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ABSTRACT 
In this paper, we design optimal trajectories that transfer satellites 
from Earth orbit to the Sun-Earth triangular Lagrange points (L4 
and L5) using a lunar gravity assist during the year 2010.  An 
optimal trajectory is defined as one that minimizes total mission 
velocity change (∆v), which is directly proportional to fuel 
consumption and operational cost.  These optimal trajectories are 
determined using two heuristic algorithms: Differential Evolution 
and Covariance Matrix Adaptation.  The three parameters being 
varied are the mission commencement time, Hohmann transfer 
target radius above the center of the moon, and the midcourse 
correction maneuver time of flight. 

Optimal trajectory parameters predicted by Differential Evolution 
and Covariance Matrix Adaptation agree closely.  The results 
show that an optimal trajectory to L4 using this problem 
formulation requires a total mission ∆v of 6.15 km/s.  The mission 
commencement time was 23.1 days, the Hohmann transfer target 
radius for this trajectory is 59993 km, and the midcourse 
correction maneuver time of flight is 294.9 days.  An optimal 
trajectory to L5 requires a total mission ∆v of 5.056 km/s.  The 
mission commencement time is 363.7 days, the Hohmann transfer 
target radius for this trajectory is 59993 km, and the midcourse 
correction maneuver time of flight is 410.9 days. 

Categories and Subject Descriptors 
G.1.6 [Numerical Analysis]: Optimization–Constrained 
Optimization; J.2 [Physical Sciences and Engineering]: 
Aerospace 

General Terms 
Design, Algorithm, Experimentation, Theory 

Keywords 
Triangular Lagrange Point, Hohmann Transfer, Gravity Assist, 
Lambert’s Problem 

1. INTRODUCTION 
This section defines triangular Lagrange point geometry, 
discusses previous work involving trajectory optimization to these 
points, and describes the characteristics of Differential Evolution 
(DE) and Covariance Matrix Adaptation (CMA). 

1.1 Lagrange Point Geometry 
Given two massive bodies in circular orbits around their common 
center of mass, there are five positions in space where a third 
body of comparatively negligible mass will maintain its position 
relative to the two primary bodies.  These five points, known as 
Lagrange points, are the stationary solutions of the circular, 
restricted three-body problem [1].  Figure 1.1 shows the location 
of the five Lagrange points relative to the positions of two 
primary masses in the rotating coordinate frame. 

 
Figure 1.1: Lagrange Point Geometry 

As seen in a frame of reference which rotates with the same 
period as the two co-orbiting bodies, the centrifugal force and 
gravitational fields of the two principal bodies are in balance at 
the Lagrange point, allowing a third object to be stationary with 
respect to the primary bodies.  The first three Lagrange points (L1, 
L2, and L3) are referred to as the collinear Lagrange points and the 
fourth and fifth points (L4 and L5) are referred to as the triangular 
Lagrange points. 

1.2 Previous Work 
Sun-Earth triangular Lagrange point insertion using a lunar 
gravity assist has never been attempted.  In fact, no trajectory 
optimization to these specific Lagrange points had been published 
in astrodynamics conference proceedings until 2007 [2].  The 
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majority of literature related to this topic involves insertion into 
the Sun-Earth co-linear Lagrange points [3, 4, and 5] or the 
Lagrange points of the Earth-Moon system [6, 7]. 

Benavides and Spencer [2] use co-orbital rendezvous (co-orbital 
phasing) orbits to transfer satellites initially in a circular Earth 
orbit of radius 6678 km (300 km altitude) to L4 and L5.  Their 
results conclude that an optimal trajectory that minimizes total 
mission ∆v can be achieved if the phasing orbit is initiated at an 
Earth true anomaly of 350.6° for the case of L4 and 4.4° for the 
case of L5.  The optimal ∆v’s calculated for each trajectory, 
respectively, are 5.25 km/s and 4.65 km/s. 

The goal of this research is to design optimal trajectories to L4 
and L5 using a lunar gravity assist that will require smaller ∆v’s 
than those predicted by co-orbital rendezvous.  These optimal 
trajectories are determined using two heuristic algorithms: 
differential evolution (DE) and covariance matrix adaptation 
(CMA). 

 

1.3 Differential Evolution 
Differential Evolution is a real coded algorithm developed for 
solving problems in continuous spaces by R. Storn & K.  Price 
[13]. DE uses selection, crossover, and mutation operators to form 
new solutions from a randomly generated initial seed population.  
The mutation operator takes a target vector and uses it to generate 
a new vector by taking the weighted difference of two other 
randomly selected vectors and adding it to a third. The selection 
of the target vector is specified by the strategy used. Strategies for 
DE are displayed in the form of DE/rand/2/bin. The first factor, 
DE, is the algorithm name. The second factor indicates whether 
the mutation target vector is either randomly selected (rand) or the 
vector that produces the current best objective value (best). If the 
best members are used, then the strategy is called elitist. The third 
factor is the number of vectors to be mutated, and the last controls 
the crossover method, either binomial or exponential. Crossover 
serves to increase population diversity by taking the mutated 
vector and randomly replacing the value of one of the variables 
with the value from the target vector. Then selection operator 
compares the value of the objective function obtained the trial 
vector with the vector corresponding to the minimum objective 
value from the previous generation. The vector which has the 
lowest value of the objective function then survives into the next 
generation. 

In a similar problem optimizing the ∆v required for an 
interplanetary trajectory to Jupiter using gravity assists from 
Venus and Earth, Bessette found that DE preformed better than 
another evolutionary algorithm known as particle swarm 
optimization[14]. Both heuristics converged to the same solution, 
but DE required a fewer number of function evaluations. 

1.4 Covariance Matrix Adaptation 
The CMA-ES (Covariance Matrix Adaptation Evolution Strategy) 
algorithm was chosen for its ability to solve non-linear non-
convex optimizations problems with a continuous domain [16].  
The algorithm also works well on bounded constraint 
optimization problems with dimensions between three and one 
hundred [16].  The search space of the problem being solved is 
expected to be non-linear and non-convex which falls into the 
strengths of the CMA-ES algorithm.  The domain is defined to be 

continuous and bounded by a set of constraints.  Documentation 
on the CMA-ES algorithm leaves little reason to doubt the CMA-
ES algorithm ability to solve this problem based on the problem 
domain, dimension, and boundary conditions. 

2. PROBLEM FORMULATION 
The trajectories being designed are divided into three phases: 
Hohmann transfer phase, lunar gravity assist phase, and mid-
course correction phase.  The satellites being transferred to L4 and 
L5 are assumed to initially be in a circular Earth orbit of radius 
6678 km (300 km altitude). 

2.1 Hohmann Transfer Phase 
Given a mission commencement time t since the beginning of the 
year 2010, initial position and velocity vectors for the Moon with 
respect to the Earth in Earth-centered inertial coordinates and the 
Earth with respect to the Sun in Sun-centered inertial coordinates 
are determined [8]. 

 
⎩
⎨
⎧

→
ee

emem

vr
vr

t vv

vv

,
, //  (2.1) 

The satellite is placed on a trans-lunar trajectory using a 
Hohmann transfer orbit.  The Hohmann transfer semimajor axis is 
given by, 
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where rc is the initial satellite circular parking orbit radius and r is 
the transfer target radius above the center of the moon.  The 
transfer orbit eccentricity is given by, 
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and the semilatus rectum is calculated by, 

 ( )21 HHH eap −=  (2.4) 

The initial impulsive velocity change needed to place the satellite 
on a Hohmann transfer to the moon is determined by, 

 
( )

c

e

cH

ecH

rra
rav µµ

−
−

=∆
2

1  (2.5) 

where µe is the gravitational parameter of the Earth.  Satellite 
position and velocity vectors with respect to the Earth at the time 
when the Hohmann transfer is commenced are determined using 
the lunar position and velocity vectors. 
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The transfer orbit true anomaly where the satellite intersects the 
lunar sphere of influence is calculated by 
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where the terms ζ1, ζ2, ζ3 are defined as 
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and Ψ is the radius of the lunar sphere of influence (assumed to be 
66200 km).  Satellite position and velocity vectors with respect to 
the Earth at the point where the satellite intersects the lunar 
sphere of influence are given by, 
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where FH and GH are defined as the Hohmann transfer Lagrange 
coefficients, 
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The time between mission commencement and lunar sphere of 
influence intersection is calculated by 
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where EH is the satellite’s eccentric anomaly at the time of lunar 
sphere of influence intersection 
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and nH is the Hohmann transfer mean motion, 
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2.2 Lunar Gravity Assist Phase 
The lunar gravity assist phase lasts from the time the satellite 
enters the lunar sphere of influence (a hyperbolic trajectory) to the 
time it leaves the sphere.  As the satellite enters the lunar sphere 

of influence, position and velocity vectors with respect to the 
moon are determined by, 
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The hyperbolic trajectory specific mechanical energy is given by, 
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where µm is the lunar gravitational parameter.  The trajectory’s 
specific angular momentum, semilatus rectum, and eccentricity 
are calculated by, 
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The hyperbolic trajectory’s true anomaly where the satellite enters 
the lunar sphere of influence is given by, 
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Satellite position and velocity vectors with respect to the moon as 
it leaves the lunar sphere of influence are determined by, 
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where FG and GG are defined as the hyperbolic trajectory’s 
Lagrange coefficients, 
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Satellite position and velocity vectors with respect to the Earth as 
it leaves the lunar sphere of influence are given by, 
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The time between lunar sphere of influence entrance and 
departure is determined by, 
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where HG is the hyperbolic trajectory eccentric anomaly as the 
satellite leaves the lunar sphere of influence, 
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2.3 Midcourse Correction Phase 
The midcourse correction phase lasts from the moment the 
satellite leaves the lunar sphere of influence to the time when it 
rendezvous with the L4 or L5 Lagrange point.  As the satellite 
leaves the lunar sphere of influence, its position and velocity 
vectors with respect to the Earth are transformed to Sun-centered 
inertial coordinates, 
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where the transformation matrix T is given by, 
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Given a correction time of flight for the triangular Lagrange point 
destination, the total mission time of flight is computed by, 

 CGH tttt ∆+∆+∆=∆  (2.41) 

Final triangular Lagrange point position and velocity vectors with 
respect to the Sun are determined by using the Earth’s classical 
orbital elements and solving Kepler’s equation [9], 
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where Mo and Eo are the Earth’s mean anomaly and eccentric 
anomaly at mission commencement, respectively; µs is the solar 

gravitational parameter; Ef is the Earth’s eccentric anomaly when 
the satellite rendezvous with the triangular Lagrange point; and a, 
e, i, Ω, ω, and f are the Earth’s classical orbital elements when the 
satellite intercepts the triangular Lagrange point.  The midcourse 
correction transfer’s initial and final velocity vectors are 
determined by solving Lambert’s boundary value problem [10, 
11, and 12], 

 { } 432 ;;;; vvtrrL sf
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The two impulsive maneuvers required by the midcourse 
correction maneuver are given by, 

 232 vvv vv −=∆  (2.47) 
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Total mission velocity change is determined by, 

 321 vvvv ∆+∆+∆=∆  (2.49) 

2.4 Optimization Problem 
The objective of this research is to find an optimal trajectory 
required to reach L4 and L5.  An optimal trajectory is defined as 
one that minimizes the total mission velocity change (∆v), 

 ( ) ( )321minmin vvvv ∆+∆+∆=∆  (2.50) 

given the following constraints 
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days 450day 1:L
days 365day 1:L

5

4

≤∆≤
≤∆≤

C

C

t
t

 (2.53) 

3. DIFFERENTIAL EVOLUTION 
The DE source code used was the Matlab version freely available 
by Neumaier and Storn [13]. All simulations using this algorithm 
were run on a Pentium 4 3.06 GHz processor. The average time of 
a function evaluation was 0.1 seconds. The source code was 
modified to save the best value of each variable corresponding to 
the best ∆v for each generation for later analysis. Constraints were 
handled in the form of static penalty functions by adding a 
constant penalty to ∆v depending on how far out of the specified 
bounds the value was.  
Since the value of the global optimum was not known, the value 
to reach of the algorithm was set to zero. Ten initial tests were run 
out to 900 generations for L4 to get a rough estimate what the 
number of function evaluations need might be and to get an sense 
of what minimum ∆v might be.  
 

3.1 Parameter Testing  
To make the most effective use of the DE algorithm, the input 
parameters were tested to find the values of that generated the 
best performance. The DE algorithm has 4 user specified input 
parameters that effect its performance: strategy, population size 



(NP), crossover ratio (CR), and step size (F). For each parameter, 
ten trials were run out to 250 generations. The value to reach was 
set at 6.1513km/s, the lowest ∆v from the initial trials(∆vinital) .  
The reference values of the parameters used were a population 
size of 30, a crossover ratio of 0.8, a step size of 0.8 and the non-
elitist crossover strategy DE/rand/2/exp which allowed two 
random population members survive into the next generation. 
These values were taken were from suggestions of initial 
parameter guesses in source code documentation[13]. 
The final selection of parameter values to be used in the actual 
trials was based on balancing the greediness and the search of the 
DE algorithm. The main criterion used were the number of 
function evaluations required for convergence to ∆vinital since time 
was limited, although percentage of the trials that converged was 
also taken into consideration. 
 

3.1.1 Strategies 
The DE source code had ten possible strategies. From the tests, 
the best crossover strategy was DE/rand-to-best/1/bin. It was the 
only strategy to converge to ∆vinital all trials and in the fewest 
amount of function evaluations. This strategy employs a binomial 
crossover. Initially, it is an non elitist, but after the first 
generation, it becomes elitist, adding the single best member from 
the preceding generation to survive into the subsequent one. This 
result was surprising because it was beat out more elitist 
strategies.  

Figure 3.1: Comparison of average values of ∆v for each crossover 
strategy. 

3.1.2 Population size 
Storm and Price suggest a population size between two and ten 
times the number of variables [12], so in the tests, NP for was 
varied from 5 to 120 in steps of 5.  Between 6 and 42, NP was 
incremented by three. The results indicate that DE does seem to 
be sensitive to population size. As long as it was over 25, the 
algorithm converged every time to ∆vinital. Larger population sizes 
lead to convergence in a smaller but of generations, but took 
longer since the total number of function evaluations increases 
with population size.  The setting for NP used in the actual trials 
was set at 45. At this setting, the algorithm converged in only 

twenty more generations than with a NP of 120 and required less 
than half the amount of function evaluations.    

3.1.3 Step Size 
The step size(F) parameter controls the weighting using in the 
mutation operator. According to the source code documentation 
says that DE is sensitive to step size [12].  For the parameter tests,  
F was varied from 0 to 0.5 and 1 and 2 in steps of 0.1. Between 
0.5 and 1, F increased by 0.01 for each successive test.  Results 
indicated that for most values of F tested under 0.97 converged. 
As the value of step size increased, so did the number of 
generations required for convergence. Storn and Price noted that 
mention that the results outside of the range of 0.5 to 1.0 tend not 
to be reliably replicable [12], so an F  value of 0.54 was chosen to 
be used in the later trials.  
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Figure 3.2: Plot of the trend of the number of generations required for 

converging F values 

3.1.4 Crossover Ratio 
The crossover ratio (CR) is a constant that controls how much 
crossover occurs. A larger CR allows for more crossover. For 
these tests, the value of CR was varied from 0 to 1 in steps of 
0.02. The crossover ratio results converged to ∆vinital  for only a 
small range: from 0.4 to 0.86. The number of generations required 
for convergence was a minimum  CR = 0.7, so this was the value 
that was used. 
 

3.2 Results 
Using the input parameters taken from the testing described 
above, 100 trials were run for both L4 and L5 out to run 550 
generations (74250 function evaluations). The number of 
generations was chosen to allow the maximum number of trials to 
be preformed while allowing DE ample space to search for global 
minimum.  After these trials were completed, the results indicated 
that the algorithm converged by 200 generations; so to save on 
computation time, the maximum number of generations was then 
lowered to this value and another 50 trials for each point were 
run.  Another set of trials, 25 for each point, were run seeded with 
values of t, r, and ∆tc from the previous trials corresponding to 
lowest ∆v found to see if DE would find a lower ∆v. However, the 
∆v for this set of trials immediately converged to the same value 
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as ∆v as before, so the results presented below exclude this last set 
of trials.  
 

3.2.1 L4 Trajectory 
The lowest value of ∆v found for a trajectory to L4 was 6.1513 
km/s. Using randomly generated values for the initial seeds, DE 
reached this minimum 83.3% of the time taking an average of 
12960 function evaluations to converge. All the other trials 
converged to a slightly larger ∆v of 6.2462 km/s. For the trials 
that reached this value, it was found that t, r, and ∆tc were all 
occur in a small range. This solution has and average mission 
commencement time was 21.312 ± 0.0167 days into 2010.  The 
average flyby radius and correction time of flight were 59993.6 ± 
4.36 km and 294.974 ± 0.053 days respectively. If analyzing 
values of t, r, and ∆tc at the end of 550 generations from first set 
of trials, their range is less. This suggests that if left to run to a 
larger number of function evaluations, the values of the variables 
for the best ∆v for L4 might all converge.  
 

3.2.2 L5 Trajectory 
For the L5 rendezvous, the lowest ∆v was 5.0559 km/s achieved in 
an average of 15120 function evaluations. The DE algorithm was 
less reliable in this case, reaching this ∆v only 51.3% of the time 
with initial random seeds. However, all other trials converged to a 
∆v of 5.0575 km/s which in the physical terms of the of the 
problem is not significantly different.  
The minimum ∆v was obtained with a mission commencing on 
day 363.705 ± 0.0121 of the year with an average r of 59993.1 
km ± 3.913 km. This optimal trajectory requires a correction time 
of flight of 410.926 ± 0.057 days.  
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Figure 3.2: Plot of the solutions taking the fewest function evaluations 

for both L4 and L5 

 

4. CMA-ES 
The CMA-ES code was adapted to solve the problem at hand by 
adding additional lines of code that would support the boundary 
conditions required for the problem.  Boundary conditions were 
handled as solid walls that could not be exceeded.  Any values 
outside these boundaries were returned back to the nearest 
boundary (upper or lower bounds). 

4.1 CMA-ES Self-Adaptation 
A big advantage of the CMA-ES algorithm is its ability to self-
adapt to the function that is being solved.  With the use of a 
covariance matrix, successful mutations in the solution are 
tracked and used to update the covariance matrix every generation 
to reflect which mutations were good and which were bad.  The 
goal is to increase the probability of successful mutations such 
that the individual solutions being computed continue to move 
towards an optimum.  The covariance matrix helps determine the 
probability of which direction the mutations will move the 
population. 

4.2 CMA-ES Parameters 
The CMA-ES algorithm can be customized through several 
parameters.  In most cases, the default values for the parameters 
have been chosen due to past experimentation with the algorithms 
authors.  It is possible to adjust the population size per generation, 
set the maximum number of function evaluations to perform, the 
initial step size, number of parents, and fitness stopping criteria.  
For this problem, the minimum cost is unknown; therefore the 
fitness stopping criteria is left at zero, forcing the algorithm to 
continue until the maximum number of function evaluations has 
been reached.  The CMA-ES tutorial documentation recommends 
that the population size and number of parents used for 
recombination remain at the default values which are set as a 
function of the number of dimensions of the problem.  In this case 
it results in a population size of 7 and the use of 3 parents for 
recombination to generate the off-spring solutions.  The final 
parameter is the initial step size.  It is recommended by the 
literature that this value be determined through experimentation, 
though the default value of 0.50 is generally sufficient [17]. 

4.3 Step Size Optimization 
The problem being solved is expected to have many local 
minimum that will share very similar values and close to the 
actual optimum for the problem.  To assist in the early initial 
search while the covariance matrix has time to “learn” over the 
first several generations, selecting an optimal step size should 
help in finding the optimum.  The initial step size can be defined 
to be between 0.0 and 1.0.  Experimentation was used to 
determine the best value of the step size for this problem.  To 
determine the value, the algorithm was run 40 times at 10 
different step-size values from 0.05 to 0.95 in steps of 0.10.  After 
the trials were finished, the 40 trials at each step size were 
averaged and plotted.  Figure 4.1 shows the results of the trials 
where in general the smaller initial steps resulted in a slower 
convergence, but ultimately some of the lowest average costs.  
Based on these results, all additional runs of the CMA-ES 
algorithm will utilize a smaller initial step size of 0.25 as apposed 
to the default value of 0.50. 



 
Figure 4.1: Initial Step Size Comparison 

4.4 Results 
Utilizing the results from the initial step sizing experiment, 
solutions for L4 and L5 were computed by running the CMA-ES 
algorithm 1,000 times for each trajectory.  The CMA-ES 
algorithm performs 903 function evaluations at 129 generations 
per run.  Run times vary, but an average of 85 runs of the CMA-
ES can be completed per hour.  At approximately 12 hours per 
trajectory optimization, the CMA-ES algorithm generates many 
very good solutions in a fraction of the time an exhaustive search 
would take. 

4.4.1  L4 Trajectory 
The best trajectory computed for an L4 rendezvous required a 
Delta V of 6.152 km/s.  Figure 4.2 shows the plot of the minimum 
trajectory cost per generation.  The trial that generated this 
minimum solution was the 16 trial of the 1000 trials run. 

 
Figure 4.2: Minimum Delta V Solution 

The minimum solution requires that the mission commence 21.3 
days into the year, have a lunar fly-by radius of 59,497 km, and 
rendezvous with the L4 Lagrange point 294.9 days after the lunar 
fly-by.  Of the 1,000 trials tested, the results ranged between 
6.152 km/s and 6.662 km/s with a mean of 6.348 km/s.  15.3% of 
all the solutions found were within 1% of the minimum found and 
77.1% of all 1000 solutions were within 5% of the minimum 
solution found.  The best trajectory was still 17.1% greater than a 

direct transfer to the L4 point indicating that a lunar flyby is not 
helpful for this mission. 

4.4.2 L5 Trajectory 
The best solution found for the L5 rendezvous was a trajectory 
that resulted in a required Delta V of 5.057 km/s.  As expected, 
this solution was smaller than that of the L4 rendezvous trajectory 
and consistent with the results of Ref. [2].  The solution of the 
minimum trajectory is shown in Figure 4.3 and shows a similar 
convergence of the L4 minimum solution. 

 
Figure 4.3: Minimum Delta V Solution 

The best solution for the L5 trajectory has a mission 
commencement time of 4.3 days into the year, has a lunar fly-by 
radius of 59,916 km, and a rendezvous with the L5 point 410.6 
days after the lunar fly-by.  Like the solutions of the L4 
trajectory, the solutions found by the CMA-ES algorithm were 
bunched close together with an average solution of 5.249 km/s.  
Of all of the solutions found 12.1% of the solutions were within 
1% of the minimum solution found and 75.6% of the solutions 
were within 5% of the minimum solution found during the 1000 
trial runs.  Like the best L4 trajectory found by the CMA-ES 
algorithm, the best L5 solution was greater than the direct transfer 
solution found in Ref. [2] and was 8.7% greater. 

5. OPTIMAL TRAJECTORIES 
Tables 5.1 and 5.2 compare the best trajectory parameters found 
by the different evolutionary algorithms. 

 

 ∆v (km/s) t (days) r (km) ∆tc (days) 

DE 6.151 21.3 59,993 294.9 

CMA-ES 6.152 21.3 59,497 294.9 

Table 5.1: Best L4 trajectory parameters 

 

 ∆v (km/s) t (days) r (km) ∆tc (days) 

DE 5.056 363.7 5,9993 410.9 

CMA-ES 5.057 4.3 59,497 410.6 

Table 5.2: Best L5 trajectory parameters 

 



Figure 5.1 and 5.2 show the optimal trajectories to both triangular 
points using the best results. 
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Figure 5.1: Best L4 Trajectory 
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Figure 5.2: Best L5 Trajectory 

6. CONCLUSIONS 
The results reveal that sending a satellite from Earth orbit to the 
Sun-Earth triangular Lagrange points using a lunar gravity assist 
will generally cost more than the co-orbital rendezvous results 
predicted by Benavides and Spencer [2]. The optimal trajectory 

parameters calculated for both triangular points by DE and CMA-
ES agree closely. 
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