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ABSTRACT

The use of dynamic mathematical models to simulate the behaviour of environmental systems is

common practice. However, the output of these models remains uncertain, despite their widespread

use and long history of application. This uncertainty arises, amongst other factors, from errors in the

data, randomness in natural processes, incorrect assumptions in the model structure with respect to

the processes taking place in the natural system, and the inability of calibration procedures to

unambiguously identify an optimal parameter set to represent the system under investigation. The

latter two problems may be caused by the inability of the calibration procedure to retrieve sufficient

information from the model residuals. In this paper, a new approach called Dynamic Identifiability

Analysis is presented in order to partly overcome this limitation. A case study shows how the

proposed methodology can be applied to increase the identifiability of parameters of a river solute

transport model.
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INTRODUCTION

River water quality modelling is a fundamental tool in

water resource and environmental studies concerned with

an effective application of river water quality management

and control (e.g. Orlob 1981; Thomann & Mueller 1987;

Chapra 1997). Accurate solute transport modelling under-

pins all river water quality models and therefore, over the

last two decades, research has been concerned with the

development of a more appropriate model structure to

represent solute transport in natural channels. The distrib-

uted Transient Storage (TS) model structure (Bencala &

Walters 1983; Jackman et al. 1984; Wörman 2000), which

appeared as a modified version of the commonly used

Advection Dispersion Equation (ADE) (Taylor 1954), can

accurately represent solute transport processes in rivers

subject to transient storage or dead-zone effects under

steady flow conditions. Recently, the TS model structure

has become more popular and widely used via the

One-dimensional Transport with Inflow and Storage

model structure (OTIS) (Runkel 1998).

However, it is currently not possible to estimate solute

transport parameters reliably from hydraulic variables

and channel characteristics, and therefore, successful

application of the TS model requires the estimation of

model parameters for each particular river stretch of inter-

est, for example using data from tracer experiments. The

dependence on tracer experiments presents complications

as not all tracer experiments provide good excitations for

system identification and parameter estimation purposes

and the implementation of an appropriate experimental

design is generally required (e.g. Wagner & Harvey 1997).

In addition, problems of the lack of identifiability of model

parameters estimated from tracer data, using currently

available optimisation methods based on a single perform-

ance criterion, may be frequently encountered (e.g. Lees

et al. 2000; Harvey & Wagner 2000; Camacho 2000).

In this paper a dynamic approach to the identifi-

cation of reliable solute transport models, i.e. model struc-

ture and parameter set combinations, is investigated,
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ultimately leading to an improved predictive ability of

solute transport models. It is believed that a general

modelling methodology for dynamic solute transport pre-

diction in rivers needs a sound integrated modelling

framework. This modelling framework should incorporate

objective methods of system identification and parameter

estimation, and elements of uncertainty analysis to

quantify the prediction ability of the models.

It is important to stress that the identifiability pro-

cedure used here is not restricted to use with solute

transport or water quality model structures. Wagener et al.

(2001c) developed this approach as a generic tool appli-

cable to any dynamic conceptual model structure in which

at least some of the model parameters must be identified

from measured system input and output data (Wheater

et al. 1993).

IDENTIFICATION OF DYNAMIC CONCEPTUAL
MODELS

Background

A general conceptual dynamic model can be written in

mathematical form as

ŷ(tzO) = g(tzI,O) (1)

where I is a matrix of system inputs, t is the time step, O is

a parameter vector or parameter set, g(·) is a collection of

usually non-linear functions and ŷ is the simulated system

output at time step t using parameter set O. The aim of the

calibration procedure is to estimate the parameter set O

that represents best the characteristics of the natural

system investigated. The calibration procedure is often

supported by an automatic search algorithm, which makes

the task less time consuming and can, with an appropri-

ate procedure, allow for the estimation of parameter

uncertainty and interactions.

The prediction ability obtained with a specific

parameter set is typically measured by analysing the

model’s residuals e, i.e. the distance between simulated

and observed time series, which can be calculated as

follows:

e(tzO) = y(t) − ŷ(tzO) (2)

where y(t) is the observed system output. The residual

vector is usually aggregated into a single value, i.e. an

Objective Function (OF), if an automatic search algorithm

is utilised. The algorithm’s task is to make the ‘size’ of this

value as small (or as large, depending on the definition)

as possible by adjusting the parameter vector O. The

parameter set can only be uniquely located within the

parameter space, i.e. it is only globally identifiable, if it

yields a unique response vector (Kleissen et al. 1990; Mous

1993). Such a unique vector is often given, but aggre-

gating the model residuals into a single value has the

disadvantage that it unavoidably leads to the loss of

information.

A common OF in environmental modelling is the sum

of squared errors, or its non-dimensional representation

as the coefficient of efficiency (R2, Nash & Sutcliffe 1970)

sy
2

sr
2

R2 = 1 — (3)

where s2
r is the variance of the residuals and s2

y is the

variance of the observed variable. However this OF

emphasises the fitting of time series values of higher

magnitude due to the use of squared residual values

(Legates & McCabe 1999). Hence, information about

parameters important for the model fit during periods

containing data of low magnitudes is often lost. This loss

can lead to identifiability problems with respect to

parameters related to the model response in those periods

(e.g. Wagener et al. 2001a). The problem can often be

noticed by visual inspection of the output time series,

whereby parameters yielding identical objective function

values show obvious differences between the output time

series (Gupta et al., 1998; Wagener et al. 2001b), i.e. the

selected objective function is not capable of distinguishing

between visually different model behaviour.

The problem of information loss, associated with

the use of a single OF, also restricts the analysis of

model structural error. Boyle et al. (2000) show that using

different objective functions to evaluate the model

performance for different response modes can reveal

deficiencies in the model structure. An appropriate
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model structure should have a (single) consistent set of

parameter values to represent all response modes.

A number of researchers have tried to avoid this

problem of information loss by partitioning the con-

tinuous output time series, in order to specify different

objective functions to measure the model performance

during different response periods, thereby increasing the

amount of information retrieved from the residuals. Some

partitioning approaches are described here.

(a) The partitioning can be based on experience with a

specific model structure (Wheater et al. 1986; Harlin

1991). Only periods during which a parameter is of

particular importance are selected for its calibration.

However, this approach is subjective and requires

experience with a specific model structure.

(b) The periods can also be selected based on the

hydrologist’s understanding of the natural system.

The partitioning then distinguishes between different

system response modes and is therefore model

independent (e.g. Dunne 1999; Boyle et al. 2000;

Wagener et al. 2001a). The difficulty lies in the

identification of all periods that are dominated by a

particular hydrological process. The influence of

some processes might, for example, only be present

over a very short period of time.

(c) A more objective approach to segmentation is the

use of parameter sensitivity (e.g. Kleissen 1990; Beck

et al. 1990; Wagner & Harvey 1997; Harvey &

Wagner 2000). This approach is based on the

assumption that informative data for parameter

estimation are generally those for which the model

response shows a high sensitivity to changes in the

parameter values (Wagner & Harvey 1997). Kleissen

(1990) developed an optimisation procedure that

involves the calculation of the first-order sensitivity

of each parameter (around a current best estimate)

in time. Only data segments during periods where

the parameter shows a high degree of sensitivity are

included in the local optimisation scheme. This

approach has the disadvantage that it only analyses

the parameter sensitivity around a best estimate and

uses a local optimisation scheme. The sensitivity can

be different for different parameter sets. Harvey &

Wagner (2000) reduce this problem by starting with

a uniform random sampling procedure and

calculating the sensitivity around each parameter set

so derived. However, this approach can result in a

large number of model simulations.

(d) The observed system output can also be segmented

purely based on similarities in the data using

methods like cluster (Boogaard et al. 1998) or

wavelet analysis. These approaches require an

additional step to create a link between identified

periods and model parameters.

The problem with all these approaches is that they are

either subjective ((a) and (b)), difficult to use in a global

optimisation procedure (c), or only solve part of the prob-

lem (d), i.e. no link to model components and therefore

parameters. It is believed that an approach, which is

independent of a specific model structure or time series,

accounts for the problem of local minima and uses the

strengths of the methods described above, could be highly

advantageous. The objective is to develop a calibration

and analysis methodology that maximises the use of the

information available in the residuals.

Dynamic identifiability analysis

A new method, introduced here, is an extension to the

popular Regional Sensitivity Analysis (RSA) method of

estimating the sensitivity of the model output to changes

in the parameter values (Spear & Hornberger 1980;

Hornberger & Spear 1980). The version used here is based

on an investigation of the sensitivity of a parameter distri-

bution when it is conditioned on a given measure of

performance, i.e. OF, as introduced by Beven & Binley

(1992). Deviations from an initially uniform distribution,

and differences between those parts of the distribution

performing well and poorly, indicate the sensitivity of the

model response to changes in the parameter.

This approach is extended to measure the changing

levels of parameter identifiability over time in a method

called DYNamic Identifiability Analysis (DYNIA)

(Wagener et al. 2001c), which consists of the steps shown

in Figure 1. An objective function, e.g. the mean absolute

error, is calculated, not over the whole calibration period
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but as a running mean over a selected window size. The

cumulative distribution of the best performing percentile

(e.g. 10%) of the parameter distribution conditioned on

this measure is calculated. The gradient of this cumulative

distribution is an indicator of the identifiability of the

parameter. A more identifiable parameter shows a locally

higher gradient. For numerical approximation, the range

of each parameter is split into 20 bins of equal width and

the gradient is calculated in each. This binning is done

for every time step and the values of the gradients are

indicated by grey shading. A higher degree of identi-

fiability is indicated by a higher gradient and a darker

shading. This process leads to a time–parameter diagram

showing patches of different grey shadings (Figure 2).

It should be noted that this approach only assesses the

univariate marginal distribution and does not account for

parameter dependence. Parameter dependence or inter-

action can be estimated by detailed investigation of the

response surface or the variance–covariance matrix.

Parameter interaction can, however, be indicated by the

movement of identifiability regions of different parameters

into similar or opposite directions during specific periods.

Additionally, the 90% confidence limits can be added

to the DYNIA plot. These will be narrow in periods where

the parameter is identifiable and wide otherwise. A

measure of one minus the normalised distance between

the confidence limits can be used to quantify these differ-

ences. A small value of this measure, resulting from

narrow confidence limits, indicates that this data period

contains information about the analysed parameter. These

plots are therefore subsequently referred to as information

content plots.

THE TRANSIENT STORAGE MODEL

Model structure

Comprehensive presentations of the TS model structure

are given by Bencala & Walters (1983) and Runkel (1998).

Discussion in this paper is limited to the variant of the

general TS model structure appropriate for conservative

solutes, steady uniform flow and a constant dispersion

coefficient within a river reach (Figure 3). This TS model is

governed by two equations, representing mass balances

for solute in the stream and for solute in the storage zone.

The mass balance in the stream includes transfer of solute

mass due to advection, dispersion and first-order

exchange due to transient storage. The mass balance in the

storage zone includes transfer of mass due to first-order

exchange with the main channel. The model equations are

(Bencala & Walters 1983)

Figure 1 | Flow chart of the DYNamic Identifiability Analysis (DYNIA).
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(4a)& /AD+ux + a(cs — c)
∂t

∂c

∂x

∂c

∂x

∂c

∂x

∂

A

1
=

(4b)=— a (cs — c)
dt

dcs

As

A

where cs is the concentration in the storage zone [M L − 3],

c is the concentration in the main or active channel [M

L − 3], A is the main channel cross-sectional area normal

to the flow [L2], As is the storage zone cross-sectional area

normal to the flow [L2], a is the exchange coefficient

[T − 1], ux is the mean flow velocity in the main channel [L

T − 1] expressed in the original paper as ux = Q/A; Q is the

flow discharge [L3 T − 1]; t is time [T], D is the coefficient

of longitudinal dispersion in the main channel [L2 T − 1]

and x is the longitudinal distance [L].

Bencala & Walters (1983) conceptualise the transient

storage mechanisms as occurring in adjacent zones to the

main stream, representing

• relatively stagnant zones of water that are stationary

relative to the faster moving water near the centre of

the channel, and

• coarse gravel of the streambed and the porous areas

within the stream bank through which flow may

occur.

Figure 2 | Example output of the DYNIA procedure. The black dots show an observed time series. The (moving) window (black rectangle) used to calculate the identifiability measure at

each time step (centred vertical line) can be seen. The shading shows light grey colours where the response surface is flat, and black areas where peaks appear, i.e. the

parameter becomes identifiable.

Figure 3 | Conceptual representation of the TS model parametrisation. The parameters

of the TS model are: D, the coefficient of longitudinal dispersion in the main

channel; A, the main channel cross sectional area normal to the flow; As, the

storage zone cross-sectional area normal to the flow; and α, an exchange

coefficient describing the interaction between storage and main channel

zones. The model uses, amongst others, the (upstream) input solute

concentration Su at time step t to calculate the output concentration S.
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The effect of transient storage mechanisms, affecting the

spreading of the solute tracer distribution and causing

an increase in solute residence time, is modelled as

an idealised exchange process between the main or

active channel and the adjacent storage zone. The

exchange process is modelled as a first-order mass

transfer, i.e. the exchange of solute between the main or

active channel and the storage zone is proportional to the

difference in concentration between the stream and

the storage zone.

Although the conceptualisation of these TS mech-

anisms is highly idealised, the model is appealing to

practitioners because it is a simple one-dimensional

approach, able to reproduce accurately highly skewed

observed solute tracer distributions.

Implementation of the TS model requires an estimate

of the storage zone cross-sectional area As and an

empirical exchange coefficient a, in addition to the main

channel area A, or velocity ux for a known discharge, and

the dispersion coefficient D in the stream itself (Figure 3).

The four parameters (a, A, As, D) are estimated using data

from a tracer experiment.

Current automatic calibration procedures

Conventionally, automatic calibration for the TS model is

done using an extended version of the U.S. Geological

Survey One-dimensional Transport with Inflow and

Storage (OTIS) model (Runkel 1998). The extended

version, OTIS-P (Runkel 1998), couples the solution of

a more general form of Equation (4a,b), including

additional terms to account for lateral inflow, first-order

decay and sorption, with the non-linear regression pack-

age STARPAC (Donaldson & Tyron 1990). OTIS-P pro-

vides the means for objective parameter estimation in

which the optimal set of parameter estimates is deter-

mined using Non-linear Least Squares (NLS) techniques

(Wagner & Gorelick 1986; Donaldson & Tyron 1990;

Runkel 1998). The goal of NLS is to determine the array of

parameter estimates, O|, that minimises the weighted sum

of squared differences between simulated and observed

concentrations. The residual sum of squares RSS(O|) objec-

tive function to be minimised is given by

(5)
N

k=1
∑RSS(Ô) = {wk[ck — f(z,Ô)k]2

where N is the number of observations, ck is the observed

main channel solute concentration [M L − 3], f(z, O|)k is a

non-linear function that simulates the kth observed con-

centration, i.e. the solution of Equations (4a, b), z is the

independent variable, i.e. z = t for time variable problems

and wk is a weighting factor assigned to the kth obser-

vation. The minimisation problem may be unweighted,

where each error is given equal importance, i.e. wk = 1

k = 1, N. Alternatively, weights may be assigned based on

the magnitude of the solute concentration (Wagner &

Gorelick 1986; Runkel 1998)

wk = 1/f(z, O|)2
k (6)

In the OTIS-P model an adaptive NLS technique that

minimises RSS(O|) using an iterative procedure (Dennis

et al. 1981) is applied. The iterative procedure continues

until either a criteria based on the relative change in

the parameters or a criteria based on the change in the

residual sum of squares is met (Runkel 1998).

The problem with this type of approach is its complete

dependence on the chosen OF, in this case a sum of

squared errors type function. The limitations of this

method and the improved use of information through a

dynamic approach become apparent in the application

example.

APPLICATION EXAMPLE

River Mimram tracer experiment

Camacho (2000) describes the details of the River Mimram

(UK) steady flow tracer experiment and includes the tracer

data. Approximately 10 kg of sodium chloride was gulp-

injected into the river upstream of the Panshanger flow-

gauging flume’s hydraulic jump, and the resulting tracer

cloud was measured over time at three sampling stations

A, B and C located 100 m, 140 m and 190 m downstream,

respectively (Table 1).
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Measurements of conductivity were taken at irregular

time intervals at the centre of each cross section in the

main channel. The concentration of sodium chloride was

computed using the conductivity meter calibration curves

and interpolated over a uniform sampling interval of

10 seconds. At the flume’s throat, the cross section is only

about 50 cm wide and so lateral mixing is enhanced. In

addition, the hydraulic jump provides adequate vertical

mixing and the flume is located some 90 m upstream of the

first sampling station. The data are considered relatively

reliable, since discharge estimates obtained using standard

dilution gauging procedures (Herschy 1995) are in close

agreement (0.11–11%) with the measured flume dis-

charge, which was constant at 0.251 m3 s − 1 during the

measurement (Camacho 2000).

With respect to the TS model structure application in

this paper, parameter estimation is carried out on a reach

by reach basis applying Fischer’s routing method (Fisher

1973) between sampling stations and starting from the

upstream reach A, where the upstream observed tracer

distribution is available following a gulp injection. Thus,

effectively the upstream boundary condition to reaches B

and C already incorporates the effects of the initial mixing

that occurs from the injection site along reach A.

Results and discussion

The analysis performed here is based on 1000 parameter

sets, uniformly sampled from the feasible parameter space.

The difficulty of identifying the correct parameter set for

the transient storage model structure, i.e. those parameters

which represent the characteristics of the natural system

under investigation, is demonstrated by the scatter plots in

Figure 4. These plots represent individual Monte Carlo

simulations based on a uniform random search, sampling

1000 points from the feasible parameter space. The

parameters D, As and A show flat distribution surfaces

when plotting their support against the individual

parameter values. The support measure is the transformed

OF, i.e. the coefficient of efficiency. It can be seen that

very different combinations of those parameters yield

identical performances in terms of the selected OF. From

this analysis, only the A parameter seems identifiable, i.e.

shows a clear peak. However, it has to be considered that

this is a univariate analysis and that some structure of the

response surface may be lost by the projection into a single

parameter dimension (Beven 1998).

The same 1000 parameter sets were input into the

DYNIA procedure. A window size of three time steps is

selected in this case because the concentration history is

sensitive to the parameters over relatively narrow time

spans that are associated with specific segments of the

concentration history (Wagner & Harvey 1997). The

results of this analysis are shown in Figures 5 and 6.

Table 1 | River Mimram channel discretisation and discharge

Reach
Sampling sites
upstream-downstream

Length
(m)

Discharge
(m3 s−1)

A Gulp injection–Site A 100 0.251

B Site A–Site B 40 0.251

C Site B–Site C 50 0.251

Figure 4 | Dotted plot showing the projection of the response surface, i.e. the support

values (normalised and transformed coefficient of efficiency R2 values, with

higher values indicating better models), into the individual parameter

dimensions: the dispersion coefficient D; the main channel area A; the

storage zone area As; and the exchange coefficient α. The plot is based on a

uniform random search sampling 1000 sets from the feasible parameter space.
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Figure 5 | The results of the DYNIA procedure for the different parameters of the TS model structure using gulp injection. The dashed black lines indicate the 90% confidence limits,

while the grey dots indicate the observed solute concentrations. The parameters are: (a) the dispersion coefficient D; (b) the main channel area A; (c) the storage zone area

As; and (d) the exchange coefficient α.
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Figure 6 | Graphs showing the information content (black bars) of the tracer data with respect to the TS parameters during the different time steps to identify individual parameters. The

observed solute concentration is shown as grey dots. The parameters are: (a) the dispersion coefficient D; (b) the main channel area A; (c) the storage zone area As; and (d)

the exchange coefficient α.
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Figure 5(a) shows that those values for the dispersion

coefficient D associated with good performance are

widely distributed over the whole parameter space, indi-

cated by the scatter of light and dark grey shades. This

result suggests a clear identifiability problem with respect

to this parameter using the available data. This conclusion

is also emphasised by the wide 90% confidence limits

(dashed lines). They indicate the probability that the

correct parameter value is lying within that range and

reflect the amount of information available in a certain

period of the tracer data to identify a specific parameter.

Figure 6 shows the values of one minus the width of the

confidence limits at each time step, normalised with

respect to the feasible parameter range. It can be seen that

the information content of the tracer data with respect

to the dispersion coefficient D is very low. High values of

the information content (Figure 6(a)) during the tracer

concentration distribution peak, however, suggest that a

constant injection strategy might have been advantageous

for a better estimation of this parameter.

The channel area A in Figure 5(b) shows a dense area

of well identified values during the rising limb of the tracer

distribution (the first five or so time steps with zero

concentration have to be ignored). For the remaining time,

the parameter values are widely distributed over the

parameter range, indicated by light grey shading and wide

confidence limits.

Figures 6(b) and 6(c) show the interaction between A

and As. A large main channel area A is important to fit the

rising limb of the tracer distribution, i.e. large amounts of

the tracer arriving early, while large storage zones (high

As) values help to maintain the long tail. It can also be

noticed in Figure 6(c) that the coefficient of efficiency R2 is

putting more emphasis on fitting the high values of the

distribution and that information in other parts is lost

during the aggregation process. The region containing in-

formation has no influence on the shape of the dotted plot

surface shown in Figure 4 for the entire period of record.

The parameter a describing the exchange rate between

the main channel and storage zone only shows specific

areas of well identified values at the end of the concen-

tration distribution tail (Figure 5(d)). Here, a small

exchange rate leads to sufficient solute being available

to maintain this part of the distribution. The inter-

dependence between a and the storage zone area can also

be seen. Both parameters diverge in opposite directions,

showing that they produce similar effects with respect to

fitting the same periods. Figure 6(d) shows slightly higher

values of the information content during the distribution

peak, similar to Figure 6(a), suggesting again that a con-

stant injection strategy, causing a plateau at the peak

value, could have produced more information to identify

this parameter.

This analysis of this tracer experiment thus shows that

much more information (and insight) is derived using the

dynamic approach in comparison to a simple Monte Carlo

analysis as shown in Figure 4. An overall OF such as R2 is

unable to identify parameters related to the tracer concen-

tration tail, such as As and a. DYNIA, on the other hand,

reveals at which part of the concentration individual

parameters are particularly identifiable. This knowledge is

important for experimental design; for example, sampling

efforts can be concentrated at those periods.

CONCLUSIONS

The estimation of parameters of dynamic, conceptual

environmental or hydrological models is a difficult

Figure 7 | Qualitative plot of periods of identifiability for the different TS model

parameters using a gulp injection. The observed solute concentration is

shown as a grey line, while the black lines indicate periods of identifiability for

the different parameters. The parameters are: (a) the dispersion coefficient D;

(b) the main channel area A; (c) the storage zone area As; and (d) the

exchange coefficient α.
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task. Manual calibration can yield good results, but the

procedure is time consuming, requires experience and

it is difficult to consider parameter interactions.

Traditional, single-objective automatic calibration pro-

cedures, on the other hand, often lead to a large number

of parameter sets performing similarly with respect to

the selected measure. DYNIA attempts to overcome

these problems by calculating parameter identifiability

as a running mean. Possible applications of this method,

next to the task of model calibration or identification,

are:

(a) the analysis of model structures. Model structural

inadequacies will make themselves visible in cases

where a parameter distribution shows distinct

peaks, i.e. dark patches (Figure 4), which change

value in time. The model has to adjust the

parameter in order to predict the output correctly.

A suitable model structure should show consistent

parameter values, even for different system response

modes.

(b) The algorithm also relates model parameters and

response modes of the natural system. The proper

working of the model components can therefore be

analysed.

(c) The method can also be used to design tracer

experiments, improving parameter identification by

choosing the design which provides the highest

information content for parameter estimation (e.g.

Wagner & Harvey 1997).

A limitation of this method is its dependency on Monte

Carlo simulations, which restricts the analysis of high-

dimensional parameter spaces. Future research will focus,

amongst other things, on the analysis of the potential of

different types of tracer experiments to identify solute

transport model parameters.

The analysis of the TS model structure showed the

difficulty of identifying the model’s parameters using con-

ventional, single-objective, approaches. The dynamic

approach allowed more of the information contained in

the data to be used and a better picture of the more

preferable parameter values for a particular case is

obtained.
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NOMENCLATURE
a exchange coefficient (T − 1)
e model residual
O parameter vector
s2

r variance of residuals
s2

y variance of observed variable
z independent variable (e.g. time)
O| parameter estimate
A main channel cross-sectional area normal to

flow (L2)
As storage zone cross-sectional area normal to flow

(L2)
c concentration in main or active channel (M

L − 3)
cs concentration in storage zone (M L − 3)
D coefficient of longitudinal dispersion in main

channel (L2 T − 1)
F cumulative distribution
f(·) non-linear function
G gradient
g(·) collection of non-linear functions
I matrix of system inputs
ID identifiability measure
i index
k index
m index
N number of observations
n index
Q flow discharge (L3 T − 1)
R2 coefficient of efficiency
RSS residual sum of squares
S support
t time step (T)
ux mean flow velocity in main channel (L T − 1)
w weighting factor
x longitudinal distance (L)
y observed system output
ŷ simulated system output

209 Thorsten Wagener et al. | Dynamic identifiability analysis for solute transport Journal of Hydroinformatics | 04.3 | 2002



REFERENCES

Beck, M. B., Kleissen, F. M. & Wheater, H. S. 1990 Identifying flow
paths in models of surface water acidification. Rev. Geophys.
28(2): 207–230.

Bencala, K. E. & Walters R. A. 1983 Simulation of solute transport
in a mountain pool-and-riffle stream: a transient storage model.
Wat. Res. Res. 19(3): 718–724.

Beven, K. J. 1998 Generalized Likelihood Uncertainty Estimation—
User Manual. University of Lancaster, unpublished.

Beven, K. J. & Binley, A. M. 1992 The future of distributed models:
model calibration and uncertainty in prediction. Hydrol.
Process. 6, 279–298.

Boogaard, H. F. P. van den, Ali, Md. S. & Mynett, A. E. 1998 Self
organising feature maps for the analysis of hydrological and
ecological data sets. In: Hydroinformatics ‘98 (ed. V. Babovic
& L. C. Larsen). Balkema, Rotterdam, pp. 733–740.

Boyle, D. P., Gupta, H. V. & Sorooshian, S. 2000 Towards improved
calibration of hydrologic models: combining the strengths
of manual and automatic methods. Wat. Res. Res. 36,
3663–3674.

Camacho, L. A. 2000 Development of a hierarchical modelling
framework for solute transport under unsteady flow conditions
in rivers. PhD thesis, Imperial College of Science, Technology
and Medicine, London, UK.

Chapra, S. C. 1997 Surface Water-Quality Modelling. McGraw-Hill,
New York.

Dennis, J. E. Jr., Gay, D. M. & Welsh, R. E. 1981 An adaptive
nonlinear least-squares algorithm: Association for computing
machinery. Trans. Math. Software 7, 348–368.

Donaldson, J. R. & Tyron, P. V. 1990 User’s Guide to STARPAC.
The Standards Time Series and Regression Package. Internal
Rep. NBSIR 86-3448, National Institute of Standards and
Technology, Gaithersburg, MD, USA.

Dunne, S. M. 1999 Imposing constraints on parameter values of a
conceptual hydrological using baseflow response. Hydrol. Earth
Syst. Sci. 3, 271–284.

Fischer, H. B. 1973 Longitudinal dispersion and turbulent mixing in
open channel flow. Ann. Rev. Fluid Mech. 5, 59–78.

Gutpa, H. V., Sorooshian, S. & Yapo, P. O. 1998 Toward improved
calibration of hydrologic models: multiple and
noncommensurable measures of information. Wat. Res. Res.
34(4), 751–763.

Harlin, J. 1991 Development of a process oriented calibration
scheme for the HBV hydrological model. Nordic Hydrol. 22,
15–36.

Harvey, J. W. & Wagner, B. J. 2000. Quantifying hydrologic
interactions between streams and their subsurface hyporheic
zones. In: Streams and Ground Waters (ed. J. A. Jones, & P. J.
Mulholland). Academic Press, San Diego, pp. 3–44.

Herschy, R. W. 1995 Streamflow Measurement. 2nd Edition.
E. & F. N. Spon, London, UK.

Hornberger, G. M. & Spear, R. C. 1980 Eutrophication in Peel Inlet
I, The problem: defining behaviour and a mathematical model
for the phosphorous scenario. Wat. Res. 14, 29–42.

Jackman, A. P., Walters, R. A. & Kennedy, V. C. 1984 Transport and
concentration controls for chloride, strontium, potassium and
lead in Uvas Creek, a small cobble-bed stream in Santa Clara
County, California, USA. 1. Conceptual model. J. Hydrol. 75,
67–110.

Kleissen, F. M. 1990 Uncertainty and identifiability in conceptual
models of surface water acidification. PhD thesis, Imperial
College of Science, Technology and Medicine, London, UK.

Kleissen, F. M., Beck, M. B. & Wheater, H. S. 1990 The
identifiability of conceptual hydrochemical models. Wat. Res.
Res. 26(12), 2979–2992.

Lees, M. J., Camacho, L. A. & Chapra, S. C. 2000 On the
relationship of transient-storage and aggregated dead zone
models of longitudinal solute transport in streams. Wat. Res.
Res. 36(1), 213–224.

Legates, D. R. & McCabe, G. J. Jr. 1999 Evaluating the use of
‘‘goodness-of-fit’’ measures in hydrologic and hydroclimatic
model validation. Wat. Res. Res. 35(1), 233–241.

Mous, S. L. J. 1993 Identification of the movement of water in
unsaturated soils: the problem of identifiability of the model.
J. Hydrol. 143, 153–167.

Nash, J. E. & Sutcliffe, J. V. 1970 River flow forecasting through
conceptual models I, A discussion of principles. J. Hydrol. 10,
282–290.

Orlob, G. T. 1981 Mathematical Modelling Of Water Quality:
Streams, Lakes, And Reservoirs. Int. Inst. for Appl. Syst.
Analysis (IIASA), John Wiley & Sons, Chichester.

Runkel, R. L. 1998 One-dimensional transport with inflow and
storage (OTIS): a solute transport model for streams and
rivers, U.S.G.S. Water Resources Investigations Report 4018,
Denver, CO.

Spear, R. C. & Hornberger, G. M. 1980 Eutrophication in Peel Inlet
II, Identification of critical uncertainties via Generalised
Sensitivity Analysis. Wat. Res. 14: 43–49.

Taylor, G. I. 1954 The dispersion of matter in turbulent flow through
a pipe. Proc. R. Soc. Ser. A 223, 446–468.

Thomann, R. V. & Mueller, J. A., 1987 Principles of Surface
Water Quality Modelling and Control. Harper & Row,
New York.

Wagener, T., Lees, M. J. & Wheater, H. S. 2000 Incorporating
predictive uncertainty into a rainfall-runoff modelling
system. Proceedings of the Hydroinformatics 2000
Conference, Iowa, USA. Compact disk. University of Iowa,
Iowa, USA.

Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V.
& Sorooshian, S. 2001a A framework for the development and
application of hydrological models. Hydrol. Earth Syst. Sci.
5(1), 13–26.

Wagener, T., Lees, M. J. & Wheater, H. S. 2001b A toolkit for the
development and application of parsimonious hydrological
models. In: Mathematical Models of Large Watershed
Hydrology, vol. 1 (ed. V. P. Singh & D. Frevert). Water
Resources Publishers, Littleton, Colorado, USA, pp. 91–
140.

Wagener, T., McIntyre, N., Lees, M. J., Wheater, H. S. & Gupta, H.
V. 2001c Towards reduced uncertainty in conceptual

210 Thorsten Wagener et al. | Dynamic identifiability analysis for solute transport Journal of Hydroinformatics | 04.3 | 2002



rainfall-runoff modelling: dynamic identifiability analysis.
Hydrol. Process. in press.

Wagner, B. J. & Gorelick, S. M. 1986 A statistical methodology for
estimating transport parameters: theory and applications to
one-dimensional advective-dispersive systems. Wat. Res. Res.
33(7), 1731–1741.

Wagner, B. J. & Harvey, J. W. 1997 Experimental design for
estimating parameters of rate-limited mass transfer:
analysis of stream tracer studies. Wat. Res. Res. 33(7),
1731–1741.

Wheater, H. S., Bishop, K. H. & Beck, M. B. 1986 The identification
of conceptual hydrological models for surface water
acidification. Hydrol. Process. 1, 89–109.

Wheater, H. S., Jakeman, A. J. & Beven, K. J. 1993 Progress and
directions in rainfall-runoff modeling. In: Modeling Change
In Environmental Systems (ed. A. J. Jakeman, M. B. Beck
& M. J. McAleer). John Wiley & Sons, Chichester,
pp. 101–132.
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