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ABSTRACT
A new tool is developed in order to solve computationally
expensive multi-objective topology optimization problems
related to the design for flexible active and passive skins for
morphing aircraft. The approach used is based on a multi-
objective genetic algorithm coupled with a local search al-
gorithm to create a hybrid multi-objective algorithm. The
ability of the developed algorithm to find efficiently Pareto
fronts of problems with two and three objectives is eval-
uated using three test problems. A multi-objective topol-
ogy optimization problem related to the design of flexible
skins is then solved as a proof of concept for more advanced
models of flexible skins. It is shown that the hybrid multi-
objective algorithm performs significantly better than the
multi-objective algorithm it is based on. Additionally, the
algorithm is able to solve a larger number of problems. The
topology optimization results gives some very promising so-
lution and the approach used lays the ground-work for more
advanced topology optimizations.

Keywords
hybrid multi objective genetic algorithm,NSGA2, topology
optimization, morphing aircraft, flexible skin,

1. INTRODUCTION
By design, typical aircraft usually perform very well in one
flight configuration only (high speed maneuver, climb, dash,
cruise or loiter) and present poor to acceptable performance
in other flight configurations (Fig. 1). In the recent years,
the high demand for better and multi-mission aircraft has
lead design engineers to develop more versatile aircraft by
expanding their flight envelop or increase efficiency and ca-
pability of a single aircraft for multiple distinct flight con-
figurations.
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It is well known that the performance of an aircraft in dis-
tinct flight configurations is highly dependent on the wing
airfoil and most importantly on the wing geometry as seen in
Fig. 1. Thus, one way to expand an aircraft flight envelop
is to change actively the wing area of the aircraft for the
different phases of flight as a bird would do (Fig. 2). This
approach led to the concept of morphing aircraft or aircraft
that can change smoothly and actively shape in flight.

Figure 1: Spider plot comparing predicted perfor-
mance of the fixed-geometry Firebee, a morphing
airfoil Firebee and a morphing planform Firebee
(Joshi et. al. [13]). The radius represents the effi-
ciency of the aircraft for the type of flight considered

However, morphing aircraft present some unique challenges.
One of them is related to the skin of the morphing structure
(generally the wings). Indeed, a typical aircraft skin is ei-
ther made of a metal alloy or a composite material. These
materials allow little elastic deformation and thus are not
suitable for morphing aircraft where large and recoverable
deformations are sought. Some of these challenging require-
ments are:

1. As a component of an aircraft it should be light weight

2. It should have low in-plane stiffness so morphing does
not require too much effort.

3. During deformation, the local stresses should stay be-
low the material equivalent yield stresses or elastic



Figure 2: Bird flying in different configurations. The
bird deforms its wings depending on the flight speed
(Manzo et. al.[16])

limit.

4. The skin should also have low out-of-plane deflection
due to the air loads in order to keep a smooth surface
and avoid buckling under compressive loading.

No material which simultaneously meet all these criteria cur-
rently exist. Some morphing aircraft have used a polyurethane
membrane under high pre-strain as a flexible skin (for ex-
ample MFX-1 from NextGen Aeronautics). The disadvan-
tages are that it can require a lot of energy to deform, espe-
cially to stretch it, it can wrinkle, creep and it is sensitive
to weather conditions. Olympio[18, 19] studied the pos-
sibility of using micro-cellular structures and particularly
structures made of hexagonal cells for passive ‘flexible’ skins
under one-dimension and two-dimension extensional mor-
phing. Olympio’s work mainly involved parametric studies
and simple gradient-based optimizations. Recently, Reich
et. al[22] used a simple topology approach to find a solu-
tion to semi-active flexible skin for morphing aircraft. Their
work was based on Sigmund’s[20] 99 lines code with two-
dimensional linear finite elements and an OC or MMA opti-
mizer. Also a single objective was used. Nevertheless, their
work suggested that very different solutions can be obtained
by changing only the type of material used.

So far, research efforts on flexible skins showed that micro-
structures proved to have a lot of potential, but some issues
still remain. The objective of this research effort is to lay the
ground-work of a solution procedure where the design space
is opened to any micro-structures. The problem is defined
by several conflicting objectives and a topology optimization
approach is used to find the best micro-structures which
meet all the conflicting requirements described above.

In topology optimization, conventional mathematical pro-
gramming methods such as gradient-based methods are very
popular. However these types of algorithm can be difficult to
implement in a real multi-objectives problem. Genetic algo-
rithms, due to their structure are more suited to solve these
types of problems. Indeed, different individuals can explore
a different region of the design space through evolutionary
mechanisms and a set of best solutions called the ‘Pareto-

optimal’ set can be found. Obtaining the Pareto-optimal
set of solution can prevent the designer to introduce bias
(or make early choice in what the solution will look like) as
he does not need to use a constraint approach or a weighted
sum approach. The designer knowledge is then shifted to
defining the problem and selecting the best solution from
the ‘Approximated Pareto’ set of solutions.

In section 2 the hybridization of an efficient multi-objective
genetic algorithm (MOGA) is discussed. In the following
section (section ??), the topology optimization problem is
defined. In section 4, the performances of the new algorithm
are examined using several metrics and test problems. The
topology optimization results are discussed in section 5 and
a conclusion follows in section 6.

2. HYBRIDIZATION OF A MOGA
This section describes how a Multi-Objective Genetic Al-
gorithm (MOGA) and a local search method are coupled to
create a Hybrid Multi-Objective Genetic Algorithm (HMOGA).
The motivation for developing a HMOGA is presented first.
Then the fundamental elements composing the HMOGA
along with discussion about issues related to the hybridiza-
tion process are exposed. A flow chart summarizing the
HMOGA strategy is shown in Fig. 5.

2.1 Motivation
It is a known fact that, for a given problem, a genetic al-
gorithm (GA) is outperformed by any specialized solution
scheme tuned to the problem. Moreover, slow convergence
of GAs toward an accurate solution is a well-known draw-
back that can make them unsuitable for practical engineer-
ing applications. This is mainly due to the fact that GAs
do not exploit any local information as individuals approach
global optima. However, GAs have generally a good global
behavior so regions containing global optima are generally
found. Local searchers, on the other hand, can converge to
an optimum with high accuracy but their global behavior is
generally poor. This can prevent them from converging to
global optima.

Thus a combination of both methods is very likely to per-
form better than either method alone[11, 15]. Indeed, if the
two methods are well coupled, the local search will provide
knowledge to the “blind searcher” or MOGA about the space
surrounding individuals ; and the MOGA will expand the
access of the local search to the entire design space thanks to
its good global behavior. Moreover, GA are usually better
suited to handle multiple objectives than typical local search
method. By hybridizing a MOGA, we seek to improve its
efficiency: converge faster (smaller number of function eval-
uations) and better (closer to the true Pareto front).

Several researchers have tried to develop a theory of hy-
bridization with simple genetic algorithms (SGA) [8, 9, 15]
and in the case of MOGA, the issues are similar. Each of
them will be discussed in the following section. Among the
most important issues, one needs to:

• Properly balance local and global search so that one
method does not outweigh the other but complements
it.



• Perform the local search on the right individuals.

• Keep diversity (and avoid premature convergence) even
if the problem has big attractors which would take ad-
vantage of local search weakness.

The following sections present the algorithmic choices made
to develop an efficient HMOGA.

2.2 Global search procedure: MOGA
In the recent years, several efficient MOGA have been devel-
oped. They include Strength Pareto Evolutionary Algorithm
2 (SPEA2)[23] and Non-Dominated Sorted Genetic Algo-
rithm 2 (NSGA-II)[3, 6]. Kollat and Reed[14] improved
NSGA-II to better handle multi-objectives problems with
high-order Pareto surfaces. This was achieved with several
additional features: ε-dominance for population archiving,
dynamic population sizing and automatic termination. This
‘improved’ algorithm was named ε-NSGA-II. It is worth
noting that these additional features do not add to the com-
plexity of parameterizing the MOGA as they are generally
part of the problem itself or the set of solutions sought.

Kollat and Reed showed that ε-NSGA-II can be very com-
petitive compared to other algorithms such as SPEA2 for
high order multi-objective problems[14]. Moreover, the dy-
namic population sizing allows to perform substantial search
with small populations, thus a large part of the design space
can be explored without excessive number of function evalu-
ations which makes the algorithm very attractive for compu-
tationally intensive problems. For these reasons, ε-NSGA-II
is chosen to be hybridized in order to create a highly efficient
algorithm for solving multi-objective structural optimization
problems.

2.3 Local search procedure
One can distinguish two distinct classes of local search pro-
cedures: gradient-based methods and non gradient-based
methods. Gradient-based methods consist of: Newton’s
method, Gauss-Newton’s method, steepest descent, conju-
gate gradient and variations of Newton’s method. Non gradient-
based methods include but are not limited to: downhill sim-
plex method of Nelder-Mead[17], Powell’s method, random
walk and evolutionary algorithms. However, in this study,
evolutionary algorithms will not be considered for hybridiz-
ing a MOGA as we seek to incorporate more knowledge into
the search and an evolutionary algorithm would simply in-
troduce more “blind search”.

Several researchers have used non gradient methods to hy-
bridized a GA. For example, Ishibuchi[12] and Deb[11] used
a random walk approach with real and binary coded vari-
able respectively. Other researchers such as Chelouah and
Siarry[1] and Fan and Zahara[10] used Nelder-Mead simplex
method as their local search procedure. There is no definite
answer about which local search procedure to use as no al-
gorithm is better than another for all classes of problems
(No Free Lunch Theorem). However, the objective of the
hybridization is to widen the range of efficiency for both the
local search procedure and the GA. Thus, the local search
procedure should be adapted to the type of problem con-
sidered. For example, if the problem is nonlinear with con-
straints, gradient based approaches might perform better.

If, the problem has some discontinuity or the variables are
discrete, a non gradient approach might be more appropri-
ate.

In this study, the local search was used for two main pur-
poses:

1. Help the GA starts with a few nearly optimum solu-
tions. This is especially helpful for constrained prob-
lems and problems with weakly dominated front (such
as DTLZ6) or multiple “local Pareto fronts” (such as
DTLZ3).

2. Improve the quality of the solutions which are already
near global optima. So, it seems natural to apply the
local search to the best individuals (or archived indi-
viduals in the case of ε-NSGA-II) only.

These two points will be discussed in section 2.5.

2.4 Objective function for the Local search pro-
cedure

Local search procedures can be difficult to implement with
multiple objectives. Thus, it is necessary to assemble all
the objective functions into one single function. Many ap-
proaches exist: weighting sum method, Min-max method,
Global Criterion Method among others. In this project, only
the weighting sum method was considered (Eq. 1).{

f̃(x) =
∑M

i=1 wifi(x),M: number of objectives∑M
i=1 wi = 1, wi ≥ 0

(1)

This approach has been implemented successfully in many
studies[4, 12] and the weights were defined in various ways.
Weights can be(Fig. 3): constant, random or being a func-
tion of the location of the solution in the objective space.
Constant weights greatly restrict the search as only one di-
rection of improvement is sought. With random weights, the
search is statistically performed in all directions but two in-
dividuals may also be directed toward the same value (point
A and B in Fig. 3) or toward each other (point C and D
in Fig. 3) which is likely to decrease diversity and local
search efficiency (because several local search runs will give
the same answer). Deb[4] suggests using weights according
to the position of the individual in the objective space (Eq.
2):

wi =
fmax

i − fi(x)

fmax
i − fmin

i

[
M∑

k=1

fmax
k − fk(x)

fmax
k − fmin

k

]−1

i ∈ 1, ...,M

(2)

where fmax
i and fmin

i are the approximated maximum and
minimum values of the ith objective function respectively.
They can be found by looking at the individuals in the first
front (or ‘approximated’ Pareto front). With weights calcu-
lated as in Eq. 2, one explicitly seeks to move solutions to-
ward the true Pareto, expand the first front and attempt to
avoid distinct individuals from converging toward the same
values.

Also, to avoid scaling issues, the objective functions are
scaled between 0 and 1 as shown in Eq. 3.



(a) Constant weights (b) Random weights (c) Calculated weights

Figure 3: Schematic representation of the choice of weight in defining the objective function for the local
search in the case of the two-objective problem


f̄i(x) =

fi(x)−fmin
i

fmax
i −fmin

i
, i ∈ 1, ...,M

f̃(x) =
∑M

i=1 wif̄i(x),M: number of objectives∑M
i=1 wi = 1, wi ≥ 0

(3)

Additionally, if the problem has some constraints defined
by gi(s) ≤ 0, large random numbers can be used as penalty
parameters and the fitness function becomes:{

˜̃
f(x) = f̃(x) +

∑
i λi max(gi(s), 0)

λi : Penalty parameter for the ith constraint
(4)

2.5 Combining local and global search
Linking a local search algorithm to a genetic algorithm can
be viewed as adding learning capability to individuals in a
population. But several issues need to be considered. In sub-
section 2.5.3, How the local search is affecting the individual
is discussed . In sub-section 2.5.2, we discussed when the
local search should be applied. In sub-section 2.5.4, details
about the strategy used to limit the computational resources
used by the local searcher are exposed.

2.5.1 Preparation
It is a known fact that introducing good solutions in a pop-
ulation will only help a GA to converge. This is the purpose
of the preparation phase in the HMOGA developed in this
study.

However, if the solutions are not close enough to the global
optima or the solutions are on local optima, then the algo-
rithm may also fail to converge to a global optimum in a
finite number of generations. Thus, the search for good so-
lution must be as successful as possible. In this study, this
preparation phase aims at finding the optimal Pareto-set
corner. Thus, if the problem has M objectives, each cor-
ner will correspond to the minimization of M-1 objectives.
As discussed in sub-section 2.4, weights need to be deter-
mined to calculate the fitness function the local searcher
should minimize. Thus, for each corner sought i ∈ {1,M},
wj = 1

M−1
, j 6= i and wi = 0.

Additionally, since a local searcher is used, and to increase
the probability that a corner of the true Pareto is found,
several searches will be done for each corner by changing
the initial guess. These initial guesses correspond to spe-
cific points in the decision space. Let be ND the number of

equally spaced values taken in each decision variable range,
so for the ith decision variable bounded by [mini,maxi],

the values are: (maxi−mini)(k−1)
ND−1

, k ∈ 1, 2, ..., ND. Note that

only a small part of the discretized space is considered, thus
for a given individual, k is identical for all decision variable.
Figure 4 shows an example for 2 decision variables (x1,x2)
and ND = 6.

Figure 4: Discretization of the search space for the
initial local searches

Therefore, the preparation phase involves a population of
M ∗ND individuals on which the local search is applied. The
best individuals are then included in the initial archive (be-
fore injection in the initial population) using ε-domination.
Note that by doing so, the HMOGA can become more ro-
bust, unless the local search reintroduce some stochastic pro-
cesses (as it is the case for the simple method, for which the
initial simplex size is chosen randomly).

This approach is similar to what would be done if only a local
search were used in order to check that a global solution is
obtained.

2.5.2 Local search gap
In this study, the local search is also apply on the archived
individuals created by the MOGA.

Deb studied several hybrid techniques for an engineering
shape design[4, 11]. Two main distinctions were made in
the way the local search procedure used (hill-climbing) and
the MOGA were coupled:

1. Posteriori approach: the MOGA is ran for a fixed



number of generation, then the local search method is
applied on the solutions obtained using an aggregated
objective function.

2. Online approach: every solution created by the genetic
operators is modified by the local search procedure.

From Deb’s results, it appears that the posteriori approach
has better diversity and convergence than the online ap-
proach. The number of function evaluations was not con-
sidered but it is clear that a large part of the computational
effort is given to the local searcher in the online approach.

Therefore, in order to decrease the computational resources
taken by the local search and from Deb’s results[4, 11], the
local search is applied only to the archived individual after
each run (inter-run local search).

2.5.3 Lamarckian versus Baldwinian
It is also important to know how the local search is affect-
ing the individuals. Two approaches exist: Lamarckian or
Baldwinian approach. With the former, the genotypic as
well as the phenotypic information are changed by the local
search. The improvements are then passed from generation
to generation in the evolutionary search. In the latter, only
the fitness is changed and the most capable individuals are
copied into the next generation.

Thus, a Lamarckian approach can be greedier than a Bald-
winian approach. But, it can also cause premature con-
vergence by reducing the diversity in the population[9]. A
Baldwinian approach results in function evaluations which
are not fully exploited because the genotypic information is
lost.

In this study, a Lamarckian approach is used because high
efficiency is sought. To prevent premature convergence or
loss in diversity, ε-domination is performed between the pop-
ulations before and after the local search is performed. Ad-
ditionally, the local search can be applied to only a few ran-
dom individuals RA ∗ A, where A is the size of the archive
and RA is the proportion of the archive which will be ”im-
proved“ by local search.

2.5.4 Duration of local search
To prevent the local searcher from taking all the computa-
tional resources, the number of iterations or function evalu-
ations need to be fixed in case convergence is not reached.
Several approaches have been used so far[11, 12, 9, 8] to
achieve this.

The local search can terminate in three different ways:

1. The maximum number of iterationsNI has been reached.

2. No more improvement is possible. This happens when
a local or global optimum is reached.

3. The termination criteria is met.

In this study, the stopping criteria for the local search is
based on the ‘efficiency’ of the local search and the global

search. The ‘efficiency’ of a search is defined as:

e =
fold − fnew

fold
(5)

For the local search, fold and fnew are simply the values
of the fitness function at iteration k − 1 and k respectively.
For the MOGA, fold and fnew should be the distance of the
first front from the origin of the objective space between two
successive generations. So Eq. 5 gives an indication of how
much a front has moved toward minimization using either
the local search or the MOGA. For example, if fold = fnew,
the algorithm (either MOGA or local search) has made no
progress at all and e = 0. If fnew = 0, the algorithm has
made maximum progress and e = 1. Ideally, the local search
and the MOGA would complement each other perfectly over
each {MOGA+local search} run and the ‘efficiency’ would
be e0 ' 1. So let us assume this is the case then:

e0 =

(
fold − fnew

fold

)
GA,∞

+

(
fold − fnew

fold

)
LS,∞

(6)

Therefore, the local search iterations are stopped when,

1. ”Sufficient“ improvement was reached:

(
fold − fnew

fold

)
LS

≥ e0 −
(
fold − fnew

fold

)
GA

2. The local searcher is unable to find a good solution
fast enough: k ≥ NI where NI is a hard limit on
the maximum number of iterations done by the local
search and k is the number of local search iterations.

3. The local search has converged to an optimum.

Additionally, if a local search run is not sufficient enough
(according to the previous definition of efficiency), the next
inter-run local search is skipped to allow the MOGA to inno-
vate without doing inefficient local searched (and thus con-
suming function evaluations). If this is the case, it might
also be useful to increase the mutation probability in order
to innovate more. But this has not been considered in the
study.

3. TOPOLOGY OPTIMIZATION PROBLEM
3.1 Problem formulation
To validate the concept of solving a topology optimization
problem with a HMOGA, we consider a simple topology
optimization problem. The problem consists in finding the
best designs of a cantilever beam under tip shear load in
terms of minimum mass and minimum deflection.

A material distribution approach is chosen to represent the
micro-structure(Fig. 6). Therefore, the design variable can
take any values between 0 and 1, but it is preferable to
have either 0 or 1 so it seems natural to use binary coded
variables. The number of binary variables is equal to the
number of elements used in the finite element discretization.

The topology optimization problem can be defined by Eq.
7.



Minimize δ(~F ,~s) (Tip deflection of the cantilever beam)
Minimize m(~s) (Mass of the beam)
such that si ∈ {0, 1}, ~s = [s1, s2, ..., sN ]

 (7)

where ~F is the loading applied to the skin, ~s is a vector of the design variables and N is the number of design variables. In
this problem, the loading is simply a tip shear force.

Figure 5: Flow chart describing the hybrid multi-
objective algorithm. The global search block corre-
sponds the ε-NSGA2 algorithm for one single run

Figure 6: Cantilever beam under shear tip force

For the finite element part of the code, while Q4 elements1

require less computational effort than higher order elements,
they tend to create checkerboard patterns[20]. This is be-
cause the stiffness of a checkerboard pattern using this type
of element is artificially large due to parasitic shear strain
of the element. Thus, if such elements were used, the algo-
rithm would be very likely to converge to such patterns or
other meaningless designs. To avoid this issue, Q9 elements2

should be used because unlike the Q4 element, they do not

1Quadrilateral element with 1 node at each corner
2Quadrilateral element with 9 nodes: 1 node at each corner,
1 node at the center of each side and 1 node at the center

exhibit shear locking[2]. The disadvantage of this type of
element is that the associated computational cost is much
higher.

Since only the concept need to be validated in this study, we
choose to use Q4 elements as they require less computational
resources for the same finite element discretization.

4. TEST PROBLEMS
In this section, the hybrid ε-NSGA-II is compared to ε-
NSGA-II for some analytical test problems: ZDT1, DTLZ3
and DTLZ6. These functions have been created from the
bottom up which makes it easy to define the close form
equation of the true Pareto front.[7]

To evaluate the performance of the hybrid algorithm, we
use two or three different metrics(depending on the number
of objectives): the convergence metric, the diversity metric
and optionally the ε-indicator metric. The first metric in-
dicates how close to the Pareto-optimal front the solution
set is, the second indicates how diverse the final solution set
is and the latter represents the smallest distance the first
front must be translated to completely dominate the refer-
ence set[5]. These metrics will be plotted against the total
number of function evaluations to assess speed of conver-
gence and diversity.

Additionally, two local searches (Powell’s method and Sim-
plex method) are used in order to evaluate the effect of hav-
ing an efficient algorithm(Powell’s method) and a simple
algorithm (Simplex method) which can give less accurate
results but with fewer function evaluations[21].

It should also be noted that in this section, only the effect
of adding a local search (for the same MOGA parameters)
to the MOGA is investigated. Thus, better parameters may
exist.

4.1 ZDT1
This is a simple convex problem with 2 objectives. The
parameters used to solve the problem with both algorithms
are shown in Tab. 1. Since it is a very simple problem,
we use it as an opportunity to evaluate the effect of the
preparation phase so we choose RA = 0 (no inter-local search
run).

In Figs. 7, the offset that can be observed for the HMO-
GAs is due to the preparation phase. Fig. 7(a) shows the
convergence of the three approaches.Fig. 7(b) presents how
diverse the solution is for each approached versus the num-
ber of function evaluations.

It can be observed that the HMOGAs converge almost twice

of the element



MOGA HMOGA HMOGA
Max nb of gen. per run 100 100 100
Max nb of func. eval 20000 20000 20000
Initial population size 8 8 8
Min/Max population size 8/10000 8/10000 8/10000
Injection scaling factor 0.25 0.25 0.25
Crossover probability 1 1 1
Mutation probability 0.033 0.033 0.033
ε(all objectives) 0.0075 0.0075 0.0075
RA NA 0% 0%
NI NA 50 50
ND NA 3 3
Local search NA Simplex Powell

Table 1: Parameters used to solve the problem
ZDT1. RA is the proportion of the archive affected
by the local search after each run. NI is the max-
imum number of iterations allowed for the local
search algorithm (it can be different to the num-
ber of function evaluations). ND is the number of
starting points for each corner of the Pareto front
in the preparation phase

(a) Convergence metric

(b) Diversity metric

Figure 7: Metrics obtained during the solution of
ZDT1 problem based on 50 different seeds

as fast as the MOGA. Additionally, the final solutions ob-
tained with the HMOGA are as ”diverse“ as the solution ob-
tained using the MOGA. These results confirm that by pro-
viding good solutions to the MOGA, a significant increase
in convergence can be obtained.

However, if the preparation phase only yields local optima,
the performances might change drastically. This is investi-
gated with DTLZ3.

4.2 DTLZ3
This function tests the ability of the HMOGA to converge
to the global Pareto front. Indeed, this problem has sev-
eral ”local Pareto front“ which can render the local search
useless. For this problem, Deb et al.[7] suggest using k=10
so we have n = 12 decision variables and the problem has
3k − 1 = 59048 local Pareto optimal front and only one
global Pareto-optimal front.

The parameters used to solve the problem with both algo-
rithms are shown in Tab. 2 and the results are presented in
Figs. 8.

MOGA HMOGA HMOGA
Max nb of gen. per run 150 150 150
Max nb of func. eval 100000 100000 100000
Initial population size 12 12 12
Min/Max population size 12/10000 12/10000 12/10000
Injection scaling factor 0.25 0.25 0.25
Crossover probability 1 1 1
Mutation probability 0.033 0.033 0.033
ε(all objectives) 0.075 0.075 0.075
RA NA 100% 100%
NI NA 300 100
ND NA 3 3
Local search NA Simplex Powell

Table 2: Parameters used to solve the problem
DTLZ3

Fig. 8(a),8(b) and 8(c) show the convergence metric, diver-
sity metric and ε-indicator versus the number of function
evaluations for each approach.

It is seen that when the Simplex approach is used, the al-
gorithm may not necessarily find an global optimum in the
preparation phase. In that situation two cases arise: either
the MOGA runs manage to improve the solution by muta-
tion or crossover, or the MOGA fails to do so. Note that
in the case of DTLZ3, the inter-local search runs can only
move the solution to the closest optimum (local or global
Pareto front) as the numerous ”plateaux“ suggest. To avoid
failure of the MOGA to converge, it might be useful to dy-
namically change the mutation probability (not considered
here).

If a more powerful local search approach is used (such as
Powell’s method), good solutions are generally found and
the HMOGA converge to the global Pareto front without
much difficulty.

These results suggest that it can be worthwhile to spend
a significant amount of resources finding good solutions. If



(a) Convergence metric

(b) Diversity metric

(c) ε-indicator metric

Figure 8: Metrics obtained during the solution of
DTLZ3 problem based on 50 different seeds

the problem as many local Pareto front, and the local search
fail to find at least one global solution, then both algorithms
(MOGA and local search) may become powerless. To avoid
this issue, dynamic mutation probability might help.

4.3 DTLZ6

This function tests the ability of the HMOGA to converge
to a curve in an objective space of dimension greater than
3. For this problem, it is also suggested to take k = 10 so
there are n = 12 decision variables.

The parameters used to solve the problem with both algo-
rithms are shown in Tab. 3 and the results are presented in
Figs. 9.

MOGA HMOGA HMOGA
Max nb of gen. per run 250 250 250
Max nb of func. eval 100000 100000 100000
Initial population size 12 12 12
Min/Max population size 12/10000 12/10000 12/10000
Injection scaling factor 0.25 0.25 0.25
Crossover probability 1 1 1
Mutation probability 0.033 0.033 0.033
ε(all objectives) 0.0075 0.0075 0.0075
RA NA 100% 100%
NI NA 100 50
ND NA 3 3
Local search NA Simplex Powell

Table 3: Parameters used to solve the problem
DTLZ6

Fig. 9(a),9(b) and 9(c) show the convergence metric, diver-
sity metric and ε-indicator versus the number of function
evaluations for each approach.

Due to the weakly dominated front and the general lack of
accuracy of a standard GAs, this problem is often difficult
for MOGA. As seen in Figs. 9, not only the convergence
metric is high, but the diversity also stays low which sug-
gest clustering of solution on the weakly dominated front.
However, with a local search, at least one global solution is
often found and convergence is extremely fast (less than 2000
functions evaluations). When this happens, the MOGA only
needs to spread the solution on the Pareto front and it can
be seen that the diversity increases fast.

This problem clearly illustrate the superiority of a HMOGA
over a MOGA because high accuracy is needed.

4.4 Summary
The last three test problems illustrated the general better
behavior of a HMOGA over a MOGA. However, a HMOGA
may become less successful if the preparation phase is not
carried on properly and the problem has many local solu-
tions. Therefore, it seems that spending a non negligible
amount of function evaluations in the preparation phase can
be very rewarding.

Although other strategies for the preparation phase must
exist, the one used in this study (with Powell’s algorithm)
appears to work well. Thus it will be used in the following
topology optimizations.

5. TOPOLOGY OPTIMIZATION RESULTS
Besides the topology-related issues mentioned in section 3,
the algorithm gives mathematically valid designs but mean-
ingless in the real world. To solve this issue, a load path or
a similar approach will have to be used in order to obtain



(a) Solution 1: checkerboard pat-
tern due to Q4 elements

(b) Solution 2: checkerboard pat-
tern due to Q4 elements and bad
connectivity

(c) Solution 4: bad connectivity

(d) Solution 5: bad connectivity (e) Solution 13: bad connectivity (f) Solution 15

Figure 11: Solutions on the first front. All solutions are mathematically correct, however from the solutions
shown, only 1 and 15 are meaningful (based on the assumptions made)

Max nb of gen. per run 150
Max nb of func. eval 300000
Initial population size 12
Min/Max population size 12/10000
Injection scaling factor 0.25
Crossover probability 1
Mutation probability 0.033
ε1 5
ε2 1
RA 100%
NI 50
ND 3
Local search Powell

Table 4: Parameters used to solve the topology op-
timization of a cantilever beam

solution with fully connected elements. Moreover, filtering
techniques will have to be used in order to make the solu-
tions mesh-independent.

6. CONCLUSIONS
A multi-objective genetic algorithm has been coupled with
a local search algorithm. Three test problems have helped
to validate the hybridization process. The hybrid algorithm
seems to converge to a more accurate solution and in fewer
number of function evaluations than the MOGA it is based
on provided the local search is efficient.

Additionally, a simple multi-objective topology optimiza-
tion problem permitted to validate the methodology gen-
eral topology optimization problems and more spcifically for

flexible skin design of morphing aircraft. But some improve-
ments are still needed.

However, since geometric nonlinearities are sought, a nonlin-
ear finite elements still needs to be implemented. Further-
more, classical improvement for genetic algorithm such as
multi-processing can be used to increase the computational
resources given to the algorithms and in turn increase either
the speed or number of iterations done by the algorithm.
Additionally, some filtering techniques and connectivity cor-
rection will have to be implemented so that meaningful so-
lutions will be found using the approach described in this
paper.
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