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Abstract 

 

In this paper, each node in a multi-hop wireless 
network is modeled as an agent. The nodes   
utilize their resources for both processing 
information, sending their own packets and for 
forwarding packets of other nodes. Though each 
node is competitive and aims to conserve its 
resources, cooperation is essential for the 
network to function. An Iterated Prisoner’s 
Dilemma game has been used to help the nodes 
make decisions regarding utilization of 
resources. The strategies used by the nodes to 
make these decisions are evolved to improve 
transmission efficiencies, while conserving the 
node resources. The initial results obtained show 
that evolving these game strategies could bring 
in coordination within the network.   

1 INTRODUCTION 
The multi-hop wireless network consists of nodes that 
communicate with each other by tranferring packets to 
intermediary nodes until the packets reach the final 
destination. The nodes represent the processing elements 
such as computers or hand-held devices. The arcs 
represent the ability to communicate between these nodes. 
These geographically distributed nodes can be stationary 
or in motion. The main difference between a multi-hop 
network and other communication networks is that there 
is no centralized controller or access point that accepts 
data packets from the sender nodes and forwards them to 
the destination nodes. Each node has limited resources in 
terms of bandwidth and power. The nodes may be 
involved in sending and/or receiving packets at the same 
time.  

Thus in order to communicate with a destination node the 
sender is dependant on other intermediary nodes to 
receive and forward its packets. At higher levels, the 
problems deal with routing and quality of service. The  

 

primary concern at this level for any node, is to conserve 
power while performing its tasks. Each node expends 
power in performing its internal functions, sending out or 
receiving its packets and fowarding the packets that were 
generated by other nodes. Thus each node has to decide 
how much power it is willing to expend in order to 
forward packets generated from other nodes. In other 
words, how many packets of data is a node willing to 
receive and forward even though these packets are not 
relevant to itself. Though a particular node can use power 
exclusively to process and send its own packets, the 
network as a whole would fail unless the node cooperates. 
In the absence of a centralized controller it is difficult to 
coordinate the communication process between nodes.  

Each node has two functions to perform - One is to 
process information and transmit its own packets, the 
other is to forward packets of other nodes. The first 
functions ensures the proper functioning of the node 
locally and the latter is necessary for the network as a 
whole to function effectively. The resources available at 
each node are finite and the nodes therefore have to 
balance the alloctation of resources for these two 
competing functions.  

One of the approaches to resolve these conflicting 
interests is to let each node follow a set of strategies or 
actions. In this paper the nodes are represented as multi-
agents and are equipped with a set of initial random 
strategies. The agents make the decision of accepting 
packets from other nodes based on these strategies. These 
strategies can be evolved to improve them at each 
generation. The strategies of individual agents or nodes 
are evolved in such a way that both power conservation at 
a local node is minimized and the transmission efficiency 
across the network is improved. The experimental results 
obtained show that evolving these strategies lead to an 
emergence of unplanned coordination among the nodes. 
This minimizes the power consumed across the nodes 
while maintaining efficiency of communication.  

It must be noted that the results presented in this paper are 
based on the analysis done on a static network. The size 
of packets exchanged between the different nodes is 
assumed to be equal. The power expended in sending or 
receiving a packet is assumed to be proportional to the 



distance between the nodes. This is an ongoing study 
during the course of which we will eliminate these 
assumptions and continue the experiments so as to 
develop a more generic schema.    

2 AGENT BASED NETWORK MODEL        
The model used considers each node to be an autonomous 
software agent. Each agent has a set of strategies that are 
randomly initialized. The agents use these strategies for 
both, choosing partner nodes to whom they send their 
packets and to decide the partner nodes whose packets 
they will accept and forward. The strategies followed by 
the agents are different and so the network consists of a 
set of heterogeneous agents. This reflects the state that the 
nodes would be in real world networks. 

 
 

Figure 1: Layout of a 24-node network 

 

Whenever a node needs to send out a packet of data to a 
destination node outside its range, it makes a request to 
other nodes to forward its packets. The requests are made 
only to those nodes, such that the power expended by the 
sending node is less than a prefixed threshold value, 
which is the tolerable range for a given node. When the 
request sent out from a node is rejected it then resends a 
request to another tolerable node. The node continues to 
make these requests until all tolerable nodes have rejected 
its requests or all its requests have been accepted. 
Similarly a node, that receives requests for forwarding 
packets, rejects a request unless the power it will need to 
expend is within the tolerable range. Upon receiving the 
requests the node makes a list of all tolerable requests in 
decreasing order of preference. The current most 
preferred request is replaced by a new request, which is 
better than the current best.  

Once the potential partners have been chosen, the receiver 
nodes need to decide the sender nodes from which they 
will accept and forward packets. This decision is made 
through a two-player prisoner’s dilemma (PD) game. 
Nodes that have accepted the requests play a PD game 
with each of the nodes, which fall within its tolerable 
threshold, starting with the most preferred node. During 
the game the nodes either decide to co-operate or defect. 
These decisions are made based on their expected payoffs 
and the set of strategies that they currently follow. The 
nodes record the previous moves of the other nodes to 
make subsequent decisions. Once the games are 
completed and the nodes reach an agreement, the packets 
are exchanged.  

The Model explained above has been implemented with 
the SimBioSys platform developed by (McFadzean, 1995) 
The pseudo code for the above-described model is shown 
below in figure 2. The detailed implementation of the 
model using the SimBioSys platform is described in detail 
in section 2.1. 

 

 
Figure 2: Psuedo Code for Model Implementation 

2.1 MODEL IMPLEMENTATION  
The simulation starts by initializing a network. The nodes 
are first defined and are given a random location within 
the X-Y plane and the corresponding x and y coordinates 
are stored. At a given instant of time a node is either a 
sender or a receiver or both. The initial matching of nodes 
is done based on the initial expected payoff of each node. 
At the end of this initial matching the receiver nodes have 
a list of sender nodes whose requests they find tolerable. 
They maintain this list in the decreasing order of 
preference.  



After the matching is complete, each receiver node starts 
playing a prisoner’s dilemma game with the sender nodes. 
The decisions of whether to cooperate or to defect are 
made based on the set of strategies that the node follows 
and the previous move made by the opponent. The 
strategy for a given node is represented in the form of a 
finite state machine explained in 2.1.1. For each 
combination of decisions made by the nodes they get an 
associated payoff. The payoff is computed as a linear sum 
of the effects of loss in power, successful transmission 
and a trust factor (see section 2.1.2). At the end of a cycle 
of games the payoffs of all the nodes are updated.  

The nodes are listed in the order of decreasing payoffs. 
An elite fraction of this list is chosen which are carried on 
to the next generation. These nodes act as parents and 
through mutation and crossover they produce children. 
These child nodes replace the lower one-third nodes in the 
list. Thus only the strategies that were successful at the 
end of a cycle of games are allowed to carry on to the 
subsequent generation of nodes. The strategies are 
evolved until a pre-specified number of generations. 

2.1.1 Strategy – Finite State Machine 
The strategy followed by a particular node is represented 
as a finite state machine (FSM). The state of the node 
captures the current conditions the node faces, such as the 
amount of power remaining and the current processor 
load. The number of states that a node may be in is 
infinite in reality. This paper assumes that this is a finite 
quantity. The input given to the node is the previous 
action of the opponent. Based on this and the current state 
the node takes a particular action of cooperating or 
defecting, which may cause a change in state. Thus 
throughout the game the node keeps hopping between 
these finite states. Figure 3 shown below depicts a three 
state FSM. Depending on the previous move made by the 
opponent the agent takes an action to defect or to 
cooperate. Once this action is taken the agent experiences 
a change in state. Therefore the agent keeps transitioning 
between the three states that this FSM captures. 

 
Figure 3 : Representation of a Three State FSM 

The initial input or previous action of the opponent given 
to the agent is a defect and the agent now starts at state 1. 
Each arrow shown within the figure is a transition to the 
next state. The decisions of the opponent and the action 
taken are represented along the arrow [opponents action/ 
agents action]. In this case if the opponent had cooperated 
then the agent decides to cooperate and it moves to state 
two. On the other hand if the opponent had defected it 
would still cooperate and move to state three. It can be 
seen that the agent keeps taking actions and transitioning 
between the states. The set of actions and state transitions 
represent the strategies of an agent. 

The finite state machine associated with each node is 
randomly initialized. The number of states is fixed at the 
beginning of the simulation. The FSM is represented as a 
series of binary digits. The FSM implementation uses a 
lookup table, which is indexed by the input and the 
current state, each index corresponds to a certain output 
and the subsequent state. Thus the node uses the lookup 
table to determine its next move and the corresponding 
state transition.  

2.1.2 Payoff Function  
The payoff that a particular node gets is determined by the 
outcome of its actions during the game. The payoff is 
computed as a linear sum of the following three factors. 

Successful Transmission – Every time a sender node is 
able to successfully transmit a packet it gets a positive 
payoff of one unit.                                      

Power expended – Each node gets a negative payoff 
proportional to the power that it would expend if it takes a 
particular action. Earlier in the paper it was mentioned 
that the power expended is assumed to be proportional to 
the distance between the nodes, therefore the power 
expended is computed as a function of this distance.                                   

Trust Factor – Each time an opponent decides to 
cooperate with a node, it assumes that the opponent might 
do the same in future and so receives a positive payoff of 
one unit.  

The total payoff received is the linear sum of these three 
elements. The individual payoffs that the nodes receive 
for different combination of actions are shown in Table 1. 

2.1.3 Evolving the Strategies 
When a cycle of games is completed the binary string 
representation of the FSM is evolved using mutation and 
crossover operators. Based on the payoffs received by the 
nodes during the cycle of games the nodes are arranged in 
decreasing order of payoff, thus keeping the best or most 
successful strategies on the top of the list.  

The best two-third strategies are then selected. In other 
words the elite percentage for selection is kept constant at 
2/3, throughout the simulation. These are then paired to 
mate. Two points x and y are chosen randomly in each 
pair. The bits x through y of one of the parents in each 



pair replace the bits x through y of the other parent, thus 
producing one offspring per pair. The offspring generated 
then undergoes mutation. Each bit in the offspring is 
flipped with a pre-specified mutation probability. 
Following these operations the best two third strategies 
along with the newly generated one-third offspring 
strategies enter the next generation. Since the number of 
strategies equals the number of nodes/agents, the 
individual agent strategies are evolved from generation to 
generation.  The elitism, recombination, mutation 
operations on the current generation strategies have the 
following effects: Elitism preserves successful actions, 
recombination rearranges the blocks of successful actions 
with little disruption and mutation changes individual 
actions. Thus the behavioral effects of these genetic 
operations are that successful strategies are mimicked, 
unsuccessful strategies are discarded and new strategies 
are injected for experimentation.    

2.2 VARIABLES AND NOTATION 
Ni             : Node i in the network 
Di ,j                 : Distance between node I and node j 
Pi     : Power available at node I 
K     : Power expended in transmitting one data     
                   packet over unit distance 
Ti                      :Transmission payoff =1 if a packet is        

transmitted by node I 
          =  0 otherwise 

Fi,j             : Trust factor                =  1 if node j cooperates 
                                                         with node i 
                                                     =  -1 otherwise 
TPi           : Total Payoff for node i following a transaction 
                  between nodes i & j 
 

TPi  = Ti + Fi,j + Pi - K*Di ,j  
 
Max_Gen : Total number of generations for which the 
                   nodes are evolved 
 
Max_Game: Maximum number of game cycles in a  
                    generation 
 
µ               : Mutation rate  
 
FSM_States : Number of internal states in the FSM 
 
FSM_Mem: Number of memory bits in the FSM allocated  
                     to the previous move 
 
State_Size : The number of bits used to represent a state 
 
 
FSM_Size : Total number of bits representing an FSM  

                    2(State_Size+FSM_Mem) 

Agent_Count: Total number of nodes in the network 
 
 
 

Elite_Frac : Fraction of the subpopulation that is  
                     considered elite   
                      
Sen_Quota :The quota of resources (bandwidth, channels,  
                     Power) available at a sender node 
 
Rec_Quota :The quota of resources (bandwidth, channels, 
                     Power) available at a receiver node 
 
Init_Exp_payoffi,j: Initial expected payoff of an agent i 
                               when playing with agent j  
 
 
 (Cooperate)j (Defect)j 

 

(Cooperate)i 

 

[(Ti + 1) + Fij +(Pi – K*Dij)], 

[(Tj +( Fji + 1) + (Pj – 
K*Dij)] 

 

[Ti + Fij – 1 + Pi], 

[Tj + (Fji + 1) + Pj] 

 

(Defect)i 

 

[Ti + (Fij – 1) + Pj], 

[Tj + (Fji – 1) + Pj] 

 

[Ti + (Fij – 1) + Pi], 

[Tj + (Fji – 1) + Pj] 

 
Table 1: Payoff Matrix of Prisoners Dilemma Game  

 

3 EXPERIMENTAL RESULTS AND 
ANALYSIS 

 

The above model was implemented on the SimBioSys 
platform. The experimental simulations were done with 
Sen_Quota = 5 and Rec_Quota = 2, Elite_frac = 2/3, µ = 
0.005, Init_Exp_payoffi,j = 1. 

 

The performance of the network is measured as the 
average fitness of all the nodes in a particular generation 
where fitness is the total payoffs received by the nodes. 
The payoff function captures the number of successful 
transmissions and is negatively correlated to the power 
expended. Therefore an increased fitness shows that more 
transmissions are made while lesser power is consumed. 
Moreover this increase in overall fitness over subsequent 
generations validates the utility of this model. The 
network reaches a steady state behavior after a 
considerable number of generations and the overall fitness 
shows minimal variation. One of the key factors that 
affect the time taken to reach a steady state behavior for 
the network is the FSM_Size. Figures 4 & 5     show the 
variation in fitness of the nodes for FSM_Size = 8 and 64.  



 
Figure 4 

 

 

    
Figure 5 

 

 

It can be seen that, larger the FSM_Size the more number 
of generations that the system spends before achieving a 
steady state behavior. Once a steady state is reached the 
amount of variance in fitness is greater for a larger value 
of FSM_Size. 

When the number of nodes within the network is 
increased the algorithm still manages to reach steady state 
and improve the overall fitness. The actual numerical 
values of fitness are seen to be more in the case of fewer 
nodes because the total power consumed is less compared 
to when more nodes successfully send packets. This is 
show in Figure 6. 

 
Figure 6 

The effect of mutation rate (Figure 7) on the evolution of 
the behavior of the nodes was studied and the results 
clearly show that very low values of mutation (< 0.005) 
show greater efficiency. We recommend this value for 
mutation rate when conducting these experiments. 

 

 
Figure 7 

 

The effect of ignoring the power consumed at each node 
was studied and the results are shown in the Figure 8. It is 
evident that when we ignore power consumption most 
nodes within the network do not achieve good fitness 
values and so the average fitness for the nodes is lesser 
than when power consumption is considered. This shows 
the importance of considering the power consumed for 
our wireless network model. It results in improvement of 
the global performance. At the same time since selfish 
motives are included within the payoff function power is 
conserved at individual nodes. 

 



 
Figure 8 

 

4 CONCLUSIONS 
Treating the nodes within the multi-hop network as 
autonomous agents enables them to function in the 
absence of a centralized controller. Modeling the 
interaction as a prisoner’s dilemma game resolves the 
conflicting interests of allocating resources for 
information processing and forwarding the packets of 
other nodes. The results of the study show that though 
decisions are made by nodes in an attempt to conserve 
their individual resources, the network as a whole also 
functions efficiently. This could be due to an emergent 
unplanned coordination. Further analysis will be 
performed to investigate the same. The results obtained 
show that there is improvement in transmission efficiency 
and reduction in the amount of power expended across the 
network. These conclusions have been validated by 
appropriately defining the payoff and fitness functions. 
The results clearly indicate that the average fitness of the 
nodes increases and the system achieves a steady state 
behavior through implementation of this network game 
model.   
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