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Abstract 
 
 
The primary function of a suspension system of a 
vehicle is to isolate the road excitations 
experienced by the tires from being transmitted 
to the passengers.  In this project report, we 
formulate an optimal vehicle suspension design 
problem with the quarter-car vehicle dynamic 
model.  The two objectives of the optimization 
are: 1. Minimize the maximum bouncing 
acceleration of the sprung mass 2. Minimize 
average suspension displacement subject to a 
number of constraints.  The constraints arise 
from the practical kinetic and comfortability 
considerations, such as limits of the maximum 
vertical acceleration of the sprung mass and the 
suspension working space. In solving this 
problem, the genetic algorithms have 
consistently found near-optimal solutions within 
specified parameters ranges for several 
independent runs.  For validation, the solution 
obtained by GA was compared to the classical 
suspension configuration by Haug and Arora 
[Haug, 1984], [Arora, 1989] and was found to 
yield similar performance measures. This 
encourages us to extend the application of GA to 
other more complicated vehicle dynamics 
problems with full confidence. 

 

1 INTRODUCTION 

1.1 RIDE COMFORTABILITY 

Ride comfortability refers to the sensation of a passenger 
in the environment of a moving vehicle.  Ride comfort 
problem is mainly caused by the vibrations of the vehicle 
body, which may be induced by a variety of sources, such 
as road surface irregularities, aerodynamics forces, 
vibrations of the engine and driveline, and non-uniformity 
of the tire/wheel assembly.  Usually, road surface 
irregularities, ranging from potholes to random variations 
of the surface elevation profile, act as a major source that 
excites the vibration of the vehicle body through the 

tire/wheel assembly and the suspension system [Wong, 
2001].  
 
Generally speaking, human beings feel uncomfortable 
when exposed to vibrations with frequencies in motion 
sickness regime: 0.1-1Hz.  And, ride comfortability is 
considered to be improved as the magnitude of the seat 
acceleration and displacement is reduced [Baumal and 
McPhee, 1998]. 
 

1.2 SUSPENSION DESIGN 

1.2.1 overview 

 

Figure 1: Suspension system 

Figure 1 shows a typical independent suspension of a car. 
Suspension system is primarily used to isolate the road 
excitations from being transmitted directly to the 
passengers and to keep the tire-road contact.  When 
considering ride comfort only, a suspension design 
involves selecting the right dynamic characteristic and 
geometry configuration for the suspension to minimize 
the seat acceleration and displacement subject to 
constraints, such as natural frequency of the sprung mass, 
suspension working space, and a number of others. 
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1.2.2 Design criteria 
Time domain statistics, such as mean suspension 
deflection, maximum and RMS values of suspension 
acceleration are often used in suspension design as criteria 
for ride comfortability.   
 

1.2.3 An important trade-off 
There are a number of important trade-offs in the design 
of conventional suspensions.  The one concerning ride 
comfort is between suspension displacement and 
acceleration.  A hard configuration with high spring 
stiffness and high damping is required for reducing 
suspension displacement while a soft configuration with 
low spring stiffness and low damping is required for 
reducing suspension acceleration. 
 

1.3 GA APPLICATION 

Multi-body dynamics has been used extensively by 
automotive industry to model and design vehicle 
suspensions.  Before modern optimization methods was 
introduced, when conducting an “optimization” on a 
design, engineers must first change the values of 
parameters and then re-perform the whole analysis again 
until a set of performance measures became acceptable. 
Design optimization, parametric studies and sensitivity 
analyses were difficult, if not impossible to perform.  This 
‘manual’ process usually accompanied by prototype 
testing, could be difficult and time-consuming for 
complete systems with nonlinear performance measures.  
In addition, many elements can introduce behaviors into 
the suspension systems that are not intuitive. With the 
development of various optimization methods, numerical 
optimization helps automate the design process by 
altering parameter values in a search to 
minimize/maximize an objective function subject to the 
constraints, which reflect some practical considerations 
on performance characteristics [Baumal and McPhee, 
1998].  In this project, we used genetic algorithm, a 
stochastic global optimization technique based on 
mathematical models of the natural process: survival of 
the fittest to design a vehicle suspension.  Figure 2 
illustrates this semi-automated design process with the 
system model and optimization statement as inputs.  
  
Four aspects of this GA design process are emphasized:  
 

1. Building the suspension model,  
2. Stating the genetic algorithm procedure and 

optimization problem formulation,  
3. Highlighting the issues regarding the analysis,  
4. Presenting design results and their possible 

interpretations. 
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Figure 2: Design process using GA 

 

2 MATHEMATICAL MODEL FOR 
SIMULATING VEHICLE DYNAMICS 

2.1 QUARTER-CAR MODEL 

The mathematical model used for simulating vehicle 
dynamic is known as “quarter car”.  It is traditionally used 
for analysis of the ride dynamics of passenger cars.  In the 
quarter-car model, the effects of vehicle roll are assumed 
to be negligible. Cole and Cebon concluded from the 
results of validation of their three-dimensional truck 
model that the roll mode is not sufficiently excited on 
highways to contribute significantly to vehicle dynamics 
[Cebon, 1999]. The effects of pitch are considered by 
increasing the sprung mass by 100% from its original 
value such that the vertical motion caused by vehicle 
pitch (the mass moment of inertia) is incorporated.  
 

 

Figure 3: Quarter-car model (Wong, 2001) 
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A schematic of the quarter-car model is shown above in 
Figure 3.  This model consists of one sprung mass Ms and 
one unsprung mass Mu.  Both the sprung and the unsprung 
masses are considered to be rigid and are constrained to 
move vertically with the displacements z1 and z2, 
respectively.  Therefore, the quarter-car model is a two 
degree-of-freedom system with the vertical displacements 
z1 and z2.  The road profile elevation zg is the input to the 
system.  The spring-damper system with stiffness Kt and 
damping coefficient Ct represents the linear model of tire, 
which has constant point contact with the road. 
 

2.2 EQUATIONS OF MOTIONS 

The motions of the two degree-of-freedom quarter-car 
model are governed by the equations (2-1).  This group of 
equations is solved by numerical time integration with 
respect to time (Runge-Kutta).   
  
[ ]{ } [ ]{ } [ ]{ } { }M z C z K z F+ + =  (2-1) 
 
The fixed parameters of the system are defined in Table 1. 
It is assumed that all dampers and springs behave linearly.  
The forcing function {F} depends on the spring-damper 
model of the tire, and the road disturbance, zg, which will 
be discussed in section 2.3. 

Table 1: Given parameters of the quarter-car model 

Ms 1500 kg 

Mus 50 kg 

kt 200,000 N/m 

Ct 876 N.s/m 

  

2.3 ROAD PROFILE 

The experimental road profile data used in the simulation 
is shown in Figure 4.  This profile was sampled by 
UMTRI in 1989-1996 on interstate PA42 with a sampling 
interval of 0.152meter.  As determined by the sampling 
interval, the maximum wave number presented in the road 
profiles is 3.3cycles/meter.  The profile is 500 meters in 
length, with an IRI of 170in/mile. This value represents 
the average road condition defined by FHWA.  

3 GENETIC ALGORITHMS AND MATLAB GA 
TOOLBOX  

3.1 GENETIC ALGORITHMS 

A brief introduction to the genetic algorithms is given in 
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Figure 4: Road Profile 

 
this section. Interested readers are encouraged to refer to 
Handbook of Evolutionary Computation [various authors, 
IOP Publishing Ltd. 1998-2000] for a more 
comprehensive description of GA along with other 
evolutionary algorithms. 
 
Genetic algorithms (GAs) are stochastic global search and 
optimization methods that mimic the metaphor of natural 
biological evolution and which are developed based on 
the Darwinian theory of ‘survival of fittest’. GAs differ 
significantly from most classic optimization techniques in 
many aspects. First of all, unlike classic methods, genetic 
algorithms are not gradient-based, i.e. they do not require 
the objective functions to be continuous, neither do they 
need information about the derivatives of the objective 
functions, therefore they can handle problems with 
discrete solution spaces. Secondly, the search mechanism 
is stochastic in nature, which makes them capable of 
searching the entire solution space with more likelihood 
of finding the global optima. Third, GAs are able to solve 
problems with non-convex solution space, where classic 
procedures usually fail. Fourth, genetic algorithms 
explore the entire space to search for the optimal solutions 
from a population of solutions to another population of 
solutions, rather than from one solution to another, this 
characteristic makes GAs uniquely suited to multi- 
objective optimization. All these differences make GAs 
superior over classic methods in some real-world 
applications, particularly for some very complex 
engineering problems, for example, complex truss-beam 
design, components design, and structure design.  
 
In genetic algorithms, the design variables are coded as 
finite-length strings. Canonical GAs use binary 
representation: a string has a finite length and each bit of 
a string can be either 1 or 0. Real coding was introduced 
into the variations of canonical GAs. Each string is 
evaluated by the objective function and assigned a value, 
fitness, which determines whether or not a string to be 
selected for reproduction.  
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Simple GA has three basic operators: 
 
Selection 
Crossover 
Mutation 
 
A genetic algorithm starts iteration with an initial 
population. Each member in this population is evaluated 
and assigned a fitness value. In the selection procedure, 
some selection criterion is applied to select a certain 
number of strings, namely parents, from this population 
according to their fitness values. Strings with higher 
fitness values have more opportunities to be selected for 
reproduction in next step. Next, in crossover procedure, 
selected strings from old population are randomly paired 
to mate. For binary coding, a cross-site is determined 
according to some law, and the paired strings exchange all 
characters following the cross-site. Crossover usually 
results in two new strings, namely, two children that are 
expected to combine the best characters of their parents. 
An example of single point crossover is given. 
                                            
parent 1 :                  1 1 1     1 1 1 
parent 2 :            0 0 0     0 0 0 
               
     Crossover 
    
child 1:      1 1 1     0 0 0 
child 2:      0 0 0     1 1 1 
           
 
Mutation simply changes one bit 0 to 1 and vice versa, at 
a position determined by some rules. Mutation is simple 
but still important in evolution because it further increases 
the diversity of the population members and enables the 
optimization to get out of local optima. 
 
After mutation, a new generation is created, and thus 
becomes the parents for next generation. This process is 
iterated until convergence is achieved or a near optimal 
solution is found.  
 
 

3.2 MATLAB GENETIC ALGORITHM   
TOOLBOX -GAOT 

Since the complex vehicle dynamics model has already 
been developed using MATLAB, MATLAB GA toolbox 
was adopted in this project, though there are many 
advanced genetic algorithms written in C and FORTRAN. 
The MATLAB toolbox, GAOT(Genetic Algorithm 
Optimization Toolbox) was written by Houck et al 
[Houck et al 1995] in the North Carolina State University 
in 1995. This toolbox has both binary and real 
representations. Users may choose whichever suited for 
his problem. 

3.2.1 Selection method 
 
In this study, selection method is a ranking selection 
based on the normalized geometric distribution. The 
solutions were mapped to an ordered set, and then ranked 
with a value Pi. Normalized geometric ranking [Joines 
and Houck 1994] defines Pi for each individual by: 
 

P [selecting the ith individual] = 
1)1(' −− rqq  

 
Where:  
 
q = the probability of selecting the best individual 
r = the rank of the individual, where 1 is the best 
P = the population size 

Pq
qq

)1(1
'

−−
=  

 
 

3.2.2 Crossover 
 
Arithmetic crossover method for real-coded 
representation was implemented in this study. The 
crossover process is described as follows. For real-coded 
parent X and Y, arithmetic crossover produces two 
complimentary linear combinations of the parents X’ and 
Y’: 
                      

             
rYXrY
YrrXX
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−+=
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Where:  
   r = U (0,1) 
And  
  U (0, 1) is a uniform distribution over (0, 1). 
 

3.2.3 Mutation 
 
Non-uniform mutation function was chosen. It randomly 
selects one variable ix , and sets it equal to a non-uniform 
random number. It is defined in the following equations: 
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r1, r2      = a uniform random number between (0,1) 
G        = the current generation 
Gmax     = the maximum number of generation 
b        = a shape parameter 
ai , bi  = the lower and upper bound for each variable xi 
 

3.2.4 Termination 
 
As far as termination is concerned, one can either specify 
a maximum generation number, or a convergence 
threshold. The latter criterion was adopted in this project. 
The run is stopped when both the variation between best 
fitness and mean fitness and the standard deviation of one 
generation are less than the set tolerance.  The pseudo-
code is like the following: 
 
If   
                        (best fitness - mean fitness)<=tolerance  

AND 
            standard deviation <=tolerance 
Then  

STOP 
 
 

3.3  OPTIMIZATION PROCEDURES 

First, genetic algorithms initialize suspension design 
variables Ks and Cs. Then Ks and Cs are passed into the 
quarter car model to solve for the dynamic response 
(displacement and accelerations values) of the system. 
These values are then substituted back into the GA 
process to calculate the fitness of the suspension design. 
This procedure is repeated until the stopping criterion is 
met.  
 

4 OPTIMIZATION PROBLEM FORMULATION  

4.1 OVERVIEW 

The two design variables need to be optimized are Ks and 
Cs, which represent the stiffness and damping coefficients 
of the suspension, respectively.  Initialized from the given 
parameter ranges by genetic algorithm, the values of Ks 
and Cs, are then evolved generation by generation and 
substituted into equations of motions (2-1) to solve for the 
time response of the system.  The evolution stops when 
the optimal solution is obtained. 
 

4.2 OBJECTIVES 

Assessing the comfortability of a vehicle suspension 
system may be very complex.  The two commonly 
adopted criteria are listed below:  

Absolute Magnitude of the sprung mass  
acceleration, 1| |z  
Absolute Magnitude of the average sprung mass 
displacement, 1| |z   
 
Generally, ride comfortability of a suspension system is 
improved as 1| |z  and 1| |z  are both reduced.  However, 
these two objectives are competing in nature under 
normal operating conditions. A suspension system 
satisfying one of two ride comfort criteria does not 
necessarily follow that the other one is also satisfied.  
That means, at a given point on the road surface, small 
displacement amplitude 1| |z  does not guarantee a small 

acceleration 1| |z .  In order to properly compromises 
these two conflicting objectives and limited by the 
capability of MATLAB GA toolbox, we converted this 
multi-objective problem into a single-objective problem 
by summing up 1 1(| | | |)z z+ and require value of this 
converted objective to be as small as possible, that is, to 
minimize 1 1(| | | |)z z+ .   
 

4.3 CONSTRAINTS HANDLING 

Other requirements regarding ride comfortability and 
kinetic properties of the suspension are treated as 
constraints in our problem formulation.Three constraints 
are specified. 
 
The maximum amplitude of sprung mass acceleration 
should not exceed 1g (9.8m/s2).  This constraint is 
incorporated into the original objective function by 
adding a penalty term 1max(| | 9.8,0)z − .  The fitness 

will be penalized by 1(| | 9.8)z −  if the constraint is 
violated.  
  
According to ISO2631, human beings feel motion sick 
when subjected to a vibration at the natural frequency of 
less than 1Hz. A good suspension design should imply a 
natural frequency of greater than 1 Hz.  This constraint is 
accounted for by adding a penalty term max(1 ,0)ω− .  
The fitness will be penalized by 1 ω−  if the natural 
frequency ω  of the sprung mass is less than 1Hz. 
 
Suspension working space refers to the absolute value of 
the relative displacement between the sprung and 
unsprung masses i.e. 1 2| |z z− .  This value cannot be 
arbitrarily large from a practical point of view.  It is 
restricted to be less than 13cm. The penalty term in the 
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form of 1 2max(| | 0.13,0)z z− − will be added to the 
original objective function. 
 
In summary, the problem formulation can be stated as 
following:  
 
Minimize     1 1(| | | |)z z+  
 
Subject to constraints: 
 

2
1 9.8 /z m s<          

ω >1 Hz          

1 2| |z z− <0.13 m 
 
Taking all the above statements into consideration, the 
objective function becomes 
 

1 1

1

1 2

min ( , ) (| | | |)
max(| | 9.8,0) max( 1,0)
max(| | 0.13,0)

f Ks Cs z z
z
z z

ω
= +
+ − + −
+ − −

 

 

4.4 A MODIFIED OBJECTIVE FUNCTION 

The possible ranges of the suspension spring stiffness Ks 
suspension damping coefficient Cs were found to be 
[40000, 170000] N/m, and [10000, 140000] N*s/m, 
respectively [Haug, 1984], [Arora, 1989]. Within these 
parameter ranges, the maximum sprung mass acceleration 

1| |z is less than 13 m/s2, and maximum displacement of 

the sprung mass 1| |z  is less than 0.3m. 
 
As can been observed, the varying spaces of the two 
design variables are quite large, while the results space of 
the objective function is very small.  So, the value change 
of the objective function may not be easily observable 
when Ks and/or Cs are varying.  In order to ensure a wide 
range of fitness values so that small changes in the design 
variables result in significantly different objective values, 
we introduce five amplifying factors 1α , 2α , 3α , 4α , 5α  
into the original objective function to enlarge the 
objective space 
 

1 1 1 2 3

1 4 1 2 5

min  ( , )
(| | | |) max(1 ,0)

(max(| | 9.8,0) max(| | 0.13,0))

f Ks Cs
z z

z z z
α α ω α

α α

=
+ + −

+ − + − −

 

 

iα ’s are determined by trial and error. 1 3α = , 

2 100α = , 3 100α = , 4 1000α = , 5 10000α = .  

5 DESIGN RESULTS AND INTERPRETATIONS 

5.1 INITIAL POPULATION AND FINAL 
SOLUTION 

Figure 5 shows the forced response ( 1| |z and 1| |z ) of 
the suspension system of 100 initial designs and the 
optimal design (star).  Noting that as highlighted in Sec. 
4.4, the response space is quite tight for 1| |z  and 1| |z , 
the seemingly small difference between initial solutions 
and optimal solution actually corresponds to quite large 
difference in design parameters (Ks and Cs). As observed, 
the two objectives 1| |z and 1| |z  are conflicting with 
each other.  
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 Figure 5: Initial population and Final optimal result 

 

5.2 COMPUTATIONAL COMPLEXITY 

The numbers of generations, evaluations of objective 
function and CPU time required for four separate runs are 
given in Table 2.  For this specific problem, the least 
computational complexity occurs when the population 
size is set to be 100. 
 

Table 2: Statistics for computational complexity 

 Run 1 Run 2 Run 3 Run 4 
Population 
Size 100 200 300 300 

Number of 
Generations 22 16 16 13 

Number of 
Evaluations 2200 3200 4800 3900 

CPU time 3,033 
sec 

3,160 
sec 

6,066 
sec 

5,380 
sec 
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5.3 CONVERGENCE PROCESS 

Figure 6 illustrates the convergence of the three 
independent runs with different population size 
( maximum generation set to be 100) by plotting the 
standard deviation of objective function value in each 
generation against the generation number.  As can be seen, 
in all the three runs, the objective function converged to 
the optimal value very fast.  The convergence process of 
the simulation with population size set to be 300 and 
maximum generation number equals to 300 is shown 
Figure 7. As can be seen, the increased population size 
and generation number from 100 to 300 did not affect the 
convergence to the optimal result for this specific problem. 
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Figure 6:  Convergence process for maximum generation   
                equals to 100 
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Figure 7: Convergence process for maximum generation 
               equals to 300 

5.4 DESIGN RESULTS 

Table 3 shows the design results from four independent 
runs of the GA program.  Also shown are the values of 
the accessing criteria: peak absolute acceleration and 
average displacement of the sprung mass.  One can see 
that the four independent runs have found very similar 
results. The suspension parameters, ks and cs, are 
consistently near the middle point between the upper and 
lower bounds. This set of parameters provides a 
suspension that is both “soft” enough to keep the sprung 
mass acceleration as low as possible and “hard” enough to 
effectively reduce the body bouncing motions.  
 
The results comply with our intuitive sense and can be 
illustrated by Figures 8 and 9.  As can be seen, in 
comparison to the optimal design: a harder suspension 
with ks=120,000 N/m, cs=80,000 N/m.s results in a higher 
acceleration but smaller displacement for the sprung mass, 
a softer suspension with ks=120,000 N/m, cs=80,000 
N/m.s results in a lower acceleration but larger 
displacement for the sprung mass.  So, the final optimal 
design has to be a trade-off between the two conflict 
objectives.  
 
 

Table 3: Optimal results from 4 different runs 
 

 Run 1 Run 2 Run 3 Run 4
Population Size 100 200 300 300 
Max. 
G i

100 100 100 300 
Ks (N/m) 71744 72041 71719 72116
Cs (N.s/m) 48774 48752 48699 48593

Max 1z  (m/s2) 6.3 6.3 6.3 6.3 

Mean |z1| (m) 0.075 0.075 0.075 0.075
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Figure 8: Comparison of displacement with other 
configurations. 
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Figure 9: Comparison of acceleration with other  
 configurations 

 

5.5 COMPARISON TO OTHER OPTIMIZATION 
METHOD 

In order to verify the validity of the results, the GA results 
were compared to those obtained by Haug and Arora 
[Haug, 1984], [Arora, 1989] who used a gradient 
projection method, a local search optimization technique.  
To make the results comparable, the road profile and tire 
parameters were selected to be the same as in Haug and 
Arora’s simulation. 
 
The road profile used in the comparison simulation is a 
sine wave with a wavelength of 24.4m and an elevation of 
5.1cm.  The vehicle speed is set to be 24.4m/s such that 
resonance can be observed if the natural frequency of the 
suspension system is near 1Hz. 
 
Table 4 and Figures 11-12 display the comparison results 
and related parameters.  As can be seen, GA yields similar 
performance measures.  This validates the GA results and 
also demonstrates that there exists other feasible design, 
which is able to achieve the same objectives. 

Table 4: Comparison to results from gradient projection 

 Gradient 
projection 

Genetic 
Algorithm 

Kt (N/m) 200,000 200,000 
Ct (N.s/m) 850 850 
Ks (N/m) 35025 71744 
Cs (N.s/m) 80000 48774 

Max 1z (m/s2) 3.30 3.65 

Mean |z1| (m) 0.051 0.049 
Convergence 40 evaluations 2200 evaluations
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Figure 10: Comparison of displacement  
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Figure 11: Comparison of acceleration 

 

6 CONCLUSIONS 

Genetic algorithm optimization is a global optimization 
technique, searching for a design that minimizes an 
objective function subject to constraints.  As an example 
of using numerical optimization to help automate the 
design process, GA was used to design a vehicle 
suspension system in this project.  Design objectives such 
as bouncing acceleration and bouncing transmissibility 
are introduced for accessing comfortability of the 
suspension.   While the searching space of the parameters 
is very large, the solution space is very tight. Therefore, 
the objective function is slightly reformed so that small 
variation in design paparemters Ks and Cs can reflect 
considerably large difference in fitness. And the added 
restrictions on suspension working space and natural 
frequency increase the complexity of the problem.  In all 
simulation runs, it can be observed that the genetic 
algorithms has been able to find optimal suspension 
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systems which are similar to those found with local 
optimization search methods.  These results are 
encouraging and suggest that GA can be easily used in 
other complex and realistic designs often encountered in 
the engineering. 
 
As we all know that GA has its drawback: it requires 
large computing effort. However, the efficiency of the 
GAs can be improved by monitoring previously analyzed 
designs so as to avoid re-computing the fitness for an 
existing optimal design.  To further improve efficiency 
and consistency in the results, the GA parameters, such as 
population size and mutation probability, may be tuned 
more effectively.  Most importantly the GA results show 
that there is potential to incorporate global optimization 
methods for suspension system design. 

7 FUTURE WORKS 

Refine the vehicle dynamics model to include more 
detailed suspension characteristics; 
 
Expand the vehicle dynamics model to pitch plane; 
 
Introduce more objectives regarding ride comfort such as 
minimizing jerk, RMS of seat acceleration; 
 
Expand the parameter ranges; 
 
Convert the Matlab code calculating vehicle dynamics to 
Fortran such that more advanced GA toolbox such as 
NSGA II can be used. 
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