
Interplanetary Trajectory Optimization using a Genetic Algorithm

 Abby Weeks

Aerospace Engineering Dept
Pennsylvania State University

State College, PA 16801

Abstract

Minimizing the cost of a space mission is a
major concern in the space industry. Sending
satellites on interplanetary trajectories is risky
and expensive. Trajectory optimization for such
missions has been developed through classical
methods of optimization. However, the
application of Genetic Algorithms has become
increasingly popular. In this project I formulate
a preliminary mission design for an
interplanetary trajectory taking a satellite from
Earth to Jupiter via a gravity assist at Mars, using
a genetic algorithm to optimize the trajectory
based on the assumption of a constant low level
thrust. The main objective of this optimization is
to minimize the time of flight. By minimizing
the time of flight the risk of damage to the
satellite during the course of the mission is
reduced as well as the cost of fuel. The Simple
Genetic Algorithm implemented in this
application gives results which could be used as
a first guess in a more localized exploration.

1 INTRODUCTION

1.1 INTERPLANETARY TRAJECTORIES

Interplanetary missions are complicated due to the
dynamics of our solar system. As a spacecraft travels
through our solar system it may encounter several
celestial bodies, and be influenced by their gravitational
fields. In order to simplify the development of a mission,
it is common to analyze a series of two-body problems.
The patched conic method is used to analyze a mission
where a spacecraft encounters more than one celestial
body. A spacecraft launching from Earth will start within
the sphere of influence (SOI) of Earth. As the spacecraft
exits Earth’s SOI it enters the Sun’s SOI until it enters the
SOI of another celestial body. While the spacecraft is
inside the SOI of a celestial body such as the Earth or Sun
the effects of all other celestial bodies can be ignored (as
a first approximation) and the dynamics can be modeled
as a two-body gravitational system. By patching together

a sequence of such two-body problems a complete
trajectory can be determined.

A trajectory such as that of one from Earth to Mars may
be represented by a combination of the following three
two-body problems:

? Spacecraft and Earth

? Spacecraft and Sun

? Spacecraft and Mars

We can take advantage of the effects of a spacecraft
passing near a celestial body that is not its destination
body. This is known as a planetary flyby or gravity assist.
A planetary flyby or gravity assist is useful to obtain a
velocity change without expending propellant. This
technique is of great interest to mission designers due to
the “free” velocity change induced by the gravitational
pull of the flyby planet. By flying a spacecraft within a
close proximity of a planet we can use the gravitational
field of the planet to either speed up the spacecraft or
slow it down.

Most interplanetary missions make use of a low-thrust
propulsion system. In this project a constant low-level
thrust is implemented meaning the thrusters are always
on. For this reason the reduction of the duration of the
mission becomes the key to reducing the cost of
propellant. Essentially the shorter the mission, the less
propellant required. In terms of the low-thrust problem
formulation, a control profile that minimizes the
propellant consumption while satisfying certain boundary
conditions is to be determined. This control profile is
given by a thrust direction, ?, assuming constant thrust
magnitude T. The trajectory is broken up into discrete
segments for which the direction of thrust or ? must be
determined. By determining these angles the objective is
to minimizes the time of flight and therefore the cost of
propellant. Figure one contains the relationship of the
flight path angle to the position of the spacecraft (s/c).

Figure 1: The direction of thrust given by aT is defined by
the flight path angle ?.

2 MODELING THE TRAJECTORY

2.1 EQUATIONS OF MOTION

The motion of the spacecraft is governed by equations
(1)-(4). This group of differential equations is solved by
numerical integration using the Runge-Kutta variable step
size integrator implemented in Matlab as ODE45.

All of the components of these equations of motion are
listed below:

 = 1.327e11 km3/s2, gravitational constant of sun

aT = 2e-7 km/s 2, thrust acceleration

aG,x = the gravitational acceleration in the x-direction due
to mars

aG,y = gravitational acceleration in the y-direction due to
mars

r = the position of the spacecraft

? = flight path angle, to be optimized

? = angular position of the spacecraft

3 PROBLEM FORMULATION

3.1 OBJECTIVE

The objective of this optimization was to reduce the time-
of-flight and, as a result, the propellant cost. The mission
was divided into two legs, the first leg taking place from
Earth to Mars and the second from Mars to Jupiter. Each
leg of the complete trajectory was divided up into 10
segments, an arbitrary number. It is assumed that the
larger the number of segments, the more precise the
solution will be. The Genetic Algorithm used will be
responsible for determining the optimal thrust direction or
flight path angle ? at the begining of each time segment
and time-of-flight for both legs of the mission.

3.2 CONSTRAINTS

Several boundary conditions are placed on the system and
they are implemented as constraints. The optimization of
this system is dependent on the trajectory solved for by
the Genetic Algorithm. In order to ensure that the
trajectory is feasible a penalty method was implemented
to optimize the objective.

My objective is to minimize the TOF and the penalties to
this minimization are on the position and velocity of the
spacecraft at mars and at Jupiter. The fitness function
which is evaluated with respect to the objective and
penalties is given as follows:

fitness = 1.05 – TOF/year – (w2*P1) – (w1*P2) – (w3*
P3) – (w2* P4) – (w2*P5)

Where TOF is the time-of-flight, w1,w2,and w3 are
weighting factors with values 1, 1,000, and 10,000
respectively and P1-P5 are the penalties used in this
optimization that take the form:

The first two penalties are applied as the s/c targets Mars
in the first leg of the mission.

P1 = (radial position of s/c – radial position of mars)2

P2 = (radial velocity of s/c)2

The final three penalties are applied as the s/c targets
Jupiter in the second leg of the mission.

P3 = (radial position of s/c – radial position of
Jupiter)2

P4 = (radial velocity of s/c)2

P5 = (angular velocity of s/c – angular velocity of
Jupiter)2

The genetic algorithm used in this project acts as a
maximizer. It must have positive values for all fitness
values. In order to turn this algorithm into a minimizer an
offset value must be used. This was implemented as the
GA was trying to maximize the fitness function. I offset
this action by applying a value of 105 from which the
TOF and penalties once normalized are subtracted from.
Thus by minimizing the TOF and the penalties incurred it
would work to maximize the fitness function, with the

maximum value of fitness possible valued at 105. In order
to keep the fitness value positive I used an IF statement,
which took any negative value of fitness and reset it to
0.1. If a negative value of fitness occured the solution
would be very bad and thus the 0.1 value should eliminate
it from the next generation.

4 SIMPLE GENETIC ALGORITHM

4.1 GENETIC ALGORITHMS

The optimization technique implemented in this paper is
the simple genetic algorithm. A genetic algorithm is a
stochastic global search algorithm which was developed
first by Holland in 1975 and further developed by his
student and now a leading expert in the field of GAs,
David E. Goldberg in the 1980’s.

GAs belong to a class of methods called Evolutionary
Algorithms (EA) that are inspired by the processes of
natural selection. EAs evolve a population of individuals
through selection, mating and mutation. This evolution is
done by a stochastic process that selects the more
adaptive individuals and then mates them to produce
better and better solutions. Mutation is also applied to
random individuals to introduce diversity into the
population and to prevent early convergence to local
optima.

GAs are traditionally binary coded algorithms, and will be
implemented as such in this study. GAs are different
from more traditional optimization techniques because
they search from a population of points rather than a
single point. They also use payoff information based on
an objective function defined by the user rather than
derivatives or other secondary knowledge. GAs are blind,
meaning that they only require the payoff value to evolve
the solution, and thus they are virtually blind to the
mechanics of the system being optimized. They also use
random choice as a tool toward searching regions with
likely improvement.

An individual is a string containing one set of values of
the unknowns in the problem solution. The unknowns in
this paper consist of a set of flight path angles, ?, and a
time-of-flight for each leg of the mission (leg 1 = Earth to
Mars, leg 2 = Mars To Jupiter.) Each unknown is
represented as a binary string using 36 bits. The
unknown strings are concatenated to form a single string,
which is manipulated by the GA.

The fitness of an individual is a measure of how well the
values contained in the corresponding set of unknowns
solve the problem. Some individuals will have small
time-of-flight, but the flight path angles will lead to
severe constraint violations; other individuals will have
longer time-of-flight, but the flight path angles will result
in a trajectory that more nearly meets the constraints.
Finding the proper combination of flight path angles and
time-of-flight will lead to the optimal solution. To
evaluate the fitness of each individual in a population, the

governing equations of motion are integrated, using the
discretized flight path angles (and interpolation to find
intermediate values) and time-of-flight for each trajectory
segment.

Once this fitness is evaluated the genetic algorithms uses
three main operators to innovate the system. The three
operators are: Selection, Mating, Mutation. These
operators will be explained in section 4.2.

4.2 CLASSICAL SIMPLE GENETIC
ALGORITHM IN MATLAB

The equations of motion were developed in Matlab,
therefore a genetic algorithm that was written in Matlab
was implemented. This Simple Genetic Algorithm was
written by Andrew Potvin of Mathworks in 1993. The
GA was taken from [Goldberg, 1989.] This GA allowed
for both real and binary representation. However, in this
project binary representation was uesd. The SGA
implements all three genetic operators: selection, mating,
and mutation.

4.2.1 Selection

The selection operator is applied first to choose strings
from the population to be reproduced in the next
generation. This first generation is comprised of the
selected strings and they are referred to as parent strings.
These strings are selected based on their fitness value.
Once selection has taken place the chosen strings are
carried to the next step.

This genetic algorithm makes use of a proportionate
selection method known as the roulette wheel. As
desired with this type of selection strings with higher
values of fitness have a greater chance of contributing an
offspring to the next generation. A biased roulette wheel
is created, with each current string in the population
having a slot sized in proportion to its fitness on the
wheel. In order to select or reproduce, the wheel is
simply spun. Each string it lands on will be reproduced in
the next generation. The spinning of the wheel continues
until the population is filled. The concept being that the
individuals with larger portion of the wheel will be
selected more times than the individuals with a smaller
portion of the wheel. The generation gap, G=1 meaning
that the entire population is replaced. The size of the
population is also held constant. Once a string is selected
for reproduction it is then entered into the next generation
for the mating and mutation operators to take action.

4.2.2 Mating

In the next step the population is subject to the mating
operator. Mating, or crossover, is the process of first
selecting random pairs of strings from the population to
be mated. In binary coding a cut is made in the binary
string and the strings are crossed. The latter half of the
parent strings are switched resulting in two new strings
referred to as child strings.

Single point crossover was utilized to mate the binary
strings. Meaning that given two parent strings x and y
and a crossover point which is selected randomly by
choosing an integer k ~ u(1, L-1), where L is the length of
the string.

(x1…….xk xk+1….xL) à (x1….xk y k+1…..yL)

(y1…….y k y k+1…..yL) à (y1…..y k xk+1….xL)

The strings are cut at integer k and the tails of the strings
are switched between the parent strings to produce two
new candidates or child strings.

Individuals that are chosen for reproduction are mated at
random. Mating p roduces two offspring so as to maintain
a constant population size. In this project crossover
occurs with a probability, Pc = 0.8.

4.2.3 Mutation

After mating another innovating operator, mutation, is
applied to the current population. In binary coding,
mutation is simply a bit flip from 0 to 1 and vice versa.
This operator helps to keep diversity in the population. In
genetic algorithms mutation usually occurs with a lower
probability allowing selection and mating to dominate the
evolution.

Jump mutation was utilized to mutate the binary strings.
Jump mutation randomly selects a bit in the string and
flips it with probability Pm. I choose to use
Pm=1/population. The designation of this probability is
intended to avoid dis ruption and allow for mating to be
the primary operator used to evolve the system. When
working with smaller populations the probability of
mutation will be greater, thus maintaining diversity and
preventing early convergence.

4.2.4 Elitism

Elitism is the method of ensuring that the best solution
stays in the next generation. Due to the stochastic nature
of genetic algorithms it is not always guaranteed that the
best solution will make it into the next generation. By
invoking elitism this is no longer a worry. Elitism can
help lead to a quicker convergence. However, in
problems which converge very quickly, elitism may
reduce the exploration of the algorithm.

4.2.5 Termination

After all three of the main operators have been used a new
generation of parent strings is created. This new
generation is then evaluated for fitness and moved
through the genetic operators, this process is iterated until
the termination criterion is met.

The termination criterion is dependent either on the
maximum number of generations which can be chosen by
the user, or a convergence threshold. Both of these
termination criteria were used in this project. The

maximum number of generations was set to 200.
However all of the runs terminated under the convergence
threshold. The convergence threshold terminated
dependent on the number of generations passed. If the
run had greater than five generations then convergence
threshold was measured using the variation of the current
best fitness and the best fitness from 5 generations ago
being less than a set tolerance. And if the run was under 5
generations but higher than 1 generation the threshold
criterion used the variation in the mean fitness.

 The pseudo-codes for the termination criterion are shown
below:

IF generation>5,

 IF (best current fitness – best fitness from
generation - 5 / the best current fitness)< terminate)

 AND

 (best current fitness > best current fitness
from generation - 5)

THEN STOP

 ELSEIF generation>1,

 IF (current mean fitness-mean fitness from
generation – 1)/current mean fitness<terminate)

 AND

 (current mean fitness > mean fitness from
generation -1)

 THEN STOP

4.3 PROCEDURE

Each leg of the trajectory is broken down into 10
segments, for which the direction of the thrust is being
optmized. The genetic algorithm will first randomly
populate 11 decision variables, consisting of 10 gamma
values and 1 time of flight for each leg of the mission.
The number of gamma values in this vector will govern
the precision of the solution By increasing the number of
segments in each leg of the trajectory the solution will be
more precise. The trade-off being that as the number of
segments in each leg increases the more computation is
necessary. Since each individual in the vector of gammas
must be populated and optimized throughout the run of
the genetic algorithm. I have made an arbitrary decision
to use 10 segments, however this is definitely a possible
way to optimize the solution by experimenting with the
optimal number of segments, and discovering where the
computational time trade-off becomes too expensive.

These gamma and TOF values are passed into the
equations of motion and their fitness values are
determined. Based on the fitness, selection occurs and
then mating and mutation operators evolve the current
population. That population is injected back into the
equations of motion and the fitness value is once again
evaluated. This process continues until the termination
criterion is met.

5 RESULTS AND ANALYSIS

5.1 POPULATION-RELIABILITY
RELATIONSHIP

In this project I formulated a set of equations that would
model the motion of a spacecraft. I separated the problem
into two legs. The first leg of the mission took the s/c
from Earth to Mars. The second leg of the mission took
the s/c from Mars to Jupiter. This separation of the
problem was implemented by allowing for two
integrations to take place. The first integration modeled
the mission from Earth to Mars and the final solutions of
that integration were used as the initialization for the
second integration modeling the mission from Mars to
Jupiter.

I broke the problem down this way in order to insure that
the s/c would fly-by Mars and thereby perform a gravity
assist at Mars. I used the first leg of the mission to gain
preliminary results as to the reliability of the genetic
algorithm.

In order to evaluate the population-reliability relationship
I limited the calculation to just the first leg of the mission.
I ran this calculation for 6 different population sizes
ranging from 6-160 to see if the size of the population
affected the solution. This analysis was run without
elitism first. The results from this analysis are seen in
Table 1.

Table 1: Population Analysis, Non-Elitist

As you can see in Table 1, the population size was
doubled starting at 6 and increasing to 160. The
maximum values of the fitness function where found at
population 20 and 40. However, the fitness values for all
6 of the population runs were close. The standard
deviation of the maximum fitness decreased as the
population size was increased. This leads me to believe
that the algorithm becomes more reliable as the
population increases.

Performing this same population analysis with elitism
gave very different results. These results are given in
Table 2. The number of generations needed to reach
termination was drastically reduced. However, it can be
seen that the maximum fitness is not found in Table 2, but
is found in Table 1. This could be a result of pre-

convergence. By saving the best solution the algorithm
converges quickly, leading to less exploration. These
results however do all produce a good first guess that
could be used in a different optimization method.

Table 2: Population Analysis, Eltist

5.2 ELITIST TRAJECTORY PLOTS

Figure 2 shows a run of the first leg of the mission ran
without elitism and with population size 160
implementing Pc=0.8 and Pm = 1/ Population. With the
green orbit representing Earth’s solar orbit, the blue orbit
representing Mars’ solar orbit and the red representing the
s/c trajectory. All of the runs converged and gave a
reasonable result. This plot shows a great result where
the s/c trajectory, shown in red takes the s/c direct ly to the
orbit of M ars.

Figure 2: Trajectory from Earth to Mars

Figure 3 shows a run of both legs of the mission. The
inner green orbit representing Earth’s solar orbit, the blue
representing Mars’ solar orbit, the red representing
Jupiter’s solar orbit and the light blue representing the
trajectory of the s/c. This run was produced using a
population of 160 individuals. I also implemented the
Pc =0.8 and Pm = 1/Population.

Pop Time
(sec)

Func.
Evals.

Gen. Max Std
Dev.

6 20 42 7 99963.9 .416

10 98 200 20 99992.6 14.588

20 56 120 6 99997.2 .980

40 76 160 4 99994.9 3.578

80 233 480 6 99998.1 1.185

160 453 960 6 99997 .582

Pop Time
(sec)

Func.
Evals.

Gen. Max Std
Dev.

6 23 42 7 99962.8 88.510

10 239 490 49 99998.9 66.451

20 165 360 18 99999 58.794

40 631 1320 33 99999 59.817

80 80 160 2 99995.1 2.404

160 529 1120 7 99997.4 1.827

Figure 3: Trajectory from Earth to Jupiter via a Gravity
Assist at Mars

Mars encounter occurs after approximately one revolution
of the sun and one sees a very small change in the
trajectory’s curvature due to the gravity-assist. The final
constraints (reaching Jupiter’s orbit with zero radial
velocity and arriving tangent to Jupiter’s path) were not
met. This is a consequence of using penalty methods,
which work to drive a solution toward meeting the
constraints, but do not guarantee exact compliance.
Nevertheless, this solution could serve as a useful first
approximation for use in a different type of optimizer
(e.g., one that requires a first “guess” that is close to
satisfying all the constraints).

5.3 RANDOM SEED ANALYSIS

The prior analysis used the same random seed to populate
the individuals. In order to determine if the algorithm
was reliable over different random seeds I performed a
random seed analysis, using 25 random number seeds for
population size 20, 40 and 80. This analysis was done on
the first leg of the mission to keep computation time to a
minimum. All of the random number seeds lead to
convergence.

Table 2: Random Seed Analysis

Population Standard
Deviation
of the # of
generations

Standard
Deviation
of fitness

Maximum
Fitness

20 3.216 15.50 99999.1

40 2.737 1.737 99999.1

80 3.897 1.565 99999.1

I looked at these three different populations to see if the
larger population proved to be more reliable. As you can
see in Table 2 the standard deviation in the # of
generations between population size 20, 40 and 80 are
very similar. It is also seen however that the standard
deviation in the maximum fitness achieved with
population 20 is greater than that of population size 40
and only decreases as the population is increased to 80on

80. All three populations reach a maximum fitness of
9999.1. The standard deviation of the fitness however
shows that the larger population is more reliable.

6 CONCLUSION
From the analysis performed I can say that the algorithm
is reliable in that it converged on every run. Looking at
the random seed analysis the number of generations it
took to converge did vary. The time of flight
corresponding to the best fitness was not always the
smallest; this is due to the trade off between the objective
and the penalties.

This algorithm however did give good results for
preliminary mission design. Figures 2 and 3 show that
the trajectory is on target for a gravity assist at Mars and a
final destination of Jupiter. These results could be used as
a first guess in a different optimization technique.

7 FUTURE WORK
After looking at the results obtained by this classical
simple genetic algorithm, I feel that future work could be
done by implementing the equations of motion in a more
modern genetic algorithm that has proven more reliable.

Also there are several ways to make this project more
complex and therefore productive:

1.) Use real coding to maintain accuracy

2.) Solve for arrival and dep arture time based on the
actual positioning of the planets.

3.) Create a region of approach at mars so as not to
exactly target Mars and crash the s/c. (I was
fairly lucky this did not occur)

4.) Look at the actual affects of the gravity assist in
comparison to missions that do not utilize
gravity assist.

5.) Optimizing the weighting factors for the penalty
functions.

6.) Optimizing the number of segments to be made
in each leg of the mission.

7.) Optimizing the genetic Parameters

Plenty of work remains to improve this project. Much of
these suggestions could not be implemented due to time
constraints.

8 REFERENCES
Goldberg, David E. (1989) Genetic Algorithms in Search,
Optimization, and Machine learning, Addison Wesley
Longman Inc.

 Prussing, J.E. and Conway (1993), B.A. Orbital
Mechanics, Oxford University Press Inc., p 120-137.

