Molecular and Colloidal Sizes of DOM

Bruce E. Logan Department of Civil & Environmental Engineering The Pennsylvania State University

Email: blogan@psu.edu http://www.engr.psu.edu/ce/enve/logan.htm

Particle dynamics are important for:

• Water Quality

-Clear (non-turbid water)

- -Treatment by flocculation/clarification
- Bioengineered Systems
 Fermentation processes (beer, wine)
 -floc formation for cell separation
- Natural Systems

Sedimentation in estuaries (salting-out) Global carbon cycles Fate of chemical pollutants

Global Carbon Cycling

Cycling of Terrestrial Organic Matter (OM)

- **POM-** particulate organic matter
- COM- colloidal organic matter
- DOM- dissolved organic matter

Figure 1. Schematic of processes governing the transport and cycling of dissolved organic matter in marine environments. Processes indicated by arrows include terrestrial inputs (1); lateral transport in the benthic boundary layer (BBL) (2); resuspension and sediment-water exchange (3 and 4); and biological, chemical, and physical processes in the upper water column (5 and 6).

Colloidal Pumping: Enhanced concentration of metals and pollutants in colloids

Gustafsson and Gschwend

Metals (and other pollutants) can partition onto particles to different extents

Fig. 3. A chemcentric speciation diagram. Two trace substances, phenanthrene and copper, are used to illustrate how such chemicals' interactions with various constituents may affect their functional speciation.

Gustafsson& Sschwend, Limnol. Oceanogr. 1997, 42, 519.

OVERVIEW

- 1. Molecular size spectra
 - Range of molecule/particle sizes
 - Relating sizes to diffusion coefficients
- 2. Molecular size distributions
 - Different methods to measure size spectra
 - Size spectra using ultrafiltration
- 3. Particle size spectra in the ocean- final analysis

Molecular Size Distributions

- Molecules: approximately <1000 Daltons (<1 kD)
 - Known structure
 - Tabulated values, correlations, measurements
- Macromolecules: >1 kD
 - Colloids of known properties; sometimes known structure
 - Proteins, polysaccharides, etc.
 - Humic and fulvic acids sometimes included
 - Correlations and measurement
- Colloids: >1 kD to < 0.2 um
 - Unknown properties
 - Must be experimentally measured.

A diffusion coefficient is the fundamental property needed for particle transport

• Chemical flux (J) is related to the concentration gradient according to

$$J = -D \nabla c \qquad J = -D \frac{dc}{dx}$$

(General Form)

(One dimension)

- Flux is in the opposite direction to the gradient
- Diffusion coefficient in water is primarily a property of molecule size and shape.

Relating Molecule Size, Molecular Weight, and Diffusivity

Diameter (nm)	Molecular weight (Daltons)	Diffusivity (×10 ⁸ cm ² s ⁻¹)
13.	1,000,000	25
6.2	100,000	50
2.9	10,000	110
1.3	1,000	250
0.62	100	700

Diffusion Coefficients: Relating Molecule Size to Diffusivity

Most important factors:

- Size of molecule
- Viscosity of water
- Intermolecular forces

Assumptions

- Creeping flow (Re<<1)
- Spherical particles
- No slip at surface

Stokes-Einstein equation

$$D_{Cw} = \frac{k_B T}{6\pi\mu r}$$

Where:

 D_{Cw} = diffusion coefficient of chemical C in water (cm²/s)

$$k_B$$
=Boltzman's constant= 1.38×10⁻²³ kgm²/s²K

 μ = dynamic viscosity= 1 cp = 0.01 g/s-cm

T= temperature [K]

r = molecule radius

At 20°C in water $\rightarrow D_{CW} [cm^2/s] = 2.14 \times 10^{-9} r^{-1} [\mu m]^{11}$

Diffusivities from Structure: MOLECULES

Wilke-Chang Correlation

<u>Where</u>: [these units must be used]

 D_{Cw} = diffusion coefficient [cm²/s]

T= temperature [K]

 Φ_l = association parameter []

M_l= molecular weight of liquid [g/mol]

 μ = dynamic viscosity [cp]

 $V_{C,b}$ = molal volume at normal boiling point [cm³]

$$D_{Cw} = \frac{7.4 \times 10^{-8} T (\Phi_l M_l)^{1/2}}{\mu V_{C,b}^{0.6}}$$

Only if:
 $V_{C,b} < 0.27 (\Phi_l M_l)^{1.87}$

For chemicals in water:
$$D_{Cw}[cm^2/s] = 1.48 \times 10^{-4} V_{C,b}^{-0.6}$$

20°C, Φ =2.6, M=18 g/mol Only if: $V_{C,b} < 359$

The atomic volume can be estimated knowing the structure of the molecule

Example: Glucose $(C_6H_{12}O_6)$

$$V_{G,b} = (6 \times 14.8) + (12 \times 3.7) + (5 \times 7.4) + (1 \times 11) - 15$$

 $V_{G,b} = 166.2 \text{ [cm3/g]}$

Reported

 $D_{Cw}[cm^2/s] = 1.48 \times 10^{-4} V_{C,b}^{-0.6}$ $D_{Cw}[cm^2/s] = 1.48 \times 10^{-4} (166.2)_{G,b}^{-0.6}$

 $D_{Cw}[cm^2/s] = 6.90 \times 10^{-8}$

Table 3.4. Atomic Volumes for Complex Molecular Volumes for Simple Substances (Welty et al. 1976; p. 490)

Element	V _{A,b} (cm ³ /g-mole)	Element	V _{A,b} (cm ³ /g-mole)	
Bromine	27.0	Oxygen, except as		Ø
Carbon	14.8	noted below	7.4	1 - (2.0)
Chlorine	21.6	Oxygen, in methyl	- K	-C-0-(K=(
Hydrogen	3.7	esters	9.1	
lodine	37.0	Oxygen, in methyl		(nach
Nitrogen, double		ethers	9.9 — K	- 0-(K=CF
bond	15.6	Oxygen, in higher	F 3.85	
Nitrogen, in		ethers and other		
primary amines	10.5	esters	11.0 _ COC	od.
Nitrogen, in		Oxygen, in acids	12.0	
secondary amines	12.0	Sulfur	25.6	2
for three-membered ring for four-membered ring, for five-membered ring, for six-membered ring, for six-membered ring, for naphthalene ring for anthracene ring	, as cyclobutane – [, as furan – as pyridine		deduct 6 deduct 8.5 deduct 11.5 deduct 15 deduct 15 deduct 30 deduct 47.5	- C-C

 $D_{C_w}[cm^2/s] = 7.80 \times 10^{-8}$ (13% error)

Diffusivities from Size: MACROMOLECULES

PROTEINS

Polson Correlation

POLYSACCHARIDES

(Dextrans)

Frigon Correlation

$$D_{Cw}[cm^2/s] = 2.74 \times 10^{-5} M_p^{-1/3}$$

Only if: M>1 kD

$$D_{Cw}[cm^2/s] = 7.04 \times 10^{-5} M_D^{-0.47}$$

Only if: M>1 kD

HUMIC & FULVIC ACIDS

Beckett Correlation

$$D_{Cw}[cm^2/s] = 1.42 \times 10^{-4} M_H^{-0.422}$$

Natural organic matter (NOM)

Comparison of Diffusion coefficients for Polysaccharides (Dextrans) and Proteins

How do we easily account for temperature?

Take the Wilke-Chang correlation, $D_{Cw} = \frac{7.4 \times 10^{-8} T (\Phi_l M_l)^{1/2}}{\mu V_{C,b}^{0.6}}$

Rearranging, so that for one chemical all constants are on one side of the equation $\frac{D_{Cw}\mu}{T} = \frac{7.4 \times 10^{-8} (\Phi_l M_l)^{1/2}}{V_{C,b}^{0.6}} = \text{ constant}$

So know we can write that at some new temperature T, we have from knows at a previous temperature,

$$\frac{D_{Cw}\mu}{T} = \frac{D_{Cw,T}\mu_{T}}{T_{T}} = \text{constant}$$

Or more simply,

$$D_{Cw,T} = D_{Cw} \frac{\mu}{\mu_T} \frac{T_T}{T}$$

Molecular Size Distributions: **COLLOIDS**

- We know the structure of a very small fraction of dissolved organic matter (DOM)
- Most oceanographers classify colloids as DOM >1 kD
- Does size of molecules matter? YES
 - Biodegradability (bacteria must hydrolyze if >1 kD)
 - Removal in water treatment processes (adsorption)
- To relate size to diffusivity, use Stokes-Einstein (SE) equation.
- To relate molecular weight to size (or diffusivity), must have calibration standards (i.e. synthentic molecules, proteins, dextrans, etc.)

Diffusion coefficients: homogeneous particle size

Ultracentrifugation

- Force on a particle of mass m_c due to gravity is F=m_cg
- In a centrifuge spinning at ω , F=m_c ω^2 r, where r=distance from center
- From the velocity of particle during centrifugation (incorporated int the "s" term), it is possible to calculate the diffusivity :

$$D_{Cw} = \frac{RTs}{m_c(1 - V_C \ \rho_w)}$$

Light Scattering

- Analysis of the particle is used to determine the radius of gyration, r_g
- Modified form of SE equation is used.

$$D_{Cw} = \frac{k_B T}{6\pi\mu c_g r_g}$$

c_g is a new coefficient

• For DOM in water, we have:

$$D_O[cm^2/s] = 1.69 \times 10^{-5} r_O^{-1}$$

Size Exclusion Chromatography (SEC)

•Molecules separated by exclusion of larger particle

•Smaller particles diffuse into porous particles in column, and are delayed

•Can use low pressure (gel permeation chromatography; GPC) or high pressure chromatography (HPLC-SEC).

Field Flow Fractionation

Molecules are separated using two methods, based on:

- •Molecule size (like SEC)
- •Another method acting perpendicular to the direction of flow, such as an electric or fluid field

Figure 3.10 Schematic of a field-flow fractionation (FFF) cell, with a detail of the cross section of the channel indicating migrating sample clouds and parabolic velocity profile. (Reprinted with permission from Beckett et al. (1987). Copyright 1987, American Chemical Society.)

Ultrafiltration (UF)

- Membranes fabricated that have set average pore size
- Rated in terms of atomic mass units (amu) or Daltons based on >99% rejection of molecules larger than the stated amu.
- UF separations provide discrete (not continuous) molecular size distributions
- There is no "perfect" membrane. Problems are:
 - Some materials are rejected due to charge repulsion
 - Build up of material on membrane can cause rejection of smaller sized molecules
 - Most researchers incorrectly report sizes by not considering membrane rejection (Apparent size distribution)
 - The **Actual size distribution** can be determined using a permeation coefficient model.

Ultrafiltration Cells

UF Cell Components

Ultrafiltration cell body

Effect of membrane rejection on permeate concentration

Mass Balance Equations Produce Fundamental Relationships

Permeate concentration at at any time

$$c_P = p_c \ c_{r,0} \ F^{p_c-1}$$

Filtrate Concentration (all of the permeate is collected)

$$c_f = c_{r,0} \frac{(1 - F^{p_c})}{(1 - F)}$$

 $c_{r,0}$ = concentration of material able to pass the membrane F= fraction of filtrate removed [F=1-(V_f/V_{r,0})] p_c = permeation coefficient ...derivation of equations...

Examples of UF Size Separations

• Example permeation coefficient model calculation to determine concentration of material <1K in sample using UF size separation.

•Separation of compounds having a known molecular weight using a 1000 amu membrane

- Vitamin B-12: MW=1192 Daltons
- Sucrose: MW=342 Daltons

•Errors for values of the permeation coefficient

•Effect of parallel versus serial filtration

Example: UF Separation, 1K amu

• You wish to determine the concentration of DOC (ppb) in seawater that is <1000 Daltons (C<1K). You use a 1K cell filled with 100 mL of sample.

•Permeate concentrations are measured at 6 times during separation.

Based on the following approaches, what would you conclude is the concentration of material <1K in the sample (C<1K)?

- a) Apparent C<1K based on the first measurement (the instantaneous permeate sample at 5 mL)?
- b) **True C<1K** based on the permeate coefficient model?
- c) Apparent C<1K based on collecting 90 mL?²⁸

c _p	\mathbf{V}_{f}	F	
5.9	5	0.95	$F = 1 - (V_f / V_{r,0})$
6.1	10	0.90	$V_{r,0} = 100 \text{ mL}$
6.4	20	0.8	7,0
7.5	50	0.5	
9.0	70	0.3	
12.9	90	0.1	

c _p	V_{f}	F	ln c _p	ln F
5.9	5	0.95	1.77	-0.57
6.1	10	0.90	1.81	-1.05
6.4	20	0.8	1.86	-0.22
7.5	50	0.5	2.01	-0.69
9.0	70	0.3	2.19	-1.20
12.9	90	0.1	2.56	-2.30

The true C<1K is equal to $c_{r,0}$.	ln c _p	ln F
To calculate $c_{r,0}$, use the equation:	1.77	-0.57
$c_P = p_c \ c_{r,0} \ F^{p_c-1}$	1.81	-1.05
	1.86	-0.22
And linearize it, to obtain	2.01	-0.69
$\ln c_{p} = \ln (p_{c} c_{r,0}) + (p_{c} - 1) \ln F$	2.19	-1.20
	2.56	-2.30
y-intercept slope		33

What if the first 90 mL are used to determine C<1K?

$$c_f = c_{r,0} \frac{(1 - F^{p_c})}{(1 - F)} = 9.0 \frac{(1 - F^{0.66})}{(1 - F)}$$

If 90 mL are collected, then F is:

$$F = 1 - (V_f / V_{r,0}) = 1 - (90/100) = 0.1$$

$$c_f = 9.0 \frac{(1 - (0.1)^{0.66})}{1 - (0.1)}$$

$$c_f = 7.8 \quad \text{Answer part (c)}$$

$$C < 1K = 7.8 \text{ ppb based on 90 mL}$$

Permeation Coefficient Model: Comparison

Method	C <1K (ppb)	Error
Collect 5 mL	5.9	44%
Permeation Coefficient Model	9.0	
Collect 90 of 100 mL	7.8	13%
Effect of different filtration volumes on apparent C (<1k)

Time (or V_f)

What about molecule sizes near the membrane cut off? B-12 should be 100% rejected...

p_c -values are very low for B-12

FIG. 10. Errors in Estimating initial Concentration of Component A in Two-Component System Calculated as Function of Mass Fraction of A $[C_{A0}/C_{A0} + C_{B0}]$ for: (a) $p_A = 0.3$; (b) $p_A = 0.5$ (Values of p_B : $\mathbf{E} = 0.1$, $\mathbf{A} = 0.3$, $\Box = 0.5$, * = 0.7, and -= 0.9)

Series versus Parallel Separations

Series versus Parallel Separations

- Examine separations through membranes UF1, UF2, and UF3, each one having a different molecular weight cut off (UF3 has the highest cut off, for example 100K).
- Assume there is 10 mg/L of DOC in each size fraction.
- Compare results for series versus parallel analysis of the sample.

Series versus Parallel Separations

RESULTS:

Note that "Actual" means what would be found if p_c model used; Series & Parallel means what is found if no p_c model is used

	DOC (mg/L)		
Size class	Actual	Series	Parallel
>UF3	10	15.7	15.7
<uf3 to="">UF2</uf3>	10	11.2	8.1
<uf2 to="">UF1</uf2>	10	7.8	8.1
<uf1< td=""><td>10</td><td>5.3</td><td>8.1</td></uf1<>	10	5.3	8.1

Notes on UF size separations

- Apply the permeation coefficient model unless:
 - $p_c > 0.9$ (little rejection by membrane)
 - $p_c < 0.2$ (sizes are too close to membrane cutoff)
- Prepare size fractions in <u>parallel</u>, not serial
- When size distributions are adjusted for membrane rejection, mass will be shifted to smaller size fractions

RESULTS of Actual Water Samples

•Size distributions of NOM in groundwater using UVabsorbance (indicating concentration of humic and fulvic acids)

- •Orange county ground water (OCWD)
- •Biscayne aquifer ground water
- •Dissolved Organic Carbon in Wastewater

•Molecular weight distributions of pure compounds during bacterial degradation in pure and mixed cultures.

High rejection of samples for <10K sizes

OCWD Ground Water Sample

Adjusting the size distribution with the pc model shifts the distribution to smaller MW

OCWD Ground Water

Size distributions during bacterial degradation of <u>Protein</u> macromolecules

Small MW compounds do accumulate with proteins with pure cultures

Mixed cultures

Small MW compounds do not accumulate with proteins with mixed cultures

Size distributions during bacterial degradation of dextran macromolecules: Mixed cultures

Continuous flow method for molecular size distributions

- In some systems, organic matter concentrations are very low (e.g. seawater) and must be conentrated to be measured.
- A continuous flow method was developed for this situation.

UF Analysis when samples must be concentrated

UF Analysis when samples must be concentrated

UF Results: Comparison of Storage Reservoir vs Batch Approaches

Fig. 3. Ln (permeation concentration, C_p) as a function of $F [1-(V_f/V_0)]$ for the model reported by Logan and Jiang (3 and 10 kDa membranes).

54 Figures from: Cai, 1999, Water Res., 33, 13.