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Abstract

A method is proposed to invert displacement and 
tilt measurements from a single monitoring 
location to constrain the nature of a volcanic 
pressure source.  Evolutionary strategy is applied 
to a sequence of Mogi solutions and the program 
is shown capable of distinguishing between 
depth and volume increment of the magma 
source, in addition to its 3-dimensional spatial 
coordinates.  The mechanism is applied to 
Soufriere Hills Volcano to constrain the nature of 
its single pressure source.  Expansion to a two 
source scenario is also sought, but only one of 
the sources may be correctly constrained while 
the second is narrowed to several equally valid 
possibilities.  The program is shown incapable of 
distinguishing between source pressure and 
radius for single or multiple sources. 

1 INTRODUCTION

Deformation of the earth’s crust surrounding volcanic 
episodes was first noticed by Japanese researchers in 
1910, and was famously linked to predictable magnitudes 
via the expansion of a pressurized, point source in an 
infinite half space by Mogi (1958).  Increases in 
monitoring capabilities around active volcanoes in more 
recent times have lead to the examination of well 
constrained geodetic influence on the nature and behavior 
of volcanic sources (Voight et al., 1998; Tiampo et al., 
2000). 

Many questions remain unanswered in attempts to 
ascertain the precise location of such a source.  
Conflicting values in the equations of crustal deformation 
when applied to inversion techniques limit researchers’ 
ability to distinguish the values of individual parameters.  
The purpose of this work is to physically constrain the 
precise tendency of a volcanic source through the 
application of a self-adaptive evolution strategy. 

2 THE EVOLUTIONARY ALGORITHM 

In a contextual manner, evolutionary algorithms 
implement some formulation of three basic operators 
meant to mimic the process of biological evolution.  The 
two primary sectors of evolutionary computation, 
evolution strategies (ES) (Rechenberg, 1965) and genetic 
algorithms (GA) (Holland, 1967), while devised 
independently, are of a similar theoretical nature and may 
be described in similar manner.  Following the generation 
of a randomly distributed population of possible solutions 
over a feasible solution space, population members, or 
“parents”, are evaluated with respect to an objective, or 
fitness, function.  Next, the best solutions are: 1) selected 
in a manner that encourages 2) mating (recombination in 
ESs) of possible solutions, and some form of 3) mutation 
to inject diversity, or prevent the loss of alleles. 

Evolutionary algorithms offer an attractive search strategy 
within complex search landscapes with multiple localized 
extrema, where traditional search methods such as 
conjugate gradients or linearized matrix inversion may 
fail.  Creating the primary distinction between these and 
traditional methods is the ability to search a decision 
space from a full population of potential solutions.  The 
ability of such random search methods to robustly locate 
global optima with general ease of implementation has 
increased their popularity in non-linear geophysical 
contexts and many other complex invocations.   

Non-adaptive genetic algorithms have been previously 
applied to various geophysical inversion scenarios, such 
as to examine vertical seismic profiles (Horne and 
MacBeth, 1998), elastic-gravitational magma intrusion 
(Tiampo et al., 2004), surface displacement from magma 
intrusion (Tiampo et al., 2000), and geothermal 
magnetotelluric data (Perez-Flores and Schultz, 2002).  
Many variations of the evolutionary algorithm suffer the 
limitation that input problem variables may be quite 
specific to a given application, increasing the likelihood 
of false convergence if parameters are improperly tuned 
and the problem solution is not known beforehand.  In 
such cases, it is often desirable to implement some form 



of adaptive parameter optimization, such as that presented 
by Reed et al., (2000).  For this reason, it may be 
desirable to implement a form of self adaptive algorithm.   

2.1 SELF ADAPTING EVOLUTION STRATEGY 

Inversion in this work was conducted using the 
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) (Hansen and Ostermeier, 2001).  While randomized 
search algorithms are generally respected for their 
robustness in searching landscapes with multiple local 
optima and discontinuities, CMA-ES survives typical 
pitfalls of candidate evolution problems and, to a greater 
degree, overcomes badly scaled and non-separable 
problems through its self-learning strategy.  Primary 
components of the learning strategy are the mean, m, or 
weighted average of optimum solutions in a given 
generation, the covariance matrix, C, and the mutation 
step size, .

New search points (offspring) are generated from a 
continuously adapting normal distribution.  From this 
offspring population, , the best  individuals are utilized 
in the solution vector to adjust the mean, m, of the normal 
distribution.  By seeking an optimum covariance matrix 
of this normal distribution that approximates the inverse 
Hessian matrix, H-1, the search distribution is adapted to 
follow the contour lines of the objective (fitness) function 
(see Hanson and Ostermeier (2001) for detailed analysis), 
thereby dictating the direction and size of the search 
space.  Additional control is found via the step size 
parameter, , which is altered based upon the evolution 
path, or the evolution of population mean over several 
generations.  In general, step size increases to allow a 
more diverse search region when optimal solutions are 
limiting, and decreases to funnel the search region when 
stronger convergence is desired, dictated by the evolution 
path.   

Another strong benefit to CMA-ES is the lack of 
sensitivity to population size, which can plague 
population based search methods due to degeneration if 
the set value is not sufficiently high.  Population 
degeneration in CMA-ES is avoided via the use of a 
learning rate in the adaptation of the covariance matrix.  
The primary benefits to CMA-ES, then, are: 1) Search 
distribution adaptation to accommodate severe 
landscapes, 2) population size insensitivity, and 3) 
prevention of premature convergence through step size 
control (Hansen and Ostermeier, 2001).   

3 PRESSURE SOURCE MODEL 

3.1 SURFACE DISPLACEMENT 

The classical solution for deformation of the Earth’s crust 
due to the activity of a pressurized magma source was 
presented by Anderson (1936) and, more famously, by 
Mogi (1958), for the geometry of a point source in an 
infinite half-space (Figure 1).  That solution is, 
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for vertical displacement, uz, source depth, d, incremental 
pressure change (overpressure), P, source radius, a,
surface radial distance from the azimuth of the source to 
the monitoring location, r, and shear modulus, G, where 
the solution has utilized Lame’s constant equal to 0.25 
(thus issuing a poisson ratio of 0.25).  The shear modulus 
may be expressed in familiar form for Young’s modulus, 
E, and poisson ratio, , as 2 1G E .
Displacements in the remaining spatial directions may be 
expressed in similar manner as, 
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Limitations to the Mogi solution include the assumption 
of a small source radius in comparison to depth, thereby 
avoiding boundary influence from the half space for a 
non-infinite domain, and the existance of an infinite half-
space of homogeneous medium.  Contrary to this 
mathmatical limitation, the model has been applied with 
remarkable success to situations where the above 
constraint of depth to source radius does not hold 
(Dieterich and Decker, 1975; McTigue, 1987). 

Characteristic of inversion scenarios, the Mogi solution, 
Eq. (1), in its capacity herein is subject to equifinality, or 
the tendency for multiple parameter combinations to 
produce valid global optimum.  In other words, a deep 
source with large volume may produce the same surface 
deformation as a shallow source with small volume.  As a 
result, distinguishing between d, a, P, x, and y can 
prove to require necessary collaboration from additional 
data.

Figure 1: Geometry of a pressure source in an infinite 
half-space for depth, d, source radius, a, overpressure, P,

and surface radial distance, r, to the point of measured 
deformation. 



In an effort to better constrain parameters from the Mogi 
model, McTigue (1987) attempted to expand Eq. (1) to a 
higher order approximation. The expanded solution 
(derived in its entirety therein) is a sixth order 
approximation beyond the third order Mogi solution and 
represents the case of a finite cavity in half-space.  None-
the-less, McTigue (1987) observed the small effect of the 
addition and concluded that displacement was a poor 
indicator of source size, thus explaining the success of the 
Mogi solution at many depth ratios.  Standard Mogi 
solutions may, therfore, be incapable of distinguishing 
between source radius and source pressure.  An 
alternative formulation that bypasses the radius to 
pressure conflict and expresses, instead, these 
considations in terms of source volume change, V , may 
be substituted into Eqs. (1)-(3) as  (McTigue, 1987), 

3 G V
Pa . (4) 

3.2 SURFACE RADIAL TILT 

Source behavior may be further constrained by 
measurements of surface radial tilt, , expressed as the 
derivative of displacement, 
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which is, by definition, positive for an increase in magma 
source pressure or volume.  Utilized herein is a 
combinatorial expression for the case where both tilt and 
deformation measurements are available.  Interrelation of 
Eq. (1) and Eq. (5) yields, 
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4 OBJECTIVE FORMULATION 

Evolutionary algorithms seek to maximize or minimize a 
given objective (fitness) function with respect to a desired 
outcome.  When objective minimization is desirable, 
commonly referred to as a cost function, the algorithm 
will designate the global optimum at a user defined final 
fitness value.  In this scenario, the objective is to 
minimize the difference between a measured geodetic 
value (time-series data) and one predicted by the above 
half-space models.  This may be expressed as (Freund, 
1979; Tiampo et al., 2000), 
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for each measured value of displacement, uzi, or tilt, 
i
,

and its complementary predicted value for a set of trial 
solutions in the parent population, 

i
f x  , normalized by 

the sample standard deviation, 
i

2
, of each time-series 

value from the mean of the time-series data set.  The 
generalized purpose of the above relation is, therefore, to 
promote convergence of the CMA-ES/Mogi predictions, 

i
f x , to the mean of the time series data set. 

With the above objective design, the five design variables 
include radius, a, depth, d, x distance, y distance, and 
overpressure, P, for a single Mogi source model.  This 
problem formulation will be expanded below to the 
examination of multiple source influence and a resulting 
10 parameter fit. 

5 MODEL VALIDATION 

Internal model validation was sought via the generation of 
a synthetic subset of displacement and tilt values.  A 
hypothetical pressure source was postulated, for values 
representative of Soufriere Hills Volcano, Montserrat, 
West Indies, at a depth of 1,000 m, x-distance of 620m, y-
distance of 295m, radius of 200m, and supplanted to an 
overpressure of 4 MPa within a medium of shear modulus 
0.6 GPa.  The x and y coordinates correspond to 
monitoring location CP2 at Soufriere Hills (see Figure 1 
of Widiwijayanti (2005)).  These values were inserted 
into the sequence of Mogi equations to generate a 
synthetic time-series of tilt and displacement values.  
Synthetic data series were then disturbed by random 
Gaussian error representative of Montserrat monitoring 
locations, or 15mm displacement error and 10 rad tilt 
error (Figure 2).  The model was then allowed to iterate 
on the five objective function parameters: x-distance, y-
distance, depth, source radius, and pressure. 

To include the impact of time-series dataset size on 
solution accuracy, the CMA-ES/Mogi program was set to 
loop along a monotonically increasing time series. At  

Figure 2: Sample of synthetic data series, shown here for 
vertical displacement with 150 generated fictitious points 

and 15mm Gaussian error.  Values of dependent 
parameters are as stated in text. 



Table 1: Average error in final values and number of 
required function evaluations for 50 random seed analysis 
with single Mogi source.  All error values are in percent. 

Table 2:  Results from 50 random seed analysis for 2 
monitoring locations with 100 member data sets. 

each value of dataset size, 50 random population seeds 
within CMA-ES were evaluated for final solution 
accuracy.  The averaged 50 random seeds are presented in 
Table 1.  From Table 1, the averaged trials converged to 
within 2% of the correct final value at all values of set 
size.  Random seed effects were also present, such that the 
worst single seed experienced a final error of 12, 25, 35, 
and 40% for depth, x, y, and volume, respectively, at a set 
size of 100.  This result highlights the importance of 
random seed analysis in any real world or trial application 
of EA’s. 

These results also show the ability of the Mogi 
combination presented herein to accurately differentiate 
between source depth and volume increment (pressure).  
The model cannot, however, recognize the separation 
between source radius and pressure, but instead must rely 
on the volume formulation of Eq. (4), which is predicted 
to within 2% of the correct value.  To investigate the 
possible benefit of multiple data series in creating such a 
distinction, a separate model analysis was conducted by 
generating synthetic data series for two monitoring 
locations.  The resulting evaluation incurred the additional 
parameters of x-distance, y-distance, and source depth for 
a second hypothetical monitoring location with added 

constraint from the full suite of Mogi relations.  The 
second location was oriented at 471m, 249m, and 1000m 
in the x, y, and z directions, respectively, corresponding 
to monitoring station CP3 at Soufriere Hills (see Figure 1 
of Widiwijayanti (2005)). However, while the final 8 
parameter optimization was again nearly accurate for all 
location constraints, no added benefit was obtained with 
respect to a differentiation between source radius and 
pressure.  Results of this analysis are shown in Table 2 for 
a single 50 random seed analysis.  The synthetic time 
series were comprised of 100 data points. 

6 MULTIPLE SOURCE 

FORMULATION 

Also of interest is the ability of the algorithm to handle a 
larger array of uknown parameters.  To examine this 
situation, a second pressure source was postulated at 
400m, 700m, and 2500m in the x, y, and z directions, 
respectively, with a 100m radius and 6MPa pressure 
increment, while the first source maintained its 
specifications from the previous section. In a 50 random 
seed trial, with a set size of 200, 45 model runs resulted in 
a final error of less than 5% with respect to recreation of 
the original displacement and tilt values from the resulting 
optimized parameters, indicating accuracy in the final 
search.  However, while 80% of the runs resulted in 
correct predicitons of all 5 parameters for the first source, 
a remarkably stable result, no distinct trend developed for 
favorability in prediction for the 5 parameters of the 
second source.  Achieving accurate results in this scenario 
will, therefore, likely require the use of multiple time 
series.    

7 APPLICATION TO SOUFRIERE 

HILLS

Following implementation of the CALPSO project on the 
island of Montserrat, West Indies, four monitoring 
boreholes were established in close proximity to the 
Soufriere Hills Volcano (SHV) in January 2003 (Linde et 
al., 2005).  From these monitoring locations, a full suite of 
deformation and tilt time series allow a detailed analysis 
of source characteristics through the mechanism outlined 
herein.  Previous studies (Linde et al., 2005; 
Widiwijayanti et al., 2005) have postulated the existence 
of a Mogi like source beneath SHV, leading to possible 
representation via the single source model validated 
above.

Displacement and tilt records were collected from the 
SHV monitoring location at 16.741 N and 297.832 E.  
Variability in the records is approximately 15mm for 
displacement and 10 rad for tilt.  Utilizing a time series 
with 50 data points, an analysis of 100 random seeds was 
conducted.  Progression of parameter values is followed 
in FIGURE for a single seed analysis, where the final 
values approach 576m, 302m, and 982m in the x, y, and z 
directions, with volume increment, as a function of 

Data
Set
Size

x-
Distance 

y-
Distance 

Depth Volume 
# Fun. 
Evals.

20 0.601 1.498 0.291 1.770 709 

40 0.354 0.518 0.297 0.738 1008 

60 0.406 0.541 0.360 0.825 211 

80 0.256 0.671 0.113 0.714 461 

100 0.011 0.185 0.079 0.058 443 

Parameter Average Error (%) 

Source Volume 6.191 

Monitoring Station 1 

x-Distance 3.315 

y-Distance 9.339 

Depth 2.658 

Monitoring Station 2 

x-Distance 6.109 

y-Distance 12.203

Depth 8.103 



pressure and radius, of km3.  The 100 random 
seed analysis resulted in 100% convergence of all final 
values to within a 5% grouping.  Applying the error 
values obtained in the validation section of 2% for a 50 
seed analysis, results in a 20m variability in final 
distance results.  

4
1.32 10

8 CONCLUSION 

Sequencing four incantations of the Mogi source 

equations with CMA-ES resulted in a successful one-

source validation for the prediction of spatial location and 

volume increment for a magmatic source in a 

homogeneous and infinite elastic half-space.  Expanding 

this to the case when multiple time-series are available 

from multiple monitoring locations resulted in no added 

benefit, as the Mogi solutions are unable to distinguish 

between source pressure and radius.  A multiple source 

scenario showed effective prediction of one of the 

sources, but strong variability in parameters of the second 

source.  Even in this case, however, the CMA-ES/Mogi 

coupling showed a high percentage of convergence to a 

correct combination of parameters to generate the input 

displacement and tilt.  Variability in this sense is, then, 

only a function of the strong equifinality of the inversion. 

REFERENCES 

Anderson, E. M. (1936). Dynamics of the formation of 

cone-sheets, ring-dykes, and cauldron-subsidences. 

Proceedings of the Royal Society of Edinburgh 56: 128-

157. 

Dieterich, J. H. and R. W. Decker (1975). Finite element 

modeling of surface deformation associated with 

volcanism. Journal of Geophysical Research 90(11): 

11,199-11,209. 

Freund, J. E. (1979). Modern elementary statistics, Fifth 

Edition. Prentice-Hall International, Inc., London, 510 pp. 

Hansen, N. and A. Ostermeier (2001). Completely 

Derandomized Self-Adaptation in Evolution Strategies. 

Evolutionary Computation 9(2): 159-195. 

Holland, J. H. (1967). Nonlinear environments permitting 

efficient adaptation. Computer and Information Sciences 

II (New York: Academic).

Horne, S. and C. MacBeth (1998). A comparison of 

global optimisation methods for near-offset VSP 

inversion. Computers & Geosciences 24(6): 563-572. 

Figure 3: Parameter value evolution for CMA-ES/Mogi 
analysis of single pressure source for Soufriere Hills.  

Spatial parameters converge to their correct values, while 
strong variability is present for pressure and radius.  
Volume increment (a function solely of radius and 

pressure) is, however, very stable for all seed analyses. 

Linde, A., S. Sacks, et al. (2005). The explosion of March 

2004 at Montserrat: constraints from borehole strain data. 

In Eos Transactions AGU, 86(52), Fall Meet. Suppl., 

Abstract V53B-1571. 

McTigue, D. F. (1987). Elastic stress and deformation 

near a finite spherical magma body: resolution of the 

point source paradox. Journal of Geophysical Research

92(B12): 12,931-12,940. 

Mogi, K. (1958). Relations between the eruptions of 

various volcanoes and the deformations of the ground 

surfaces around them. Bulletin of the Earthquake 

Research Institute of Tokyo 36: 99-134. 

Perez-Flores, M. A. and A. Schultz (2002). Application of 

2-D inversion with genetic algorithms to magnetotelluric 

data from geothermal areas. Earth Planets Space 54: 607-

616. 

Rechenberg, I. (1965). Cybernetic solution path of an 

experimental problem. Royal Aircraft Establishment 

Library Translation 1122.

Reed, P., B. Minsker, et al. (2000). Designing a 

competent simple genetic algorithm for search and 

optimization. Water Resources Research 36(12): 3757-

3761. 

Tiampo, K. F., J. Fernandez, et al. (2004). Volcanic 

source inversion using a genetic algorithm and an elastic-

gravitational layered earth model for magmatic intrusions. 

Computers & Geosciences 30(9-10): 985-1001. 

Tiampo, K. F., J. B. Rundle, et al. (2000). Spherical and 

ellipsoidal volcanic sources at Long Valley caldera, 

California, using a genetic algorithm inversion technique. 



Journal of Volcanology and Geothermal Research 102(3-

4): 189-206. 

Voight, B., R. P. Hoblitt, et al. (1998). Remarkable cyclic 

ground deformation monitored in real-time on Montserrat, 

and its use in eruption forcasting. Geophysical Research 

Letters 25: 3405-3408. 

Widiwijayanti, C., A. Clarke, et al. (2005). Geodetic 

constraints on the shallow magma system at Soufriere 

Hills Volcano, Montserrat. Geophysical Research Letters

32. 


