique integer numbers from 1 to . For example, if 
there are 9 parts in an active schedule for a machine, a 
chromosome for that sub-population can be represented 
as: 1 2 3 4 5 6 7 8 9, where “1” is the ordinal value of an 
entity in that sub-problem. 

iαl

iαl
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4.2   INITIALIZATION 
The chromosomes in the initial sub-populations are 
generated randomly. Heuristic rules such as SPT (shortest 
processing time first) or FIFO (first in first out) could be 
applied for initial population generation, but these 
heuristics perform well only in the common due date 
problems and so cannot be generalized for a sub-
population. The initialization process for sub-problem iα  
has two stages: 

1. Strings of length l , having integer numbers 
sequences from 1 to  are generated. Essentially, if N 
strings have to be created for a sub-population with 9 
entities, N strings of characters 1 2 3 4 5 6 7 8 9 will be 
generated 

iα
iαl

2. The numbers in each chromosome string are then 
mixed randomly within the string itself, and new 
sequences containing all the numbers in a random order 
are generated. These are then used as inputs as new 
members of the population. For example, 2 8 4 7 1 3 9 6 5 
is a new chromosome. 

4.3   SELECTION 
A modified “N best” reproduction scheme (Cheng, et al, 
1996) has been used for generating the children 
population and determining the population for the next 
generation. In this scheme,η off springs are produced 
from the previous population of size N. The N best 
chromosomes out of the η+N  old ones constitute the 
population for the next generation. A fixed number of 
randomly generated chromosomes λ are also injected into 
the population after every κ  generation to add diversity 
and search pressure (Reed, 2000, 2002). Therefore, 

λ+→ NN  after every κ  generations. 

4.4 DIVERSITY OPERATORS 

4.4.1 Crossover 
Each chromosome in has length iα and comprises of 

iα unique integer numbers ranging from 1 to iα . This 
property should be maintained in the child population that 
is generated after the crossover and mutation operations. 
The “uniform order based crossover” is considered to be a 
good fit to this kind of constraints (Lee and Choi, 1995). 
This crossover operator considers both the absolute and 
relative positions of genes in the parent chromosomes for 
generating the children. The crossover operation is 
conducted in four steps: 

l
l l

1. Pick two parent chromosomes. The parents can be 
picked based on their fitness function values, using the 
roulette wheel selection, or randomly. In this work, they 
are randomly picked.  

2. Generate a binary string of length iαl , the length of 
the chromosomes in the population (9 in this case). A 
binary template could be as follows: 1 1 0 0 0 0 1 0 1 

3. Fill in the positions in Child 1 (or Child 2) by copying 
them from Parent 1 (or Parent 2) whenever the bit strings 
contain a 1 (or 0). For example, suppose the following 
parents are selected for crossover: 

Parent 1: 1 2 3 4 5 6 7 8 9 and Parent 2: 2 3 5 4 1 8 9 7 6 

And the Binary template is 1 1 0 0 0 0 1 0 1, then the 
resultant intermediate children chromosomes are:  

Child 1: 1 2 _ _ _ _ 7 _ 9 and Child 2: _ _ 5 4 1 8 _ 7 _ 
respectively 

4. List the genes from parent 1 (or parent 2) associated 
with a 0 (or 1) in the binary template and permute these 
genes so that they appear in the same order as they appear 
in on parent 2 (or parent 1). Thus, the crossover yields the 
following final children:  

Child 1: 1 2 3 5 4 8 7 6 9  and Child 2: 2 3 5 4 1 8 6 7 9 

4.4.2 Mutation 
Intra-string mutation has been used for introducing 
variability in the system. The mutation operator chooses 
two jobs in a chromosome at random and exchanges their 
positions. For example, if the parent is: Parent 1: 1 2 3 4 5 
6 7 8 9 and the probability of mutation is 0.1, the child 
can be: Child 1: 1 9 3 4 5 6 7 8 2 

4.4.3 Time Continuity 
Time continuity has been proposed as an added tool for 
introducing diversity and variability (Goldberg, 2002). 
The population injection method, described in Section 4.3 
is a form of time continuitation that adds diversity.  

4.5   SWAPPING 
Before the objective function value associated with a 
chromosome can be evaluated, it is required that the local 
feasible of the sequence be tested. Although a l  part 1 
machine problem is being solved in each active sub-
problem, for re-entrant lines, etc, there is possibility that 
there are some precedence constraints that need to be 
adhered to. The swapping operator swaps the two genes if 
it is violated. For example if in parent 1, the ordinal 
values 2 and 9 represent the same part, but different 
processing steps, and the operation indicated by ordinal 
value 2 has to be performed before the operation indicated 
by 9, and the position of the two genes are interchanged in 
the final chromosome. 

iα

Child initial: 1 9 3 4 5 6 7 8 2 

Child final: 1 2 3 4 5 6 7 8 9 

It may be noted that the final child and the parent 
chromosome represent the same sequence. This is quite 
common and can lead to pre-convergence. Steps such as 
population injection are therefore recommended.    
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4.6   FITNESS EVALUATION 
Each chromosome in a sub-population represents an 
active schedule for the machine for a given time frame. 
The arrival time of the first part is determined from the 
ATC partition and since the schedule is active, there is no 
inserted idle time.   

The  part in a given sequence incurs a waiting time of 
 after that the machine processes it for a duration of 

 and then completes it at . The completion time for 
the  part in the sequence can therefore be expressed as 

thj

thj
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and because of zero inserted idle time,  
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From Equations (8) and (9), completion time can be 
expressed as 
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The fitness criteria, the due date deviation is then 
calculated as  
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5.   THE HYBRID APPROACH 
The proposed approach can be represented as shown in 
Figure 3. The approach involves six basic steps:  

5.1    DATA CODING 
This step involves converting the problem from a 

part, m machine, processing step into a n m mn× part 
machine problem, that is suitable for the proposed 

algorithm. Unique part ids and process ids are assigned to 
each of the n entities. This forms the primary key that 
uniquely identifies each part and the processing step that 
it needs to undergo. Alphanumeric coding scheme 
suggested by (Pongcharoen et al, 2003) has been used in 
this work as it can be extended easily and interpretation is 
straightforward. It may be noted that each of the initial 

parts can have unique process plans with any number of 
processing steps. The assumption of m processing steps 
per part has been taken for simplicity and clarity in 
expression and demonstration. 

m

n

m×

5.2   DUE DATE ASSIGNMENT 
This step involves assignment of due dates to each of the 

entities. Due dates of the processing steps for 
all the parts are fixed (or predetermined). Due dates for 
the remaining parts can be assigned using different 
heuristics depending upon the goals and constraints of the 
shop floor; the due dates can be uniformly spaced in the 
planning horizon, or assigned based on the allowed 
makespan for the part. It is essential for the due date 
assignment rule to not contradict the precedence 

constraints that exist in the process plans or because of 
other shop floor constraints such as setup. In this work, a 
common intermediate due date has been assigned to all 
the parts for illustration of the overall algorithm.  

mn× thm
n

ATC based Partitioning

Inverse Mapping

Sub-problem
mapping

Sub-problem
mapping

Sub-population
generation

Sub-population
generation

OperationsOperations

Function
evaluation

Function
evaluation

Explicite
enumeration

 

Figure 3. Hybrid Algorithm 

5.3   ATC BASED PARTITIONING  
Given the n m× entities, their processing times and due 
dates, and the shop floor conditions (constraints and 
machine states), the next step involves executing the ATC 
algorithm to partition the problem into active sub-
problems. From Figure 2, it can be seen that the ATC 
converges in approximately 45 iterations. We fix 

50=I for this work. In general, we can take TI 10≈ , 
where T  is the discrete time step used in Equation (7). 

5.4 SUB-PROBLEM MAPPING  
This step involves identification of the partitions and the 
sub-problems. Entities separated by an idle time of τ or 
greater duration in a machine schedule are assumed to be 
in different partitions. The value of τ has to be less than 
or equal to the smallest processing time of an entity in the 
active schedules separated by that τ . Once the partitions 
have been determined, mapping tables as shown in Tables 
1 and 2 can be developed. 

5.5 GA BASED SEQUENCING 
This step involves creation of a sub-population of GA for 
the active sub-problems that have been created. To 
improve efficiency, sub-populations are not associated 
with all the active sub-problems. For a sub-problem iα  
with entities, explicit enumeration involves !l  
function evaluations. For the same size problem, GA 
based approach will require function evaluations, 

iαl iα

gN ×
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where is the population size andN g is the number of 
generations. Both andN g are dependent on . Making 
conservative estimates and using heuristics mentioned in 
competent GA literature (Reed, 2000, 2002, Goldberg, 
2002), the number of function evaluations can be 
approximated to . Sub-populations are 
created only when the number of function evaluations 
using explicit enumeration far exceeds the number of 
function evaluations required by GA, i.e., 

. This happens when . It 
the number of entities in an active sub-problem is greater 
than 7, sub-populations are created. The details of this 
step have been described in detail in Section 4.  

iαl

αl

ii αα ll 8.

!iα

2×2

l≤102 ii αα ll ×8.2× 7≥i

 

5.6   INVERSE MAPPING 
After a fixed number of iterations/generations/time, the 
best solutions in each of the sub-population is taken and 
reinserted into the ATC model. Infeasibilities, if any, are 
eliminated.  

6. RESULTS 
6.1 PROBLEM DEFINITION 
The problem taken up to illustrate the application of the 
hybrid approach comprises of 9 parts with 2 processing 
steps each, and to be processed on 2 machines. The 
common due date for all the parts is 320 time units. The 
processing times and the Part ids (primary key) are 
presented in Table 3. The desired schedule should 
minimize the deviations from the due dates.  The common 
due date problem has been selected because the solution 
lies in the discontinuous region and ATC is inefficient in 
converging to a solution.   

Table 3. Problem Definition 

  

6.2 ATC BASED PARTITIONING  

The inntial 9 part, 2 machine, 2 processing step problem 
(Gantt Chart shown in Figure 5) was converted to a 18 
part 2 machine problem. The due dates and part Id. 
assigned to the intermediate steps have been presented in 
Tables 1 and 2. The Gantt chart of the modified problem 
is presented in Figure 6. ATC was then used to partition 
the solution space. The mean squared deviation (MSD) 
performance of the algorithm is presented in Figure 6. 
The solution space partitions are illustrated in Figure 7.     

M 2

 
Figure 4. Initial Gantt Chart for Original Problem 

M 1

M 2

 
Figure 5. Initial Gantt Chart for Modified Problem 

 
Figure 6. MSD performance of ATC 

M 1

M 2

 
Figure 7. Solution Space Partitioning by ATC 

The Gantt Charts created by the ATC algorithms are 
presented in Figure 8. The problem comprises of two 
local attractors and can be partitioned into two sub-
problems. GA is then used in the sub-populations to 
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optimize the sequencing of the arrival times of the parts in 
each local sub-population. 

M 2

M 1

 
Figure 8. Final Gantt Chart for Modified Problem 

6.3 GA BASED SEQUENCING 
The mapping tables have been presented in Tables 1 and 
2. These are used as inputs for the GA sub-populations. 
The representation and opertors presented in Section 5 
were used for each sub-population thus created (in this 
case, 2). The parameters used in the sub-population are 
presented in Table 4. The MSD minimization 
performance in the sub-populations have been presented 
in Figure 9 and Figure 10.   

Table 4. GA Paramteres  

 

 
Figure 9. MSD performance of GA in Sub-Population 1 

 
Figure 10. MSD performance of GA in Sub-Population 2 

6.4 COMPARISON AND VERIFICATION 
Initial results for the proposed hybrid approach have been 
presented in Table 5. There is an approximately 21% 
improvement from the solution that is given by using 
ATC alone, and 0.5% improvements from solution given 

by the heuristics for earliness-tardiness minimization 
heuristics (Ventura and Weng, 1995). Gantt chart 
displayed in Figure 11 shows the V-shaped alignment of 
the parts around the common due date as predicted by the 
heuristic developed by Ventura, 1995. 

Table 5. MSD Performance of Algorithms 

 

M 1

M 2

 
Figure 11. Hybrid Algorithm 

7. CONCLUSIONS AND FUTURE WORK 
ATC algorithm has an exponential convergence rate 
towards local basins of attraction in due date based 
scheduling problems. However, ATC is oblivious to 
optimal. The proposed hybrid algorithm introduces a 
global system view in the ATC algorithm by using GAs. 
ATC is used to partition the problem and generate initial 
populations near the local attractors. GAs are then applied 
within these partitions on the populations of solutions to 
seek superior solutions adaptively.  

GA is efficient in the discontinuous region and blends 
well with the distributed architecture that ATC maintains. 
Local populations of chromosomes are generated for each 
individual zone of discontinuity, thereby limiting the 
length of the chromosome. For a n part m machine, m 
processing step job shop scheduling problem, a 
conservative approximation for the required number of 
function evaluations for the proposed approach is order 

and 
. Offline analysis is conducted 

and the best solution is archived for generating the final 
schedule.  

))mn((O))mn()mK()Imn(K(O 222 ×<<×××+××
))!(())(( 22 mnOmnO <<×

Other advantasge of the proposed hybrid approach are:  
• 

• 

Scalability: GA is efficient in the discontinuous 
region and blends well with the distributed 
architecture that ATC maintains. The 
computations for ATC can be executed on a 
separate processor in parallel, making them 
inherently suitable for massively 
parallel/distributed computing.  
Robustness and Fault tolerance: This feature is 
inherited from GA where the operations are on 
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populations of points rather than at single points 
in the search space. 

Some aspects that are currently being explored for 
enhancing the hybrid approach are:  

• 

• 

• 

A due date assignment strategy for the 
intermediate stages of a part. This will probably 
depend on the secondary objectives and 
constraints related to makespan. The assigned 
due dates for the intermediate stages dictates the 
distance between the partitions and the number 
of sub-problems.  
Time continuum, choice between the Baldwinian 
and the Lamarckian evolution, etc need to be 
considered in details. 
Improved synchronization strategies for ATC 
and GA communication. This may be related to 
the selected evolution strategy.  
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