
Interplanetary Trajectory Optimization using a Genetic Algorithm 

 

 Abby Weeks 

Aerospace Engineering Dept 
Pennsylvania State University 

State College, PA 16801 
 

 
 

Abstract 
 

Minimizing the cost of a space mission is a 
major concern in the space industry.  Sending 
satellites on interplanetary trajectories is risky 
and expensive.  Trajectory optimization for such 
missions has been developed through classical 
methods of optimization.  However, the 
application of Genetic Algorithms has become 
increasingly popular.  In this project I formulate 
a preliminary mission design for an 
interplanetary trajectory taking a satellite from 
Earth to Jupiter via a gravity assist at Mars, using 
a genetic algorithm to optimize the trajectory 
based on the assumption of a constant low level 
thrust.  The main objective of this optimization is 
to minimize the time of flight.  By minimizing 
the time of flight the risk of damage to the 
satellite during the course of the mission is 
reduced as well as the cost of fuel.  The Simple 
Genetic Algorithm implemented in this 
application gives results which could be used as 
a first guess in a more localized exploration.   

1 INTRODUCTION 

1.1 INTERPLANETARY TRAJECTORIES  

Interplanetary missions are complicated due to the 
dynamics of our solar system.  As a spacecraft travels 
through our solar system it may encounter several 
celestial bodies, and be influenced by their gravitational 
fields.  In order to simplify the development of a mission, 
it is common to analyze a series of two-body problems.  
The patched conic method is used to analyze a mission 
where a spacecraft encounters more than one celestial 
body.  A spacecraft launching from Earth will start within 
the sphere of influence (SOI) of Earth.  As the spacecraft 
exits Earth’s SOI it enters the Sun’s SOI until it enters the 
SOI of another celestial body.  While the spacecraft is 
inside the SOI of a celestial body such as the Earth or Sun 
the effects of all other celestial bodies can be ignored (as 
a first approximation) and the dynamics can be modeled 
as a two-body gravitational system.  By patching together 

a sequence of such two-body problems a complete 
trajectory can be determined.   

A trajectory such as that of one from Earth to Mars may 
be represented by a combination of the following three 
two-body problems: 

?  Spacecraft and Earth 

?   Spacecraft and Sun 

?   Spacecraft and Mars 

We can take advantage of the effects of a spacecraft 
passing near a celestial body that is not its destination 
body.  This is known as a planetary flyby or gravity assist.  
A planetary flyby or gravity assist is useful to obtain a 
velocity change without expending propellant.  This 
technique is of great interest to mission designers due to 
the “free” velocity change induced by the gravitational 
pull of the flyby planet.  By flying a spacecraft within a 
close proximity of a planet we can use the gravitational 
field of the planet to either speed up the spacecraft or 
slow it down.   

Most interplanetary missions make use of a low-thrust 
propulsion system.  In this project a constant low-level 
thrust is implemented meaning the thrusters are always 
on.  For this reason the reduction of the duration of the 
mission becomes the key to reducing the cost of 
propellant.  Essentially the shorter the mission, the less 
propellant required. In terms of the low-thrust problem 
formulation, a control profile that minimizes the 
propellant consumption while satisfying certain boundary 
conditions is to be determined.  This control profile is 
given by a thrust direction, ?, assuming constant thrust 
magnitude T.  The trajectory is broken up into discrete 
segments for which the direction of thrust or ? must be 
determined.  By determining these angles the objective is 
to minimizes the time of flight and therefore the cost of 
propellant.  Figure one contains the relationship of the 
flight path angle to the position of the spacecraft (s/c).   

 

 

 

 



 

 

 

Figure 1: The direction of thrust given by aT is defined by 
the flight path angle ?. 

2 MODELING THE TRAJECTORY 

2.1 EQUATIONS OF MOTION 

The motion of the spacecraft is governed by equations    
(1)-(4).   This group of differential equations is solved by 
numerical integration using the Runge-Kutta variable step 
size integrator implemented in Matlab as ODE45. 

 

 

All of the components of these equations of motion are 
listed below: 

 = 1.327e11 km3/s2, gravitational constant of sun 

aT  = 2e-7 km/s 2, thrust acceleration 

aG,x = the gravitational acceleration in the x-direction due 
to mars 

aG,y  =  gravitational acceleration in the y-direction due to 
mars 

r =  the position of the spacecraft 

? = flight path angle, to be optimized 

? = angular position of the spacecraft    

3 PROBLEM FORMULATION 

3.1 OBJECTIVE 

The objective of this optimization was to reduce the time-
of-flight and, as a result, the propellant cost.  The mission 
was divided into two legs, the first leg taking place from 
Earth to Mars and the second from Mars to Jupiter.  Each 
leg of the complete trajectory was divided up into 10 
segments, an arbitrary number.  It is assumed that the 
larger the number of segments, the more precise the 
solution will be.  The Genetic Algorithm used will be 
responsible for determining the optimal thrust direction or 
flight path angle ? at the begining of each time segment  
and time-of-flight  for both legs of the mission.   

3.2 CONSTRAINTS 

Several boundary conditions are placed on the system and 
they are implemented as constraints.  The optimization of 
this system is dependent on the trajectory solved for by 
the Genetic Algorithm.  In order to ensure that the 
trajectory is feasible a penalty method was implemented 
to optimize the objective.   

My objective is to minimize the TOF and the penalties to 
this minimization are on the position and velocity of the 
spacecraft at mars and at Jupiter.  The fitness function 
which is evaluated with respect to the objective and 
penalties is given as follows: 

fitness = 1.05 – TOF/year – (w2*P1) – (w1*P2) – (w3* 
P3) – (w2* P4) – (w2*P5) 

Where TOF is the time-of-flight, w1,w2,and w3 are 
weighting factors with values 1, 1,000, and 10,000 
respectively and P1-P5 are the penalties used in this 
optimization that take the form: 

The first two penalties are applied as the s/c targets Mars 
in the first leg of the mission. 

P1 = (radial position of s/c – radial position of mars)2 

P2 = (radial velocity of s/c)2 

The final three penalties are applied as the s/c targets 
Jupiter in the second leg of the mission. 

P3 = (radial position of s/c – radial position of 
Jupiter)2 

P4 = (radial velocity of s/c)2 

P5 = (angular velocity of s/c – angular velocity of 
Jupiter)2 

The genetic algorithm used in this project acts as a 
maximizer.  It must have positive values for all fitness 
values.  In order to turn this algorithm into a minimizer an 
offset value must be used.  This was implemented as the 
GA was trying to maximize the fitness function.  I offset 
this action by applying a value of 105 from which the 
TOF and penalties once normalized are subtracted from.  
Thus by minimizing the TOF and the penalties incurred it 
would work to maximize the fitness function, with the 



maximum value of fitness possible valued at 105.  In order 
to keep the fitness value positive I used an IF statement, 
which took any negative value of fitness and reset it to 
0.1.  If a negative value of fitness occured the solution 
would be very bad and thus the 0.1 value should eliminate 
it from the next generation.   

4 SIMPLE GENETIC ALGORITHM 

4.1 GENETIC ALGORITHMS  

The optimization technique implemented in this paper is 
the simple genetic algorithm.  A genetic algorithm is a 
stochastic global search algorithm which was developed 
first by Holland in 1975 and further developed by his 
student and now a leading expert in the field of GAs, 
David E.  Goldberg in the 1980’s.   

GAs belong to a class of methods called Evolutionary 
Algorithms (EA) that are inspired by the processes of 
natural selection.  EAs evolve a population of individuals 
through selection, mating and mutation.  This evolution is 
done by a stochastic process that selects the more 
adaptive individuals and then mates them to produce 
better and better solutions.  Mutation is also applied to 
random individuals to introduce diversity into the 
population and to prevent early convergence to local 
optima.   

GAs are traditionally binary coded algorithms, and will be 
implemented as such in this study.  GAs are different 
from more traditional optimization techniques because 
they search from a population of points rather than a 
single point.  They also use payoff information based on 
an objective function defined by the user rather than 
derivatives or other secondary knowledge.  GAs are blind, 
meaning that they only require the payoff value to evolve 
the solution, and thus they are virtually blind to the 
mechanics of the system being optimized.  They also use 
random choice as a tool toward searching regions with 
likely improvement.  

An individual is a string containing one set of values of 
the unknowns in the problem solution.  The unknowns in 
this paper consist of a set of flight path angles, ?, and a 
time-of-flight for each leg of the mission (leg 1 = Earth to 
Mars, leg 2 = Mars To Jupiter.)  Each unknown is 
represented as a binary string  using 36 bits.  The 
unknown strings are concatenated to form a single string, 
which is manipulated by the GA.  

The fitness of an individual is a measure of how well the 
values contained in the corresponding set of unknowns 
solve the problem.    Some individuals will have small 
time-of-flight, but the flight path angles will lead to 
severe constraint violations; other individuals will have 
longer time-of-flight, but the flight path angles will result 
in a trajectory that more nearly meets the constraints.  
Finding the proper combination of flight path angles and 
time-of-flight will lead to the optimal solution. To 
evaluate the fitness of each individual in a population, the 

governing equations of motion are integrated, using the 
discretized flight path angles (and interpolation to find 
intermediate values) and time-of-flight for each trajectory 
segment. 

Once this fitness is evaluated the genetic algorithms uses 
three main operators to innovate the system.  The three 
operators are: Selection, Mating, Mutation.  These 
operators will be explained in section 4.2. 

4.2 CLASSICAL SIMPLE GENETIC 
ALGORITHM IN MATLAB 

The equations of motion were developed in Matlab, 
therefore a genetic algorithm that was written in Matlab 
was implemented.  This Simple Genetic Algorithm was 
written by  Andrew Potvin of Mathworks in 1993.  The 
GA was taken from [Goldberg, 1989.]  This GA allowed 
for both real and binary representation.  However, in this 
project binary representation was uesd. The SGA 
implements all three genetic operators: selection, mating, 
and mutation. 

4.2.1 Selection 

The selection operator is applied first to choose strings 
from the population to be reproduced in the next 
generation.  This first generation is comprised of the 
selected strings and they are referred to as parent strings.  
These strings are selected based on their fitness value.  
Once  selection has taken place the chosen strings are 
carried to the next step. 

This genetic algorithm makes use of a proportionate 
selection method known as the roulette wheel.   As 
desired with this type of selection strings with higher 
values of fitness have a greater chance of contributing an 
offspring to the next generation.  A biased roulette wheel 
is created, with each current string in the population 
having a slot sized in proportion to its fitness on the 
wheel.  In order to select or reproduce, the wheel is 
simply spun.  Each string it lands on will be reproduced in 
the next generation.  The spinning of the wheel continues 
until the population is filled.  The concept being that the 
individuals with larger portion of the wheel will be 
selected more times than the individuals with a smaller 
portion of the wheel. The generation gap, G=1 meaning 
that the entire population is replaced.  The size of the 
population is also held constant.  Once a string is selected 
for reproduction it is then entered into the next generation 
for the mating and mutation operators to take action. 

4.2.2 Mating 

In the next step the population is subject to the mating 
operator.  Mating, or crossover, is the process of first 
selecting random pairs of strings from the population to 
be mated.  In binary coding a cut is made in the binary 
string and the strings are crossed.   The latter half of the 
parent strings are switched resulting in two new strings 
referred to as child strings.  



Single point crossover was utilized to mate the binary 
strings.  Meaning that given two parent strings x and y 
and a crossover point which is selected randomly by 
choosing an integer k ~ u(1, L-1), where L is the length of 
the string.   

 

(x1…….xk   xk+1….xL)    à    (x1….xk  y k+1…..yL) 

(y1…….y k  y k+1…..yL)    à    (y1…..y k  xk+1….xL) 

 

The strings are cut at integer k and the tails of the strings 
are switched between the parent strings to produce two 
new candidates or child strings.   

Individuals that are chosen for reproduction are mated at 
random.  Mating p roduces two offspring so as to maintain 
a constant population size.  In this project crossover 
occurs with a probability, Pc = 0.8. 

4.2.3 Mutation  

After mating another innovating operator, mutation, is 
applied to the current population.  In binary coding, 
mutation is simply a bit flip from 0 to 1 and vice versa.  
This operator helps to keep diversity in the population.  In 
genetic algorithms mutation usually occurs with a lower 
probability allowing selection and mating to dominate the 
evolution.   

Jump mutation was utilized to mutate the binary strings.  
Jump mutation randomly selects a bit in the string and 
flips it with probability Pm.  I choose to use 
Pm=1/population.  The designation of this probability is 
intended to avoid dis ruption and allow for mating to be 
the primary operator used to evolve the system.  When 
working with smaller populations the probability of 
mutation will be greater, thus maintaining diversity and 
preventing early convergence.     

4.2.4 Elitism 

Elitism is the method of ensuring that the best solution 
stays in the next generation.  Due to the stochastic nature 
of genetic algorithms it is not always guaranteed that the 
best solution will make it into the next generation.  By 
invoking elitism this is no longer a worry.  Elitism can 
help lead to a quicker convergence.  However, in 
problems which converge very quickly, elitism may 
reduce the exploration of the algorithm.   

4.2.5 Termination 

After all three of the main operators have been used a new 
generation of parent strings is created.  This new 
generation is then evaluated for fitness  and moved 
through the genetic operators, this process is iterated  until 
the termination criterion is met.     

The termination criterion is dependent either on the 
maximum number of generations which can be chosen by 
the user, or a convergence threshold.  Both of these 
termination criteria were used in this project.  The 

maximum number of generations was set to 200.  
However all of the runs terminated under the convergence 
threshold.  The convergence threshold terminated 
dependent on the number of generations passed.  If the 
run had greater than five generations then convergence 
threshold was measured using the variation of the current 
best fitness and the best fitness from 5 generations ago 
being less than a set tolerance.   And if the run was under 5 
generations but higher than 1 generation the threshold 
criterion used the variation in the mean fitness. 

 The pseudo-codes for the termination criterion are shown 
below: 

IF generation>5, 

         IF ( best current fitness – best fitness from 
generation - 5 / the best current fitness )< terminate ) 

         AND  

                   (best current fitness > best current fitness 
from generation  - 5) 

THEN          STOP 

  

      ELSEIF  generation>1, 

         IF  ( current mean fitness-mean fitness from 
generation – 1 )/current mean fitness<terminate ) 

        AND  

                   (current mean fitness > mean fitness from 
generation -1) 

  THEN     STOP 

4.3 PROCEDURE  

Each leg of the trajectory is broken down into 10 
segments, for which the direction of the thrust is being 
optmized.  The genetic algorithm will first randomly 
populate 11 decision variables, consisting of 10 gamma 
values and 1 time of flight for each leg of the mission.  
The number of gamma values in this vector will govern 
the precision of the solution  By increasing the number of 
segments in each leg of the trajectory the solution will be 
more precise.  The trade-off being that as the number of 
segments in each leg increases the more computation is 
necessary.  Since each individual in the vector of gammas 
must be populated and optimized throughout the run of 
the genetic algorithm.   I have made an arbitrary decision 
to use 10 segments, however this is definitely a possible 
way to optimize the solution by experimenting with the 
optimal number of segments, and discovering where the 
computational time trade-off becomes too expensive.  

These gamma and TOF  values are passed into the 
equations of motion and their fitness values are 
determined.  Based on the fitness, selection occurs and 
then mating and mutation operators evolve the current 
population.  That population is injected back into the 
equations of motion and the fitness value is once again 
evaluated.  This process continues until the termination 
criterion is met.   



5 RESULTS AND ANALYSIS 

5.1 POPULATION-RELIABILITY 
RELATIONSHIP 

In this project I formulated a set of equations that would 
model the motion of a spacecraft.  I separated the problem 
into two legs.  The first leg of the mission took the s/c 
from Earth to Mars.   The second leg of the mission took 
the s/c from Mars to Jupiter.  This separation of the 
problem was implemented by allowing for two 
integrations to take place.  The first integration modeled 
the mission from Earth to Mars and the final solutions of 
that integration were used as the initialization for the 
second integration modeling the mission from Mars to 
Jupiter.   

I broke the problem down this way in order to insure that 
the s/c would fly-by Mars and thereby perform a gravity 
assist at Mars.  I used the first leg of the mission to gain 
preliminary results as to the reliability of the genetic 
algorithm.   

In order to evaluate the population-reliability relationship 
I limited the calculation to just the first leg of the mission.  
I ran this calculation for 6 different population sizes 
ranging from 6-160 to see if the size of the population 
affected the solution.  This analysis was run without 
elitism first.  The results from this analysis are seen in 
Table 1. 

Table 1:  Population Analysis, Non-Elitist 

 

As you can see in Table 1, the population size was 
doubled starting at 6 and increasing to 160.  The 
maximum values of the fitness function where found at 
population 20 and 40.  However, the fitness values for all 
6 of the population runs were close.  The standard 
deviation of the maximum fitness decreased as the 
population size was increased.  This leads me to believe 
that the algorithm becomes more reliable as the 
population increases.   

Performing this same population analysis with elitism 
gave very different results.  These results are given in 
Table 2.  The number of generations needed to reach 
termination was drastically reduced.  However, it can be 
seen that the maximum fitness is not found in Table 2, but 
is found in Table 1.  This could be a result of pre-

convergence.  By saving the best solution the algorithm 
converges quickly, leading to less exploration.  These 
results however do all produce a good first guess that 
could be used in a different optimization method.    

Table 2: Population Analysis, Eltist 

5.2  ELITIST TRAJECTORY PLOTS 

Figure 2 shows a run of the first leg of the mission ran 
without elitism and with population size 160 
implementing Pc=0.8 and Pm = 1/ Population. With the 
green orbit representing Earth’s solar orbit, the blue orbit 
representing Mars’ solar orbit and the red representing the 
s/c trajectory.  All of the runs converged and gave a 
reasonable result.  This plot shows a great result where 
the s/c trajectory, shown in red takes the s/c direct ly to the 
orbit of M ars. 

Figure 2:  Trajectory from Earth to Mars 

Figure 3 shows a run of both legs of the mission.  The 
inner green orbit representing Earth’s solar orbit, the blue 
representing Mars’ solar orbit, the red representing 
Jupiter’s solar orbit and the light blue representing the 
trajectory of the s/c. This run was produced using a 
population of 160 individuals.  I also implemented the   
Pc =0.8 and Pm = 1/Population.     

 

 

 

Pop Time 
(sec) 

Func. 
Evals.  

Gen. Max Std 
Dev. 

6 20 42 7 99963.9 .416 

10 98 200 20 99992.6 14.588 

20 56 120 6 99997.2 .980 

40 76 160 4 99994.9 3.578 

80 233 480 6 99998.1 1.185 

160 453 960 6 99997 .582 

Pop Time 
(sec) 

Func. 
Evals.  

Gen. Max Std 
Dev. 

6 23 42 7 99962.8 88.510 

10 239 490 49 99998.9 66.451 

20 165 360 18 99999 58.794 

40 631 1320 33 99999 59.817 

80 80 160 2 99995.1 2.404 

160 529 1120 7 99997.4 1.827 



 

Figure 3: Trajectory from Earth to Jupiter via a Gravity 
Assist at Mars 

Mars encounter occurs after approximately one revolution 
of the sun and one sees a very small change in the 
trajectory’s curvature due to the gravity-assist.  The final 
constraints (reaching Jupiter’s orbit with zero radial 
velocity and arriving tangent to Jupiter’s path) were not 
met.  This is a consequence of using penalty methods, 
which work to drive a solution toward meeting the 
constraints, but do not guarantee exact compliance.  
Nevertheless, this solution could serve as a useful first 
approximation for use in a different type of optimizer 
(e.g., one that requires a first “guess” that is close to 
satisfying all the constraints).   

5.3 RANDOM SEED ANALYSIS  

The prior analysis used the same random seed to populate 
the individuals.  In order to determine if the algorithm 
was reliable over different random seeds I performed a 
random seed analysis, using 25 random number seeds for 
population size 20, 40 and 80.  This analysis was done on 
the first leg of the mission to keep computation time to a 
minimum.  All of the random number seeds lead to 
convergence.  

Table 2: Random Seed Analysis 

Population Standard 
Deviation  
of the # of 
generations 

Standard 
Deviation 
of fitness 

 
Maximum 
Fitness 

20 3.216 15.50 99999.1 

40 2.737 1.737 99999.1 

80 3.897 1.565 99999.1 

 

I looked at these three different populations to see if the 
larger population proved to be more reliable.  As you can 
see in Table 2 the standard deviation in the # of 
generations between population size 20, 40 and 80 are 
very similar.  It is also seen however that the standard 
deviation in the maximum fitness achieved with 
population 20 is greater than that of population size 40 
and only decreases as the population is increased to 80on 

80.  All three populations reach a maximum fitness of 
9999.1.  The standard deviation of the fitness however 
shows that the larger population is more reliable.   

6 CONCLUSION 
From the analysis performed I can say that the algorithm 
is reliable in that it converged on every run.  Looking at 
the random seed analysis the number of generations it 
took to converge did vary.  The time of flight 
corresponding to the best fitness was not always the 
smallest; this is due to the trade off between the objective 
and the penalties.   

This algorithm however did give good results for 
preliminary mission design.  Figures 2 and 3 show that 
the trajectory is on target for a gravity assist at Mars and a 
final destination of Jupiter.  These results could be used as 
a first guess in a different optimization technique.   

7 FUTURE WORK 
After looking at the results obtained by this classical 
simple genetic algorithm, I feel that future work could be 
done by implementing the equations of motion in a more 
modern genetic algorithm that has proven more reliable. 

Also there are several ways to make this project more 
complex and therefore productive: 

1.) Use real coding to maintain accuracy 

2.) Solve for arrival and dep arture time based on the 
actual positioning of the planets. 

3.) Create a region of approach at mars so as not to 
exactly target Mars and crash the s/c. ( I was 
fairly lucky this did not occur) 

4.) Look at the actual affects of the gravity assist in 
comparison to missions that do not utilize 
gravity assist.  

5.) Optimizing the weighting factors for the penalty 
functions. 

6.) Optimizing the number of segments to be made 
in each leg of the mission.   

7.) Optimizing the genetic Parameters 

Plenty of work remains to improve this project.  Much of 
these suggestions could not be implemented due to time 
constraints.   
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