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[1] This study provides a step-wise analysis of a conceptual grid-based distributed
rainfall-runoff model, the United States National Weather Service (US NWS) Hydrology
Laboratory Research Distributed Hydrologic Model (HL-RDHM). It evaluates model
parameter sensitivities for annual, monthly, and event time periods with the intent
of elucidating the key parameters impacting the distributed model’s forecasts. This study
demonstrates a methodology that balances the computational constraints posed by global
sensitivity analysis with the need to fully characterize the HL-RDHM’s sensitivities.
The HL-RDHM’s sensitivities were assessed for annual and monthly periods using
distributed forcing and identical model parameters for all grid cells at 24-hour and 1-hour
model time steps respectively for two case study watersheds within the Juniata River
Basin in central Pennsylvania. This study also provides detailed spatial analysis of the
HL-RDHM’s sensitivities for two flood events based on 1-hour model time steps selected
to demonstrate how strongly the spatial heterogeneity of forcing influences the model’s
spatial sensitivities. Our verification analysis of the sensitivity analysis method
demonstrates that the method provides robust sensitivity rankings and that these rankings
could be used to significantly reduce the number of parameters that should be considered
when calibrating the HL-RDHM. Overall, the sensitivity analysis results reveal that
storage variation, spatial trends in forcing, and cell proximity to the gauged watershed
outlet are the three primary factors that control the HL-RDHM’s behavior.

Citation: Tang, Y., P. Reed, K. van Werkhoven, and T. Wagener (2007), Advancing the identification and evaluation of distributed

rainfall-runoff models using global sensitivity analysis, Water Resour. Res., 43, W06415, doi:10.1029/2006WR005813.

1. Introduction

[2] Over the past decade the increasing availability of
spatially distributed hydrometeorlogical data (e.g., precipi-
tation, air temperature and soil properties) coupled with
advances in computational resources has resulted in increas-
ing interest in the development of spatially distributed
hydrological models [e.g., Beven and Kirkby, 1979; Abbott
et al., 1986; Boyle et al., 2001; Panday and Huyakorn,
2004; Duffy, 2004]. Developers of distributed models seek
to better simulate watershed behavior by taking advantage
of spatially distributed forcing as well as distributed water-
shed parameters for a broader array of processes such as
surface flow, groundwater flow, sediment transport, and
solute transport. The increasing complexity of distributed
models poses several challenges in terms of (1) their severe
computational demands relative to lumped watershed mod-
els [Apostolopoulos and Georgakakos, 1997; van Griensven
et al., 2006], (2) their potential for overparameterization
[Beven, 1989], and (3) their high-dimensional, nonlinear
parametric spaces and structural uncertainties [Carpenter et
al., 2001].

[3] For many distributed hydrologic models, the number
of model parameters can range from hundreds to several
thousand per watershed model depending on the grid
resolution and number of state predictions. These high-
dimensional parametric spaces make it extremely difficult
to assess the impacts of parameters or combinations of the
parameters on watershed model behavior. In an operational
context, it becomes more challenging to characterize spa-
tially distributed parameters directly using field measure-
ments, which then yields very high-dimensional model
calibration problems [Doherty, 2003; Doherty and Johnston,
2003; Madsen, 2003; Ajami et al., 2004; Muleta and
Nicklow, 2005; Tonkin and Doherty, 2005; Tang et al.,
2006a]. Early studies [Duan et al., 1992; Gupta et al.,
1998] have highlighted that in the context of optimization,
the hydrologic model calibration problem is ill-posed, often
highly nonlinear, and multimodal (i.e., numerous local
optima exist), especially for high-dimensional parameter
spaces.
[4] Model parameter sensitivity analysis has long been

recognized as a helpful parameter screening tool that can be
used to identify the key parameters controlling model
performance [Young, 1978; Hornberger and Spear, 1981;
Freer et al., 1996; Archer et al., 1997; Saltelli et al., 1999;
Carpenter et al., 2001; Sieber and Uhlenbrook, 2005;
Muleta and Nicklow, 2005; van Griensven et al., 2006;
Pappenberger et al., 2006; Demaria et al., 2007; Wagener
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and Kollat, 2007]. This approach is particularly important
with the current shift toward distributed hydrologic models.
Sieber and Uhlenbrook [2005] have highlighted that sensi-
tivity analysis cannot only clarify the most important
parameters but also help understand and improve the model
structure potentially. However, to date, the computational
demands and spatial complexity of distributed hydrologic
models have limited our ability to understand their para-
metric interactions and sensitivities. The limited body of
recent literature applying sensitivity analysis to spatially
distributed hydrologic models highlights the importance and
significant challenges posed by this problem [Carpenter et
al., 2001; Doherty, 2003; Tonkin and Doherty, 2005; Sieber
and Uhlenbrook, 2005; Muleta and Nicklow, 2005; van
Griensven et al., 2006].
[5] Tang et al. [2006b] comprehensively compared state-

of-the-art sensitivity analysis tools including Sobol0’s [1993]
method, a Jacobian-based local method, regional sensitivity
analysis, and Analysis of Variance (ANOVA). Sobol’s
method was found to be the most effective approach in
globally characterizing single parameter and multiparameter
interactive sensitivities. Building on this prior study, the
present work extends our use of Sobol0’s global sensitivity
analysis method to characterize the spatial and temporal
variations of single parameter and multiparameter interac-
tions for the United States National Weather Service’s (US
NWS) distributed hydrological watershed model termed the
Hydrology Laboratory Research Distributed Hydrologic
Model (HL-RDHM) [Koren et al., 2004; Smith et al.,
2004; Reed et al., 2004; Moreda et al., 2006]. This study
seeks to carefully characterize the HL-RDHM’s sensitivities
while balancing the computational demands associated with
Sobol0’s method. Both issues are important to both long-term
and short-term forecasts. In the context of long-term fore-
casts, this study characterizes HL-RDHM’s sensitivities
over annual time periods using 24-hour model time steps
and monthly time periods using 1-hour model time steps. In
these cases, computational demands required our use of
distributed forcing and lumped model parameterizations.
For event-level time periods, a detailed spatial analysis of
the HL-RDHM’s sensitivities is presented for two events
using hourly model time steps. The events were selected to
explore how the spatial heterogeneity of forcing impacts the
HL-RDHM’s spatial sensitivities.
[6] In the remainder of this paper, section 2 provides an

overview of the HL-RDHM distributed hydrologic model.
Section 3 provides a detailed description of Sobol0’s method as
well as the statistical sampling scheme used in this study.
Sections 4 and 5 present the case studies and the computational
experiment used to characterize the HL-RDHM, respectively.
Section 6 presents the sensitivity analysis results for annual,
monthly, and event timescales. Section 7 discusses the impli-
cations of the HL-RDHM’s temporal and spatial sensitivity
trends in terms of their potential value for simplifying model
calibration and enhancing operational forecasting.

2. Overview of the Hydrology Laboratory
Research Distributed Hydrologic Model
(HL-RDHM)

[7] The HL-RDHM was developed by the US NWS
[Koren et al., 2004; Smith et al., 2004; Reed et al., 2004;

Moreda et al., 2006]. It is a flexible modeling framework
for building lumped, semidistributed, and fully distributed
hydrological models. The structure of the modeling system
is based on the Hydrologic Rainfall Analysis Project
(HRAP) rectangular grid. The HRAP grid is defined at
the 4 km � 4 km resolution that corresponds directly to the
US NWS’ Next Generation Weather Radar (NEXRAD)
precipitation products. Figure 1 presents the HRAP grid
cells for the Saxton (SXTP1) and Spruce Creek (SPKP1)
headwaters for the Juniata river in Pennsylvania. SXTP1
and SPKP1 are the case study watersheds used to evaluate
the HL-RDHM in this study. The arrows in the grid indicate
the direction of surface flows. More information about
HRAP gridded NEXRAD data are given by Reed and
Maidment [1999].
[8] For each HL-RDHM grid cell, a snow model, a

rainfall-runoff model, and hillslope and channel routing
models are used to simulate the rainfall-runoff processes.
Fast model responses such as overland flow and direct
runoff on impervious area are routed from the hillslope
and drained into a conceptual channel which has the length
of the cell diagonal distance. The intercell channel routing is
conducted by using a connectivity file which reflects the
surface flow directions (Figure 1). A modified version of the
algorithm developed by Wang et al. [2000] is used to
generate the connectivity file [Koren et al., 2004]. Essen-
tially, the fine-resolution Digital Elevation Model (DEM)
cells were aggregated into the coarser HRAP grid cells. In
the algorithm, the DEM defined flowpath determines a grid
cell’s flow direction. The algorithm constrains the grid flow

Figure 1. HL-RDHM model grid for the Saxton (SXTP1)
and Spruce Creek (SPKP1) watersheds.
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directions to closely match the flow pattern that would be
predicted using the high-resolution DEM. The slow model
responses such as interflow and baseflow go straight into
the conceptual channel without going through hillslope
routing.
[9] In the version of the HL-RDHM used in this study,

SNOW-17 [Anderson, 1973] is used to simulate the energy
balance of a snowpack using a temperature index method.
Two models, the Sacramento Soil Moisture Accounting
(SAC-SMA) model developed by Burnash [1995] and the
Continuous Antecedent Precipitation Index (CONT-API)
developed by Anderson [1994], are available for rainfall-
runoff modeling. In this study, the SAC-SMA model is
adopted because it is widely used by the river forecast
centers of the US NWS [Smith et al., 2004; Reed et al.,
2004; Moreda et al., 2006]. Hillslope and channel routing
processes are modeled within HL-RDHM using a kinematic
wave approximation to the St. Venant equations. The
feasible ranges of the parameters listed in Table 1 are based
on the recommendations of Anderson [2002].

3. Sobol0’s Sensitivity Analysis

3.1. Sobol0’s Method

[10] Sobol0’s method is a variance-based sensitivity anal-
ysis approach that represents a model in the following
functional form:

y ¼ f x;Qð Þ; ð1Þ

where y is the model outputs, x is the input state variables,
and Q is the parameter set. Sobol’s method evaluates
parametric sensitivity by evaluating the variance of y due to
changes of parameter vector Q. As described by Sobol0

[1993], the total variance of the model output is decom-
posed into component variances that result from individual
parameters and parameter interactions. Typically, the direct
model output y is replaced by a model performance measure
such as the root mean square error (RMSE) of the
streamflow model predictions. Single parameters or para-

meter interactions are then evaluated according to their
percentage contribution to the total variance of model
responses. The Sobol’s variance decomposition shown in
equation (2) assumes that the parameters are independent:

D yð Þ ¼
X
i

Di þ
X
i < j

Dij þ
X

i < j< k

Dijk þ D12���m; ð2Þ

where Di is the measure of the sensitivity to model output y
due to the ith component of the input parameter vector
denoted as Q, Dij is the portion of output variance due to the
interaction of parameters qi and qj. The variable m stands for
the total number of parameters. Sobol0’s sensitivity indices
are computed using the following equations derived from
equation (2).

first� order Si ¼
Di

D
ð3Þ

total� order STi ¼ 1� D	i

D
; ð4Þ

where Si indicates the sensitivity that results from the main
effect of parameter qi. The average variance, D	i, results
from all of the parameters except for qi. The total-order
sensitivity, STi, defines the independent and interactive
effects up to the mth order of parameter qi. A parameter
mainly influences the model output by parameter interac-
tions if it has a small first-order index and a large total-order
sensitivity index.
[11] When implementing Sobol0’s method, the parameter

ranges are scaled to be between 0 and 1. Equation (1) is
partitioned as follows:

f q1; . . . ; qmð Þ ¼ f0 þ
Xm
i

fi qið Þ þ
X

1
i<j
m

fij qi; qj
� �

þ � � �

þ f1;2;...;m q1; . . . ; qmð Þ ð5Þ

Table 1. Summary of SNOW-17 and SAC-SMA Parameters

Model Parameters Unit Description Allowable Range

SNOW-17 SCF gage catch deficiency
adjustment factor

1.0–1.3

MFMAX mm/degc/6hr maximum melt factor during nonrain periods 0.5–1.2
MFMIN mm/degc/6hr maximum melt factor during nonrain periods 0.1–0.6
UADJ mm/mb average wind function during rain-on-snow periods 0.02–0.2
SI mm mean water-equivalent above which 100% cover exists 10–120

SAC-SMA UZTWM mm upper zone tension water maximum storage 25.0–125.0
UZFWM mm upper zone free water maximum storage 10.0–75.0
UZK day�1 upper zone free water lateral depletion rate 0.2–0.5
PCTIM impervious fraction of the watershed area 0.0–0.01
ADIMP additional impervious area 0.0–0.2
ZPERC maximum percolation rate 20.0–300.0
REXP exponent of the percolation equation 1.4–3.5
LZTWM mm lower zone tension water maximum storage 75.0–300.0
LZFSM mm lower zone free water supplemental maximum storage 15.0–300.0
LZFPM mm lower zone free water primary maximum storage 40.0–600.0
LZSK day�1 lower zone supplemental free water depletion rate 0.03–0.2
LZPK day�1 lower zone primary free water depletion rate 0.001–0.015
PFREE fraction of water percolating from upper zone directly to

lower zone free water storage
0.0–0.5
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and the normalized total variance D can be evaluated by
equation (6),

D ¼
Z 1

0

� � �
Z 1

0

f Qð ÞdQ� f 20 ð6Þ

and the variances Di1,. . .,is
are

Di1 ;...;is ¼
Z 1

0

� � �
Z 1

0

f 2i1 ;...;is qi1 ; . . . ; qisð Þdqi1dqis ð7Þ

1 
 ii < � � � < is 
 m; s ¼ 1; . . . ;m: ð8Þ

When the model is highly nonlinear and complex, Monte
Carlo numerical integration is the most suitable method for
evaluating the integrals represented in equations (6)–(8)
above. The Monte Carlo approximations for D, Di, and D	i

are given in the following equations as presented in prior
studies by Sobol0 [1993, 2001] and Hall et al. [2005]:

bf0 ¼ 1

n

Xn
s¼1

f Qsð Þ ð9Þ

bD ¼ 1

n

Xn
s¼1

f 2 Qsð Þ � bf02 ð10Þ

bDi ¼
1

n

Xn
s¼1

f Q að Þ
s

� �
f Q bð Þ

	ið Þs;Q
að Þ
is

� �
� bf02 ð11Þ

dD	i ¼
1

n

Xn
s¼1

f Q að Þ
s

� �
f Q að Þ

	ið Þs;Q
bð Þ
is

� �
� bf02: ð12Þ

In equations (9)–(12), the variable n defines the Monte
Carlo sample size, Qs represents the sampled individual in
the scaled unit hypercube, and (a) and (b) are two different
samples. The parameters with values drawn from sample (a)
are denoted by Qs

(a). The variables Qis
(a) and Qis

(b) designate
that parameter qi draws values from sample (a) and (b),
respectively. The symbols Q(	i)s

(a) and Q(	i)s
(b) define cases

when parameter qi is not sampled and the remaining
parameters do get their sample values from samples (a) and
(b), respectively.
[12] Although Sobol0’s method can identify important

parameter interactions, the method becomes computation-
ally expensive when high-order interactions (or indices)
must be calculated for models with large parameter sets
(e.g., distributed hydrologic models). The original Sobol’s
method [Sobol 0, 1993] required n � (2m + 1) model runs to
calculate all of the first-order and the total-order sensitivity
indices. Recall that n is the number of Monte Carlo samples
and m is the number of model parameters. An enhancement
of the method made by Saltelli [2002] provides the first,
second, (m � 2)th, and total-order sensitivity indices using
n � (2m + 2) model runs. Saltelli [2002] provides an
alternate method to calculate the first, (m � 2)th, and total
order sensitivity at a reduced cost of n � (m + 2) model

simulations. For this study, the latter method is desirable
because it not only reduces the run time for analysis but it
also provides sufficient information regarding main effects
and parameter interactions. Readers interested in more
details in the numerical implementation of Sobol’s method
should reference the following studies [Saltelli, 2002;
Sobol0, 2001].

3.2. Latin Hypercube Sampling (LHS)

[13] In this study, Latin hypercube sampling (LHS) was
used to sample the feasible parameter space because it was
found to be effective in prior studies [e.g., Osidele and
Beck, 2001; Sieber and Uhlenbrook, 2005; Tang et al.,
2006b]. LHS integrates the strength of random sampling
and stratified sampling [McKay et al., 1979; Helton and
Davis, 2003] to make sure that all portions of the parameter
space are considered. The method divides the m parameters’
ranges into n disjoint intervals with equal probability 1/n
from which one value is sampled randomly in each interval.
To create one sample, a value of one parameter from a
specific interval is picked and combined randomly with a
value from another parameter from an interval, then this pair
of values are combined with a value of the third parameter
and the process repeated till each parameter has a value in
the combined parameter set. The values which have been
picked to form an individual parameter draw do not partic-
ipate in generating other individuals (i.e., sampling without
replacement). After all values of the variables have been
chosen to create individuals, a sample of size n is created.
The process can be repeated r times by so that a sample of
total size r � n is created. A major benefit of the LHS
method is its ability to divide parameter spaces into hyper-
cubes to ensure a well spread parameter sample. More
details about LHS are available in the following papers
[McKay et al., 1979; Helton and Davis, 2003; Press et al.,
1999]. Readers should note that the traditional implemen-
tation of LHS used in this study assumes that parameters are
independent. This assumption is very common in hydrologic
sensitivity analysis because in many cases it is not possible
to a priori specify a covariance matrix for hydrologic model
parameters. In cases where there are large numbers of
spatially correlated observations for a model parameter
(e.g., groundwater hydraulic conductivities) LHS can be
modified to account parameter covariance [see Zhang and
Pinder, 2003; Hall et al., 2005].

4. Case Study

4.1. Juniata Watershed Description

[14] Two headwater watersheds SPKP1 (drainage area
570 km2, mean elevation 485 m) and SXTP1 (drainage area
1960 km2, mean elevation 457 m) contributing to the
Juniata River where used as test cases in this study. The
watershed boundaries and the associated HL-RDHM model
grids are shown in Figure 1. The Juniata River Basin has a
drainage area of 8800 km2 in south central Pennsylvania,
and is a major tributary to the Susquehanna River. As
highlighted by Tang et al. [2006b], the SPKP1 and SXTP1
watersheds have different hydrologic conditions and basin
characteristics which define their response behavior [also
see Seo et al., 2006; Moreda et al., 2006; Tang et al.,
2006b].
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4.2. Data Set

[15] The input forcing data of the HL-RDHM consist of
precipitation, monthly potential evapotranspiration (PE),
and air temperature. The precipitation data are based on
the NEXRAD multisensor precipitation estimator data
developed on a HRAP grid with a 4 km � 4 km resolution
as shown in Figure 1. The selected data set for precipitation
and air temperature were attained from the US NWS mid-
Atlantic river forecast center (MARFC) and are defined for
an hourly time interval over the three year period spanned
from 1 January 2001 to 31 December 2003. The observed
streamflow in the same period was obtained from United
States Geological Survey (USGS) gauge stations located at
the outlets of the SPKP1 and SXTP1 watersheds. The time
series of the 3 years’ precipitation and observed streamflow
are presented in Figure 2. The statistics of the precipitation
and streamflow presented in Table 2 show that 2001 was the
driest year and 2003 was the wettest year among the three
years. Both years 2001 and 2002 had a similar rainfall-
runoff ratio. Table 3 illustrates the percentages of time when

air temperature is below zero and precipitation is larger than
zero based on the mean area precipitation and temperature.
It reveals that frozen conditions generally occur from
October to December and from January to April.

5. Computational Experiment

5.1. Test Cases and Parameterization

[16] Computation time poses a severe constraint for
analyzing the HL-RDHM’s sensitivity. Consequently, we
have carefully designed our analysis as a step-wise progres-
sion from long-term to short-term time periods to maintain
the computational tractability of Sobol0’s method. Three test
cases were configured on the basis of these considerations:
(1) annual sensitivity analysis using 3 years of observations
and precipitation data modeled using daily time steps for the
SPKP1 and SXTP1 watersheds, (2) monthly sensitivity
analysis using 3 years observation and precipitation data
modeled using hourly time steps for the SPKP1 and SXTP1
watersheds, and (3) event sensitivity analysis using two

Table 2. Statistics of the Precipitation and Streamflow Data From Year 2001 to Year 2003 and Long-Term Averages

SPKP1 SXTP1

2001 2002 2003 Average 2001 2002 2003 Average

Precipitation, mm 794.46 947.69 1251.14 971 711.17 943.12 1243.37 946
Runoff, mm 377.45 496.93 988.86 660 258.30 286.69 814.71 438
Runoff/precipitation 0.48 0.52 0.79 0.68 0.36 0.30 0.66 0.46

Figure 2. Hydrographs for the two studied watersheds from year 2001 to year 2003. (a) Hydrograph for
SPKP1. (b) Hydrograph for SXTP1.
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events with hourly observed data and model time steps for
the SPKP1 watershed. For the first 2 test cases, the
parameters of the HL-RDHM were spatially lumped (i.e.,
every grid cell takes the same value for a specific parameter)
in order to make Sobol0’s method computationally tractable.
For test case (3), the analysis was conducted using spatially
distributed parameters (i.e., the parameter value varied from
one model cell to another for a specific parameter). In test
case (3), only 13 SAC-SMA parameters were analyzed
because no snow occurred during these two events. For
all of the test cases, the precipitation and the air temperature
were spatially distributed. The hydrographs of the two
selected events for test case (3) are presented in Figure 3.
[17] The period between 1 January and 28 February 2001

were used as the warmup periods for the first 2 test cases to
limit the impact of initial conditions. Similarly, a 2 month
warmup period was used for both the May 2002 event and
the September 2003 events as shown in Figure 3. The a
priori parameter settings used for the SNOW-17, SAC-
SMA, and routing models were set on the basis of the
recommendations of the MARFC of the US NWS.

5.2. Sensitivity Analysis Implementation

[18] Statistical sample size is a key parameter for Sobol0’s
method. In this study, the sample sizes were configured on

the basis of both literature recommendations and experi-
ments that tested the convergence and reproducibility of the
sensitivity analysis results. In this study, LHS replaced the
Sobol’s quasirandom sequence sampling [Sobol0, 1967]
used in our prior study [Tang et al., 2006b] because Sobol’s
sequence sampling can sample a maximum of 100 param-
eters, which is insufficient given that test case (3) has
403 parameters (31 cells � 13 parameters). In our prior
study, an extremely conservative sample size of 8192 was
used. However, in this study, we cannot afford as many
model runs as the prior study because the model execution
time is significantly higher when switching from a lumped to
a distributed model. A LHS sample size of 2000 was used in
this study for all three test cases resulting in 2000� (18 + 2) =
40,000 model runs per watershed for the first 2 test cases
and 2000 � (403 + 2) = 810,000 model runs per event
model runs for the third test case. The results of section 6.4
confirm that this sample size is sufficient to maintain the
accuracy and repeatability of Sobol’s method. The most
computationally intensive cases were the monthly analysis
in the SXTP1 watershed (113 cells) and the single event
(May 2002 or September 2003) analysis in SPKP1 (31 cells).
Their estimated evaluation times are about 28 days and
16 days respectively on a single processor, which demon-

Table 3. Percentage of Time When Air Temperature is Below Zero and Precipitation is Larger Than Zeroa

Time Percentage as Tair < 0 (%) Time Percentage as Tair < 0 and P > 0(%)

SPKP1 SXTP1 SPKP1 SXTP1

Month 2001 2002 2003 2001 2002 2003 2001 2002 2003 2001 2002 2003

1 79.8 49.1 88.8 81.5 50.7 90.3 5.6 5 10.2 9.1 5.2 12.2
2 58 56.4 87.5 58.9 51 92 3.4 6.5 20.2 4.2 2.8 21
3 48.3 28.9 37.9 50.7 30.5 38.7 9.1 4.4 7 8.6 4.6 5.6
4 10 10.8 10.7 10 10 9.9 2.1 0.6 2.5 2.1 0.8 2.2
5 0 4 0 0 4.8 0 0 0 0 0 0.5 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0
10 4.8 3.4 2.4 7.3 5 9.7 0 1.3 0.3 0 1.2 0.3
11 11.7 23.3 17.5 15 27.5 22.6 0.6 4.6 1.8 0.6 6.1 3.3
12 44.5 74.1 69.5 46.1 73.4 75 2.6 12.2 13.3 2 12.6 13.7

aTair denotes air temperature and P defines precipitation. The statistics are based on hourly mean area precipitation and air temperature.

Figure 3. Hydrographs for the two analyzed events in SPKP1. (a) Hydrograph for May 2002 event. (b)
Hydrograph for September 2003 event.
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strates the importance of using parallel computing to
support this analysis.
[19] The bootstrap method [Efron and Tibshirani, 1993]

was used to provide confidence intervals for the parameter
sensitivity rankings for the Sobol’s method. Essentially, the
samples generated by LHS were resampled N times when
calculating the sensitivity indices for each parameter, result-
ing in a distribution of the indices. The moment method
[Archer et al., 1997] was used for attaining the bootstrap
confidence intervals (BCIs). The moment method is based
on large sample theory and requires a sufficiently large
resampling dimension to yield symmetric 95% confidence
intervals. In this study, the resample dimension N was set to
2000 on the basis of prior literature discussions and our
prior study [Tang et al., 2006b]. Readers interested in
detailed descriptions of the bootstrapping method used in
this paper can check the referenced sources [Archer et al.,
1997; Efron and Tibshirani, 1993].

6. Results

[20] Sections 6.1–6.4 present a step-wise analysis of the
HL-RDHM’s sensitivities from annual to event level time-
scales with the intent of elucidating the key parameters
impacting the model’s forecasts. In the context of long-term
forecasts, sections 6.1 and 6.2 focus on HL-RDHM’s
sensitivities for annual and monthly periods where compu-
tational demands required our use of distributed forcing and
lumped model parameterizations for the SPKP1 and SXTP1
watersheds. Alternatively, section 6.3 provides a detailed
spatial analysis of the HL-RDHM’s sensitivities for the
SPKP1 watershed for two events. These events were selected
to explore how the spatial heterogeneity of forcing impacts
the model’s spatial sensitivities. Section 6.4 continues our

spatial analysis of event sensitivities and evaluates how well
Sobol’s sensitivity method performs in identifying the
principle input parameters controlling the HL-RDHM’s
response. Our evaluation of Sobol0’s method extends the
SA repeatability test recommended by Andres [1997] to a
spatially distributed modeling context.

6.1. Annual Sensitivities Based on Distributed
Forcing and Lumped Parameters

[21] In this section, the computational demands associated
with Sobol0’s method were made tractable by lumping the
HL-RDHM’s parameters (i.e., all cells had the same param-
eter values) while maintaining spatially distributed forcing
and model structure. The first-order and total-order Sobol0’s
indices are reported in Tables 4 and 5, respectively, for the
18 parameters analyzed. Recall that the first-order indices
measure single parameter contributions to the HL-RDHM’s
output variance, whereas the total-order indices also include
the influence of parameter interactions. Highly sensitive
parameters are designated with dark grey shading, sensitive
parameters have light grey shading, and insensitive param-
eters are not shaded. In all of the results presented for
Sobol0’s method, parameters classified as highly sensitive
had to contribute on average at least 10 percent of the
overall model variance and sensitive parameters had to
contribute at least 1 percent. These thresholds are subjective
and their ease-of-satisfaction decreases with increasing
numbers of parameters or parameter interactions. The years
2001–2003 analyzed in Tables 4 and 5 capture a gradient
from the end of a regional drought in 2001 through a
transition year in 2002 to a wet year in 2003 with increased
rainfall and snowfall. This gradient is pronounced for the
SNOW-17 parameters where 2003 is the only year when
they influence the HL-RDHM results by contributing

Table 4. Annual First-Order Sensitivity Indices From Sobol0’s Method Computed Using the RMSE Measure and 24-Hour Model Time

Stepsa

Model Parameter

SPKP1 SXTP1

2001 2002 2003 2001 2002 2003

SCF 0.00 [0.01] 0.00 [0.00] 0.01 [0.01] 0.00 [0.01] 0.00 [0.00] 0.00 [0.01]
MFMAX 0.00 [0.00] 0.00 [0.00] 0.01 [0.01] 0.00b [0.00] 0.00b [0.00] 0.01 [0.01]

SNOW-17 MFMIN 0.00 [0.00] 0.00 [0.00] 0.02 [0.01] 0.00 [0.00] 0.00 [0.00] 0.03 [0.01]
UADJ 0.00b [0.00] 0.00b [0.00] 0.00b [0.00] 0.00b [0.00] 0.00b [0.00] 0.00 [0.00]
SI 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]

UZTWM 0.19 [0.03] 0.06 [0.02] 0.01 [0.01] 0.15 [0.02] 0.05 [0.01] 0.01 [0.01]
UZFWM 0.00 [0.00] 0.00 [0.01] 0.01 [0.01] 0.00 [0.00] 0.00 [0.00] 0.01 [0.01]
UZK 0.00 [0.00] 0.00 [0.00] 0.00 [0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.01]
PCTIM 0.16 [0.02] 0.04 [0.01] 0.08 [0.02] 0.13 [0.02] 0.06 [0.01] 0.08 [0.02]
ADIMP 0.00 [0.01] 0.07 [0.02] 0.20 [0.03] 0.01 [0.01] 0.06 [0.02] 0.25 [0.03]
ZPERC 0.00 [0.00] 0.00 [0.01] 0.02 [0.01] 0.00 [0.01] 0.00 [0.01] 0.03 [0.02]

SAC-SMA REXP 0.00b [0.00] 0.00b [0.01] 0.00b [0.01] 0.00b [0.00] 0.00b [0.00] 0.00b [0.01]
LZTWM 0.06 [0.02] 0.49 [0.04] 0.17 [0.03] 0.07 [0.03] 0.48 [0.04] 0.14 [0.02]
LZFSM 0.03 [0.01] 0.02 [0.01] 0.02 [0.03] 0.04 [0.02] 0.02 [0.01] 0.05 [0.03]
LZFPM 0.04 [0.02] 0.13 [0.03] 0.15 [0.03] 0.08 [0.02] 0.08 [0.02] 0.06 [0.03]
LZSK 0.01 [0.01] 0.01 [0.01] 0.02 [0.02] 0.02 [0.01] 0.01 [0.01] 0.00b [0.02]
LZPK 0.02 [0.01] 0.02 [0.01] 0.00 [0.01] 0.01 [0.01] 0.03 [0.01] 0.01 [0.02]
PFREE 0.34 [0.04] 0.02 [0.01] 0.00 [0.01] 0.30 [0.04] 0.07 [0.02] 0.00 [0.01]

aBoldface designates highly sensitive parameters defined using a threshold value of 0.1. Italics designate sensitive parameters defined using a threshold
value of 0.01. White cells in the table designate insensitive parameters. The values in the brackets provide the 95% confidence interval for the indices’
values (i.e., the unbracketed value ± the bracketed value yields the confidence interval).

bNegative mean value was set to zero.
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approximately 4 percent of the model output variance for
both watersheds. This result makes sense given the signif-
icant regional snowfall in 2003 (see Table 3).
[22] It is interesting to note the similarity of the sensitivity

results for the two watersheds for every year analyzed. This
actually differs with the fully lumped SAC-SMA/SNOW-17
sensitivity analysis of Tang et al. [2006b] for the same two
watersheds and the same set of analyzed parameters. Tang et
al. [2006b] concluded that each watershed had a unique set
of sensitivities for the fully lumped SAC-SMA/SNOW-17
model. In contrast, the distributed forcing/lumped parameter
results in Tables 4 and 5 show nearly identical sensitivity
classifications for the two watersheds for each given year
when spatially distributed forcing is considered.
[23] The most significant changes in sensitivity for the

watersheds occurred in the transition from dry conditions
to wet conditions. Under the dry conditions of 2001, the
HL-RDHM’s upper zone storages had to be filled before
significant interflow and/or subsurface flow was possible.
The first-order and total-order indices in Tables 4 and 5
show that the upper zone tension water storage
(UZTWM), impervious cover (PCTIM), and the fraction
of water percolating from the upper to the lower zone
(PFREE) control 60 to 70 percent of the HL-RDHM’s
response. As would be expected the fraction of percolating
water (PFREE) is highly interactive during the dry con-
ditions of 2001 with approximately 6 percent of its influence
on model output coming from interactions with other
parameters.
[24] In the 2002 transitional year, Tables 4 and 5 show a

strong shift in parametric sensitivity from the upper zone
storage to the lower zone storage. In the transitional year,
the maximum storage in the lower zone tension water
(LZTWM) and free water (LZFPM) influence about
60 percent of the HL-RDHM’s response. Comparing Tables 4

and 5 for 2002, shows that LZTWM is highly interactive
and influences an additional 10 percent of the model’s
variance with its interactions with other parameters. Con-
ceptually, this makes sense given that 2002 is in general a
wetting period for the subsurface in both watersheds.
[25] The wet conditions in 2003 shift HL-RDHM’s sen-

sitivities to being nearly equally distributed between all of
the lower zone storage parameters (LZTWM, LZFSM,
LZFPM) in both watersheds. Additionally, the wet condi-
tions of 2003 also increased the incidence of surface
saturation, which is reflected in the model’s sensitivity to
additional impervious area (ADIMP). Overall in 2003,
LZTWM, LZFSM, LZFPM, and ADIMP explain approxi-
mately 80 percent of the HL-RDHM’s output variance. The
next section further elucidates HL-RDHM’s changes in
sensitivity across the transition from dry to wet conditions
using a per-month analysis.

6.2. Monthly Sensitivities Based on Distributed
Forcing and Lumped Parameters

[26] The results shown in Figure 4 provide a more
detailed description of the temporal trends in the HL-
RDHM’s sensitivities. These plots classify highly sensitive
and sensitive parameters on a monthly basis using lumped
parameters and distributed forcing at an hourly time step.
The magnitude and ranges of Sobol’s indices are shown by
the color legends. In the prior section, the transition from
dry conditions in 2001 to wet conditions in 2003 resulted in
a shift in the dominant parameters controlling the HL-
RDHM response from the upper zone storage (UZTWM),
impervious cover (PCTIM), and percolating water (PFREE)
to lower zone storages (LZTWM, LZFSM, LZFPM).
Figure 4 shows that these parameters’ are dominant in a
year when they are classified as highly sensitive over a
majority of its component months. Although this result is
expected, it is interesting to note the temporal transitions in

Table 5. Annual Total-Order Sensitivity Indices From Sobol0’s Method Computed Using the RMSE Measure and 24-Hour Model Time

Stepsa

Model Parameter

SPKP1 SXTP1

2001 2002 2003 2001 2002 2003

SNOW-17 SCF 0.01 [0.01] 0.00 [0.00] 0.03 [0.01] 0.00 [0.01] 0.00 [0.00] 0.02 [0.01]
MFMAX 0.00 [0.00] 0.00 [0.00] 0.01 [0.01] 0.00 [0.00] 0.00 [0.00] 0.01 [0.01]
MFMIN 0.00 [0.00] 0.00 [0.00] 0.03 [0.01] 0.00 [0.00] 0.00 [0.00] 0.03 [0.01]
UADJ 0.00 [0.00] 0.00 [0.00] 0.01 [0.00] 0.00 [0.00] 0.00 [0.00] 0.01 [0.00]
SI 0.00b [0.00] 0.00b [0.00] 0.00 [0.00] 0.00b [0.00] 0.00b [0.00] 0.00 [0.00]

SAC-SMA UZTWM 0.22 [0.03] 0.07 [0.02] 0.01 [0.01] 0.18 [0.03] 0.06 [0.01] 0.01 [0.01]
UZFWM 0.00 [0.00] 0.850.01 [0.01] 0.02 [0.01] 0.00 [0.01] 0.00 [0.00] 0.02 [0.01]
UZK 0.00 [0.00] 0.00 [0.00] 0.01 [0.01] 0.00 [0.00] 0.00 [0.00] 0.01 [0.01]
PCTIM 0.16 [0.02] 0.04 [0.01] 0.08 [0.02] 0.14 [0.02] 0.06 [0.01] 0.08 [0.02]
ADIMP 0.02 [0.01] 0.07 [0.02] 0.21 [0.03] 0.03 [0.01] 0.06 [0.02] 0.26 [0.03]
ZPERC 0.01 [0.01] 0.02 [0.01] 0.05 [0.02] 0.03 [0.02] 0.02 [0.01] 0.06 [0.02]
REXP 0.00 [0.00] 0.01 [0.01] 0.05 [0.01] 0.00 [0.00] 0.01 [0.00] 0.05 [0.01]
LZTWM 0.11 [0.02] 0.57 [0.04] 0.21 [0.02] 0.13 [0.03] 0.60 [0.04] 0.18 [0.02]
LZFSM 0.04 [0.02] 0.04 [0.01] 0.15 [0.03] 0.07 [0.02] 0.03 [0.01] 0.20 [0.03]
LZFPM 0.04 [0.02] 0.15 [0.03] 0.22 [0.03] 0.08 [0.02] 0.10 [0.02] 0.19 [0.03]
LZSK 0.02 [0.01] 0.03 [0.01] 0.08 [0.02] 0.05 [0.02] 0.02 [0.01] 0.08 [0.02]
LZPK 0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.02 [0.01] 0.03 [0.01] 0.05 [0.02]
PFREE 0.40 [0.04] 0.03 [0.01] 0.01 [0.01] 0.36 [0.04] 0.12 [0.02] 0.01 [0.01]

aBoldface designates highly sensitive parameters defined using a threshold value of 0.1. Italics designate sensitive parameters defined using a threshold
value of 0.01. White cells in the table designate insensitive parameters. The values in the brackets provide the 95% confidence interval for the indices’
values (i.e., the unbracketed value ± the bracketed value yields the confidence interval).

bNegative mean value was set to zero.
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sensitivity from the dry conditions in 2001 to the wet
conditions in 2003.
[27] For example, note that the upper zone storage

(UZTWM) strongly influences the HL-RDHM response
from March 2001 to February 2002. From January 2002
to March 2002, UZTWM’s total-order indices (see Figure 4)
decrease from approximately 0.6 in both watersheds to
approximately 0.2 (a three-fold decrease). A similar trend
exists for water percolating from the model’s upper zone to
its lower zone (i.e., PFREE). Note in March 2002 and
continuing through 2003 that as UZTWM’s influence
decreases, the lower zone tension water storage (LZTWM)
indices increase from smaller than 0.01 to greater than 0.6
(i.e., it controls 60 percent of the model’s variance).
[28] Figure 4 also shows how seasonal trends impact

predictions in the summer and winter months. As an
example UZTWM’s influence in the summer months shows
a seasonal increasing trend until the transition to fall. This
model sensitivity trend reflects the expected impact of
reduced precipitation and the resultant reduction in shallow
storage within both watersheds. In the winter months, the

SNOW-17 parameters are only sensitive from December
through April. The sensitivity of the SNOW-17 parameters
is heavily influenced by the transition from dry conditions
in 2001 to the wet conditions of 2003. Interestingly, the
biggest difference between the SXTP1 and SPKP1 sensi-
tivities is associated with the SNOW-17 parameters, which
are maximally sensitive in the wet winter months of 2003.
In general, the model’s snow response in SPKP1 is more
sensitive than SXTP1, especially in dry years.

6.3. Event Sensitivities Based on Distributed
Forcing and Distributed Parameters

[29] Two flood events have been selected and analyzed to
better understand the spatial distribution of the HL-RDHM
sensitivities. The May 2002 event is fairly uniform and the
September 2003 event has a heterogeneous spatial distribu-
tion. Our focus on the SPKP1 watershed was largely
motivated by the extremely large computing demands posed
by using Sobol0’s method for spatial analysis of the HL-
RDHM’s sensitivities. To further improve the tractability of
this analysis the SNOW-17 component was excluded

Figure 4. Monthly HL-RDHM sensitivities using Sobol0’s total-order indices. Sobol0’s indices were
computed using the RMSE measure and an hourly model time step. Triangles represent highly sensitive
parameters that contribute at least 10% of the overall model output variance. Circles represent sensitive
parameters that contribute at least 1% of the overall model output variance. The color legends and
shading represent the Sobol’ indices’ magnitudes and ranges. Each row represents one month and each
column represents one parameter. January and February of 2001 are missing because they represent the
model warm-up period.
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neglected since neither event was impacted by snowfall.
Figure 5 provides a detailed spatial mapping of precipita-
tion, first-order sensitivities, and cell-level interactive sen-
sitivities for the two events.
[30] Figures 5a and 5d illustrate that the May 2002 and

September 2003 events do represent a uniform and a hetero-
geneous distribution of precipitation, respectively. Overall
the mean area of precipitation (MAP) of the May 2002 event
is smaller than the September 2003 event. It is quite evident
that the September 2003 event shown in Figure 5d has its
most significant forcing in the northeastern boundary of the
SPKP1 watershed near the outlet. The uniformly forced
event in May 2002 yielded fairly uniform sensitivities as
shown in Figures 5b and 5c. After the 2 month warm up
period used to model both events, the HL-RDHM’s initial
conditions for the lower zone free primary water storage
showed a slight increasing trend from the southwestern
portion of SPKP1 (i.e., cells 1, 2, and 3) to the northeastern

portion of the watershed (i.e., cells 29, 30, and 31). For the
May 2002 event cells 23 and 31 had the maximum initial
storage, which implies these cells were initially the wettest
cells and that they should have an increased influence on the
HL-RDHM’s response. Figure 5b confirms this expectation
and shows that cells 23 and 31 by themselves account for
more than 10 percent of the HL-RDHM’s response. Beyond
the initial wetness of these cells, their close proximity to the
modeled outlet for the watershed also increased their influ-
ence on predictions.
[31] Overall the first-order Sobol’s indices and interactiv-

ity results in Figures 5b and 5c for the May 2002 event
highlight that two factors largely control the HL-RDHM’s
sensitivity to a cell: (1) the cell’s initial wetness and (2) the
cell’s proximity to the gauged outlet. Beyond these two
factors, the spatially heterogeneous event in September
2003 also shows that significant spatial differences in
forcing is a third factor that strongly impacts cell-level

Figure 5. Spatial distribution of the total event precipitation and cell-level sensitivities for the SPKP1
watershed. The May 2002 event is represented by (a) its spatial precipitation distribution, (b) the first-
order Sobol0’s indices for each model cell, and (c) the cell level interactions. The September 2003 event is
represented by (d) its spatial precipitation distribution, (e) the first-order Sobol0’s indices for each model
cell, and (f) the cell level interactions. Note cell level interactions were computed as the difference
between each cell’s total-order and the first-order Sobol0’s indices. The cell-level Sobol0’s indices were
computed by summing over all of individual parameter indices analyzed in each cell. The arrows in the
cells designate surface flow directions.
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sensitivities. In Figure 5d, cells 24, 23, 29, 30, and 31 are
very close to the SPKP1 watershed’s gauged outlet and
receive significantly more rainfall than nearby cells, which
strongly increases their sensitivities as shown in Figures 5e
and 5f. These five cells cover only 16 percent of the
modeled area but account for nearly half of the HL-
RDHM’s output variance. It is interesting to note that cell 2
in the southwestern portion of the grid domain received the
most rainfall overall (see Figure 5d), but had a relatively
small impact onmodel predictions due to its initial conditions
(i.e., it initially had a slightly increased storage capacity to
capture much of the rainfall) and its significant distance from
the gauged outlet.
[32] Table 6 provides a summary of the first and total

order Sobol0’s indices for the 13 parameters sampled for the
May 2002 and September 2003 events. The indices in
Table 6 reflect the total watershed-level influence of each
parameter on the event predictions. The table shows many
similar trends to the prior lumped parameter results from
sections 6.1 and 6.2. For both events the model’s upper zone
tension water storage (UZTWM), lower zone tension water
storage (LZTWM), and the fraction of percolating water
(PFREE) are the dominant parameters impacting between
16 to more than 40 percent of the HL-RDHM’s variance.
[33] As was also seen in the annual and monthly results,

the model’s upper zone tension water storage (UZTWM)
and fraction of percolating water (PFREE) are more impor-
tant for the relatively drier system conditions in the May
2002 event versus the wetter conditions of the September
2003 event. PFREE is not activated when LZTWM is full
which is more likely to happen during wet conditions. In
both events, the lower zone tension water storage
(LZTWM) is the dominant parameter explaining 35 to
41 percent of the HL-RDHM’s output variance. The spatial
maps of Figure 5 as well as the Sobol’s indices for each
parameter in Table 6 show that the spatial distributions of
forcing and model cell wetness significantly control the HL-
RDHM’s sensitivity.

6.4. Verification of Event Analysis Sensitivity Rankings

[34] Building on work by Andres [1997] and Tang et al.
[2006b], we have tested the repeatability and screening
effectiveness of the Sobol’s sensitivity method. We have
used the sensitivity classifications given in section 6.3 in
combination with independent LHS-based random draws to
develop the verification plots for event analysis sensitivity
rankings given in Figure 6. Our overall intent for this
analysis is to use independent random samples to test if
the parameters and model cells classified as being sensitive
in section 6.3 do in fact control the HL-RDHM’s response.

Repeating the analysis for the May 2002 and September
2003 events also provides some insights on how the spatial
heterogeneity of forcing impacts model parameter screening
using Sobol’s method.
[35] Our analysis uses four randomly drawn parameter

sets: (1) Set 1 consists of 1000 randomly drawn Latin
hypercube samples for the 13 SAC-SMA parameters ana-
lyzed for the SPKP1 watershed model, (2) Set 2 consists of
random samples for the subset of model parameters con-
sisting of the top 6 most sensitive SAC-SMA parameters
which are perturbed across all model cells, (3) Set 3 consists
of random samples for all 13 SAC-SMA parameters ana-
lyzed using only the top 15 most sensitive model cells, and
(4) Set 4 consists of random samples for the subset of model
parameters representing the top 6 most sensitive parameters
within the top 15 most sensitive model cells. The overall
rationale for using these four sets is to simply reduce the
number of model parameters (i.e., 13 parameters per cell�31
model cells) by approximately 50 percent for Sets 2 and 3.
Set 4 then combines the parameter-based screening strategy
of Set 2 with the cell-based screening strategy of set 3 to
reduce the overall number of model parameters being con-
sidered by more than 75 percent.
[36] In Figure 6, Set 1 provides the performance baseline

representing the full randomly generated independent sam-
ple set. The premise of this analysis is that if the Sobol0’s
method results from section 6.3 are correct than the method’s
rankings should provide sufficient information to identify
the correct subset of sensitive parameters. When the correct
subset of sensitive parameters is sampled randomly (i.e.,
Set 2, Set 3, or Set 4) than they should be sufficient to
capture model output from the random samples of the full
parameter set in Set 1 yielding a linear trend with an ideal
correlation coefficient of 1. Several interesting observations
are evident in Figure 6 that depend on the type of strategy
used for reducing the number of parameters considered as
well as the spatial heterogeneity of the events’ forcing.
[37] The parameter-based screening strategy represented

by Set 2 worked well yielding correlation coefficients of
0.873 and 0.856 for the May 2002 and September 2003
events, respectively. The Set 2 parameter-based screening
strategy selected the top 6 most sensitive parameters whose
total-order effects explained more than 90 percent of the
HL-RDHM’s output variance. For the cell-based screening
strategy represented by Set 3, performance depended on the
event analyzed (see Figure 6). For the uniform spatial
distribution of precipitation in the May 2002 event, the
cell-based ranking strategy actually degraded performance
for capturing the HL-RDHM’s output. This result is intui-
tive since uniformly distributed precipitation did not lead to

Table 6. Sobol0’s Indices for Each of the 13 Parameters Analyzed in the May 2002 and September 2003 Eventsa

Parameters

Event Order UZTWM UZFWM UZK PCTIM ADIMP ZPERC REXP LZTWM LZFSM LZFPM LZSK LZPK PFREE

May 2002 1st 0.118 0.011 0.006 0.084 0.046 0.029 0.003 0.231 0.015 0.084 0.008 0.023 0.183
May 2002 total 0.212 0.017 0.012 0.063 0.066 0.048 0.006 0.346 0.066 0.126 0.041 0.026 0.27
Sept. 2003 1st 0.099 0.025 0.006 0.068 0.081 0.047 0.013 0.311 0.039 0.081 0.013 0.006 0.064
Sept. 2003 total 0.163 0.045 0.018 0.074 0.094 0.097 0.013 0.411 0.091 0.078 0.054 0.022 0.133

aThe first- and total-order indices for each parameter were computed by summing their individual cell-level indices over the SPKP1 watershed’s model
domain.
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any signature spatial trends in sensitivity. Alternatively, the
Set 3 cell-based strategy showed an improved screening
performance for the September 2003 event since this event
had signature spatial trends for precipitation and model
sensitivities.
[38] Combining the parameter screening strategies to

yield Set 4 served to reduce the overall set of parameters
being analyzed to less than 100 parameters while still
maintaining correlation coefficients of 0.658 and 0.733 for
the May 2002 and September 2003 events, respectively. It is
interesting to note that strong spatial trends in precipitation
appear to improve the indentifiability of the HL-RDHM-
based watershed models. Evidence to support this claim can
be drawn from Figure 6b, which shows that the Set 4
parameter screening strategy yielded a much higher corre-
lation coefficient for the September 2003 event. This result
implies that a much smaller set of parameters can be used to
approximate HL-RDHM’s response for the heterogeneously
forced event. Overall, the subset of parameters used in the
Set 4 screening strategy for both events explained approx-
imately 70 percent of HL-RDHM’s output variance. The
results of Figure 6 confirm that Sobol0’s method provides
robust sensitivity rankings. In future extensions of this

work, we will explore how Sobol’s method can be used to
enhance calibration methodologies for HL-RDHM.

7. Discussion and Conclusions

[39] This study provides a step-wise analysis of the US
NWS’s distributed modeling framework’s (HL-RDHM)
sensitivities from annual to event level time periods with
the intent of elucidating the key parameters impacting the
model’s forecasts. This study demonstrates a methodology
that balances the computational constraints posed by
Sobol0’s sensitivity analysis with the need to fully charac-
terize the HL-RDHM’s forecasting sensitivities. In the
context of long-term forecasts, HL-RDHM’s sensitivities
were assessed for annual periods using 24-hour model time
steps and monthly periods using 1-hour model time steps.
For the annual and monthly analysis, the HL-RDHM’s
computational demands required our use of distributed
forcing and model structure, but lumped model parameter-
izations for two case study watersheds within the Juniata
River basin in central Pennsylvania, USA. In the context of
event forecasts, this study provides detailed spatial analysis
of the HL-RDHM’s sensitivities for two flood events
simulated using a 1-hour model time step. The events were

Figure 6. Verification plots for event analysis sensitivity rankings based on hourly model time steps for
the HL-RDHM. The scatterplots show the RMSE of streamflow predictions. Set 1 consists of 1000
randomly drawn Latin hypercube samples for the 13 SAC-SMA parameters analyzed for the SPKP1
watershed model. Set 2 consists of random samples for the subset of model parameters composed by top 6
most sensitive SAC-SMA parameters perturbed across all model cells. Set 3 consists of random samples
for all 13 SAC-SMA parameters analyzed using only the top 15 most sensitive model cells. Set 4 consists
of random samples for the subset of model parameters representing the top 6 most sensitive parameters
on the top 15 most sensitive model cells.
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selected to demonstrate how the spatial heterogeneity of
forcing has a significant influence on the model’s spatial
sensitivities. Our spatial analysis of event sensitivities also
included an evaluation of how well Sobol0’s sensitivity
method performs in identifying the principle input variables
controlling the HL-RDHM’s response. The robustness of
Sobol0’s method was tested using an extension of the SA
repeatability test recommended by Andres [1997]. The
results of this analysis demonstrate that the method provides
robust sensitivity rankings and that the rankings could be
used to significantly reduce the number of parameters that
must be considered when calibrating the HL-RDHM.
[40] The annual to event-level time periods analyzed in

the prior section show that the HL-RDHM’s sensitivities are
controlled largely by three factors: (1) variations in the
model’s storage for both its upper and lower zones that
occur for transitions from dry to wet conditions (or vice
versa), (2) strong spatial trends in the model’s NEXRAD
forcing data, and (3) the model cells’ proximities to the
gauged outlet where the model performance objective is
computed (i.e., RMSE in this study). It provides some
insights on the types of information that should guide future
forecasting methodologies. Sensitivities that arise from a
cell’s proximity to the ‘‘outlet gauge’’ and ‘‘spatial trends in
precipitation’’ indicate that our ability to evaluate and
identify appropriate forecasting models is a function of
the observation network. It is very common to adapt
modeling frameworks but it is far less common to advance
forecasting through adaptive design and improvement of the
terrestrial and riverine observation network. The results of
this study demonstrate that a spatially distributed simulation
can be controlled by as few as 3 or 4 model cells very near
the drainage basin outlet. It is likely that increased gauging
would more fully activate the spatial distribution of model
sensitivities. It has been widely recognized in prior studies
that the resolution, magnitude, and quality of NEXRAD
observations of forcing also heavily impact distributed
models’ responses [Carpenter et al., 2001; Young et al.,
2000]. Improved gauging of both the terrestrial states
predicted by the HL-RDHM as well as the atmospheric
forcing driving the model appear to be important needs for
advancing our ability to develop distributed forecasts.
[41] Conceptual challenges in calibrating the HL-RDHM

arise because the model exhibits a highly nonlinear response
behavior that is heavily dependent on the individual as well
as the interactive sensitivities of its parameters. As would be
expected, the number and magnitude of individual and
interactive parameter sensitivities increases for the HL-
RDHM when modeling wet conditions. Across all of the
time periods analyzed, the HL-RDHM’s sensitivities
showed that while upper zone storage and percolation
parameters are very important for dry conditions, a transi-
tion to wet conditions decreases the importance of these
parameters. For wet conditions, the HL-RDHM’s lower
zone storages become the dominant parameters controlling
the model’s response. The annual, monthly, and event-level
sensitivity trends presented in this study highlight that static
calibration strategies that do not incorporate changing
model sensitivities would likely be suboptimal in extracting
information from available data [see Wagener et al., 2003].
Operational forecasts based on the HL-RDHM would
benefit from the joint use of a robust sensitivity analysis

framework directly integrated into new calibration method-
ologies.
[42] The emerging trend in surface hydrology toward

spatially distributed simulation will require the field to
embrace and advance high-performance computing to ensure
these tools can be used in both scientific and operational
applications [e.g., see Apostolopoulos and Georgakakos,
1997; Tang et al., 2006c]. Algorithmic design and imple-
mentation for high-performance computing architectures
will need to be carefully considered. In this study, our
Sobol’s method code was implemented using a highly
portable MPI parallel framework [Gropp, 1999] so that a
nonexpert could utilize our computational cluster in sensi-
tivity analysis applications. Operational use of the HL-
RDHM will require computational support tools that are
parallel, highly portable, and implemented in a manner that
minimizes the computational expertise needed by opera-
tional personnel.
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