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interactions have demonstrated that, in an inviscid two-layer system, internal
waves can be parametrically excited by surface waves. Exponential growth, rather
than decay, of the internal waves has been predicted and conclusively verified
in the laboratory. The two mechanisms are considered together in the current
paper. By considering a two-layer system possessing both weak nonlinearity and
viscoelasticity, the competition between the two effects is demonstrated. It is
found that viscoelasticity reduces the exponentlal growth rate of the internal

waves
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Sufficiently large viscoelasticity is found to completely suppress the

destabilizing effects of the nonhnearlty. General results as well as results for
conditions characteristic of an estuarine environment are presented.

1. Introduction

The effects of both viscosity and elasticity on the
propagation of waves through a medium have been well
documented. The general goal has been to formulate
and solve the eigenvalue problem in order to determine
the propagation characteristics of the wave as functions
of the properties of the medium. The two effects can

be treated separately, but a common formulation is to’

adopt a Voigt model for the general viscoelastic behav-
ior. In this case, the governing equations for a small dis-
turbance in an incompressible layer are given by [Kol-
sky, 1963] the following:
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In this equation, X are the particle displacements, P
is the pressure, p is the density, G is the modulus of
elasticity, v is the viscosity, and g is the gravitational
acceleration. Clearly, by considering the various lim-
iting cases of zero viscosity and/or zero elasticity, the
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equations governing pure elastic waves or waves in an
ideal or viscous fluid can be recovered.

The general formulation finds widespread applica-
tion, one particular example being the field of coastal
engineering. The propagation of surface waves in a
homogeneous, viscous fluid layer is well known [e.g.,
Ursell, 1952; Miles, 1967], and attenuation rates are
readily computed. The underlying assumption is that
the energy dissipation is confined to wall and bottom
boundary layers and is balanced by a steady decrease
in wave energy and hence amplitude.

A very different sort of analysis was pursued by Foda
and Chang [1995] in an effort to explain short-scale vari-
ability in observed amplification factors of earthquake
waves passing through alluvial plains. By considering a
homogeneous viscoelastic layer, they demonstrated how
periodic vertical forcing could resonate subharmonic
surface waves. Laboratory experiments confirmed the
presence of this Faraday-type resonance mechanism,
and the experimentally determined dispersion relation-
ship demonstrated fair agreement with that predicted
by theory.

A considerable body of work exists on the analysis of
multilayer models as well. Most commonly, [e.g., Dal-
rymple and Liu, 1978], an inviscid fluid layer is assumed
to overly a viscous fluid layer and attenuation rates of
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surface waves are sought. This model is taken to be
representative of the case of surface waves propagating
over a soft, muddy bottom. Gade [1958] discussed one
location in the Gulf of Mexico where the attenuation
of surface waves was so severe as to provide adequate
shelter for fishing boats during storms.

The validity of idealizing a layer of mud as a homo-
geneous viscous fluid is certainly debatable in light of
rheological studies by Carpenter et al. [1973] and, more
recently, by Chou et al. [1993] which demonstrated
complicated constitutive relationships. Indeed, other
authors adopted different models for the lower layer.
For example, Mallard and Dalrymple [1977] treated the
seabed as a purely elastic medium, with the conse-
quence of zero dissipation and therefore zero attenu-
ation.

Hsiao and Shemdin [1980] and MacPherson [1980]
both treated the lower layer as a viscoelastic medium.
In the former work, numerical solutions were obtained
for the complex surface wavenumber, yielding both the
wavelength and the attenuation coefficient. In the lat-
ter, the author, following Tchen [1956], introduced a
complex viscosity so that the governing equations re-
duced to the Navier-Stokes equations for a viscous fluid.
Making various simplifying assumptions, approximate
analytical results for the attenuation coefficient were
found. An extension of MacPherson’s model was pro-
vided by Piedra-Cueva [1993], who considered the ef-
fects of viscosity in the upper layer in addition to those
of viscoelasticity in the lower layer. Specifically, the
Stokes boundary layer at the interface and its contri-
bution to the surface wave damping were analyzed, as
were the effects of sidewall boundary layers in labora-
tory situations.

For a summary of the results of the above models, the
reader is directed to the recent review by Wen and Liu
[1997]. Additional models, including viscoplastic and
poroelastic seabeds are discussed and summary tables
are useful in identifying the most appropriate model for
a variety of conditions.

Recent work by Hill and Foda [1998] examined a very
different process in the dynamics of waves in a two-layer
model. They investigated the subharmonic paramet-
ric instability of internal waves to progressive surface
waves. Through use of a multiple-scale analysis, the
weakly nonlinear boundary value problem was solved
at successive orders. Linear analysis determined the
phase functions of the internal waves, and the theo-
retical results were found to agree extremely well with
those obtained in the laboratory. At the second order
of analysis, evolution. equations for the internal wave
amplitudes were obtained and growth rates for these
amplitudes were computed. The experimentally deter-
mined growth rates were found to agree reasonably well
with the theory. The analysis was carried out for in-
viscid, immiscible, stably stratified layers of arbitrary
depth, rendering the results very general in application.

The aforementioned propagation of surface waves over
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a muddy bed is an excellent example. For while the
many works cited above utilized linear analysis to pre-
dict the attenuation of surface waves due to a compli-
ant lower layer, the work of Hill and Foda utilized a
nonlinear, inviscid analysis to demonstrate a dramatic
interfacial instability that would occur under certain
conditions. In the context of a coastal or estuarine en-
vironment, this transfer of energy to the internal wave
field would then lead to enhanced mixing and transport
processes at the interface.

The current work is intended to synthesize the two
approaches in order to investigate the effect of viscosity
and elasticity on the nonlinear resonance mechanism
detailed above. By retaining weak nonlinearity as well
as lower layer viscosity and elasticity in the formulation,
the competition between the two effects can be clearly
demonstrated. It will be shown that proper scaling of
the lower layer properties relative to the nonlinearity is
crucial to the analytic tractability of the solution. With
the appropriate scaling, the viscoelastic effects appear
as linear damping terms. Mathematically, the effects
appear as corrections to the no-flow bottom boundary
condition at the second order of analysis.

Growth rates of the internal waves are computed and
reveal that viscoelasticity in the lower layer serves to re-
duce the nonlinear instability mechanism. A threshold
condition, at which nonlinear destabilization and vis-
coelastic damping balance, is readily demonstrated. Re-
sults for parameters typical of estuarine environments
are briefly discussed.

2. Formulation

The origin of a three-dimensional Cartesian coordi-
nate system is placed on the undisturbed interface be-
tween an inviscid surface layer of depth H and density
p and a viscoelastic lower layer of depth h, density p',
viscosity »', and elasticity modulus G’. The inviscid
assumption in the upper layer is justified by the fact
that the viscosity of water is many orders of magnitude
smaller than that of muddy sediment beds.

The y coordinate is defined as pointing vertically up-
ward, and the z and z coordinates define the horizontal.
The density ratio ¥ = p/p is assumed to be less than
unity. The surface wave field is made up of a single
progressive wave having amplitude a;, wavenumber £,
and frequency w. The displacement 7 of the free surface
from its equilibrium value is given by

1N = ay exp(if;) 01 = kz — wt.

Two oblique internal waves having amplitudes as and
az complete the resonant triad. The case of exact sub-
harmonic resonance is considered so that the displace-
ment of the interface from its equilibrium value is given
by

3
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where ), is the component of the internal wavenumber
vectors in the direction normal to the propagation of the
surface wave. The magnitude of the internal wavenum-
ber vectors is therefore given by |A| = /k?/4+ A2
Note that the wave amplitudes are taken to be complex
and functions of a slow timescale.

Moving on to the governing equations, the assump-
tion of an inviscid, irrotational upper layer allows the
velocity vector in that layer to be expressed as u = V.
In the lower, viscoelastic layer, the velocity vector is
decomposed into potential and solenoidal contributions
such that u = V® + U [e.g. Mei and Liu, 1973], where
U = (U,V,W). Therefore the governing equations are
as follows:

V2% =0 —-h<y<H+n (1)
N li
U - (v + 2 v =
plw
—(U-V)u- (V& V)U _h<y<E (2

The former of these two equations simply arises from
the statement of continuity, while the latter arises from
the momentum equation for the lower layer. This de-
composition is commonly done in the case of linear anal-
ysis, where it results in completely uncoupled equations
for ® and U. Clearly, as indicated by the right-hand
side of (2), additional difficulties arise with the retention
of the nonlinear terms and the equations are not fully
uncoupled. Careful scaling will allow for the circumven-
tion of these difficulties. The quantity v’ + 2iG'/(p'w)
is defined as v, the effective viscosity.

Considering next the boundary conditions, the free
surface conditions are given by

0
(5T Ve VIn=2 y=H+n (3)
®+1iVe-Ve+gn=0 y=H+n, (4)

while the bottom boundary conditions of no slip and no
flow are given by

Vd+U=0 (5)

At the interface, there are the usual kinematic condi-
tions specified by

y = —h.

((—%+V<I>+-v)§:@; y=¢ (6)
(%+(V<I>‘+U—)-V)§:<I>;+V‘ y=¢, (7)

where the plus and minus superscripts denote evalua-
tion just above and below the interface, respectively.
The condition of continuity of normal stress becomes

p(®+1VE-VE 4 g6)" = /(B +1VE- VS
+ 95) - 2pIVé(Vy + (Pmy)_ y=2¢. (8)

Finally, the interfacial condition of continuity of shear
stress, due to the inviscid overlying layer, is
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(28, + Uy + V)~ =0 y=¢ 9)
2%,y + Wy +V,)” =0 y=¢. (10)
For clarity, it is convenient to recast the problem

nondimensionally. As such, the following scalings are
adopted.

w d
t* = +/gkt, W= —, " = ——,
vk ar\/g/k
2.0
A*:é, U*— v ) é*: kyev
k kai+/g/k e*2/gk
. n . (a2, as)
=k = 3) = ———
€ ap, n ar’ (a3,a3) cay
f*:i (x*,y*’z*,H*,h*):k(.’lj,y,Z,H,h)

)
€ay

Note, first of all, that the asterisks denote dimen-
sionless quantities and are subsequently dropped in the
analysis. Also, note the presence of the surface wave
nonlinearity parameter e. The slow timescale is there-
fore formalized as 7 = et. Furthermore, as this study is
concerned only with the initial instability of the inter-
nal waves, the interfacial displacement variable as well
as the internal wave amplitudes are taken to be an or-
der of € smaller than the surface wave. The implication
of this is that there will be no feedback or modification
of the surface wave field. As the internal waves become
large in amplitude, there will indeed be such a modifi-
cation, but this cubic effect is beyond the scope of the
current work.

Finally, the scaling of the lower layer effective vis-
cosity clearly indicates that only weak viscosity is per-
missible. There are two constraints driving the specific
choice of scaling. First, if a boundary layer approxima-
tion is to be used in the solution of the problem, then
the viscosity must be small. The question of how small
is a bit more subtle, but the answer is readily obtained
from the second constraint, which is the need to keep
the ordering of the problem consistent. If the effective
viscosity were to scale as €, the solenoidal velocity cor-
rections would fall in between the orders at which the
free and forced internal wave problems are to be solved.
Only by scaling it as €2 can the solution by successive
orders proceed.

As demonstration that this restriction is fairly mild,
consider the following numerical example, derived from
an example by Dalrymple and Liu [1978]. The sur-
face waves are characterized by the parameters H =
4m,h=3m,w=1.26rad/s,y = 0.57. A surface wave
amplitude of 20 c¢m is assumed. The viscoelastic pa-
rameters are chosen, with guidance from Wen and Liu
[1997], to be v’ = 0.1 m?/s,G' = 50 N/m?. If scaled
properly, the nondimensional effective viscosity of the
lower layer should be O(1). For this example, it turns
out to be 1.82 + 0.804i, suggesting that the adopted
scaling is indeed correct.

The next step is to combine and Taylor expand, re-
taining terms up to O(e), the boundary conditions to
eliminate the displacement variables n and £. Before
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proceeding however, several simplifying conclusions can
be drawn from the choice of scaling for the viscosity.
First of all, to ensure balance of the linear terms in (2),
the rotational velocity vector components are taken to
be functions of a fast vertical scale, given by § = y/e.
Recalling the relative scaling between viscosity and non-
linearity that was formalized above, it is clear that this
fast vertical scale, i.e., the scaled thickness of the Stokes
boundary layer, is indeed equivalent to the nonlinearity.
The effects of viscosity will therefore be confined to thin
layers adjacent to the interface and the horizontal bot-
tom, and continuity indicates that V ~ (U, W). Given
that the interfacial boundary layer is subject only to
the boundary condition of zero shear, while the bottom
boundary layer is subject to the more severe condition
of no slip, it is expected that the latter will be of greater
significance.

Indeed, this can be demonstrated rigorously from ex-
amination of the boundary conditions. The zero shear
conditions at the interface ((9) and (10)) require that
(U,W) ~ e® and, consequently, V ~ e2>®. Therefore
the solenoidal corrections to the fluid velocity vector
in the interfacial boundary layer all are of higher or-
der than is being considered in this analysis and can
be disregarded. In the bottom boundary layer, how-
ever, the no slip condition (5) requires that (U, W) ~ ®
and therefore that V' ~ €®. So, at the second order,
the vertical component of the rotational velocity vector
will enter the boundary value problem as a correction
to the no flow bottom boundary condition.

3. Solution

The solution procedure is as follows. Both the ve-
locity potential and the solenoidal velocity vector are
expanded in power series of €. For example, ® is taken
to be

® = ¢ (y) exp(ib) +EZ¢J exp(16;) +
2
J3
€ ¢)(y) exp(if;) + c.c. (11)
j=2

In this expansion, the first term denotes the linear sur-
face wave and the second two denote the linear inter-
nal waves. The restriction to initial instability results
in the internal waves appearing at O(e). The remain-
ing terms are the second-order internal wave harmonics
forced by quadratic interactions between the linear har-
monics, and c.c. denotes the complex conjugate. Note
that higher-order terms in phase with the surface wave

are absent. While it is true that nonlinear interactions .

between the internal waves will modify the surface wave,
these interactions will not take place until O(e?®), an or-
der higher than what is being considered in the current
work.
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3.1. O(1) and O(e)

At these orders, the solutions for the surface wave
and the internal waves, respectively, are obtained. The
solutions for the velocity potentials and the dispersion
relationships are well known and are not presented here.
It is worth noting, however, that A,, and therefore the
angle of propagation of the internal waves relative to
the surface wave, is determined from the dispersion re-
lationship of the internal waves.

With the linear solutions in hand, the leading or-
der solutions for the rotational velocity components in
phase with the internal waves are sought. The expan-
sions for the components, in the bottom boundary layer,
are given by

U=U1( B4 eUs ()€™ + eUs (i)™

Je
Wi(@)e™ + eWa (@) + Wy (g)e™
—6V1( ) 101 +62V2( ) 102 +62V3(gj)ei93

The solutions for U and W are obtained from (2),
which, as a result of the scalings, reduces to its linear
form at the leading order. Through application of the
no slip boundary conditions at the bottom, the implicit
boundary condition that the solenoidal velocity vector
vanishes outside the boundary layer, and integration of
the continuity equation, the following solutions for V'
are then obtained.

1-1 aJI/\|w/w1/’
Vj =

2sinh(|A]R)

[ 5 ﬁ(17+§)}

Ve
i=2,3 (12)

3.2. O(e?)

At this order, the inhomogenous boundary value prob-
lems for the forced internal waves are considered. Non-
linear (quadratic) forcing arises from the free surface
and interfacial boundary conditions, while linear damp-
ing arises from the no flow bottom boundary condition.
For example, the boundary value problem for ¢} is given
by the following:

— A9, =0 ~h<y<H
—w? / / . % * .
T¢2 + ¢y, = 1a3Qa(¢1, 43) + iwda, y==H
- 0 = i03Qm(1,63) y=0
w? I+ I— — I+
1 = 057) + o = 04t =

ia3Qc(f1,5) +iw(dy —v¢3) y=0

In the above equations, the terms on the left-hand
side are linear in the second-order harmonic ¢). On
the right-hand side are terms arising from quadratic
interactions between ¢; and ¢}, as well as slow time
derivatives of ¢5. The quadratic forcing terms Q(4,B,0)
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are algebraically complicated and are presented in the
appendix.

Since the homogeneous problem had a nontrivial so-
lution, the inhomogeneous problem will have a solu-
tion only if the forcing terms are orthogonal to the
eigenfunction of the homogeneous problem. This is the
well-known Fredholm Alternative which is facilitated
through the use of Green’s theorem. Substantial ma-
nipulation eventually leads to the following evolution
equation for the internal wave amplitude az:

da2 . *
- = leas + Bas.

(13)
The interaction coefficients a and 3 are real and com-
plex, respectively, and have the forms as given in the
appendix. The companion equation for a3 is similarly
found to be

d
2% _ jaal + Bas. (14)

dr
Simple cross differentiation of (13) and (14) reveals
that the internal wave amplitudes grow exponentially
in time:

o xexp| (306472 /68 rat)r]
i=2,3.

Again, a is a real-valued instability coefficient originat-
ing from the nonlinear resonant forcing of the internal
waves. On the other hand, 3 is a complex-valued damp-
ing coefficient originating from the linear viscoelastic
correction to the second-order problem.

In the limit of zero viscosity and elasticity, 8 — 0,
with the result that a; o exp(xar) j = 2,3, as found
by Hill and Foda [1998] . Conversely, if nonlinearity is
ignored, then a — 0 and a; x exp(87) Jj = 2,3, rep-
resenting viscoelastic decay and frequency modulation
as investigated by MacPherson [1980] and others.

Finally, when both effects are present, it is possible to
quantify the competition between the two. For, as the
viscoelasticity is increased, there will be some value of 3
beyond which the damping effects exceed the destabiliz-
ing effects of the nonlinearity, and growth of the internal
waves will be suppressed. This threshold condition can
be expressed simply as

a? < |8 (15)

4. Results

Given the algebraic complexity of the internal wave
growth rate, it is convenient to consider the results
graphically. Figure 1 details the nondimensional slow
growth rate as a function of both viscosity and elastic-
ity for the values H = 1,h = 1, and v = 0.9. Recall
that the viscosity and the elasticity correspond to the
real and the imaginary parts of v,. Clearly, the vis-

0.1558

0.1556

0.1554

0.1552

slow growthrate

0.155F

0.15481

0.1546 L - L L L L L . L
0 1 2 3 4 5 6 7 8 9 10
viscosity

Figure 1. Internal wave growth rate as a function of
effective viscosity v.. The three curves correspond to
elasticity values of 0.0, 1.0, and 5.0. Surface layer depth
H = 1, lower layer depth h = 1, density ratio v = 0.9,
and frequency w = 0.9804.

coelasticity reduces the rate of growth of the internal
waves by a significant amount.

The competition between the linear damping and the
nonlinear destabilization is more vividly demonstrated
in Figure 2. In this case, the density ratio is taken to
be v = 0.725. Figure 2 reveals that if the viscoelastic-
ity is sufficiently large, there is no growth at all of the
internal waves. Rather, the growth rate becomes neg-
ative, representing the exponential decay characteristic
of linear damping.

While the nondimensional approach adopted in this
work provides for clarity of analysis, it admittedly serves
to obscure some of the physical trends apparent in the
results. As such, it is instructive to consider some di-
mensional results for physical variables typical of coastal
and estuarine conditions. Figure 3 details the internal

0.14+ 4
—00
-- 10
0.12p --50
0.1
o
]
<0.08
o
5
E3
$0.06 _
0.04 4
0.02} 1
0 L L
8 9 10

viscosity
Figure 2. Internal wave growth rate as a function of v..

The three curves correspond to elasticity values of 0.0,
1.0,and 5.0. H=1, h=1, vy =0.725, and w = 0.9771.
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Figure 3. Internal wave growth rate as a function of
h. H=4m, v =01m?/s, w=1257rad/s, v = 0.57,
and surface wave amplitude A = 0.2 m.

wave growth rate as a function of lower layer depth and
elasticity. Also shown is the growth rate for the case of a
purely inviscid lower layer. For the sake of comparison,
parameter values equivalent to one of the examples of
Dalrymple and Liu [1978, Figure 6] were chosen. As dis-
cussed earlier, the viscoelastic parameters were chosen,
with guidance from Wen and Liu [1997], to represent
typical clay-like seabeds. As in Figure 2, the reduction
in and ultimate suppression of internal wave growth is
clearly evident.

Finally, it is most useful to investigate the threshold
condition predicted by (15). Figure 4 details the criti-
cal surface wave amplitude, below which growth will be
suppressed, as a function of lower layer depth and elas-
ticity. This critical amplitude represents a perfect bal-
ance between damping and destabilization and is clearly
a result of substantial practical value.

5. Concluding Remarks

A second-order analysis has been presented in an ef-
fort to more fully describe the dynamics of internal
waves in a two-layer system. In previous works, the ef-
fects of lower layer viscoelasticity and surface wave non-
linearity were treated exclusively, yielding exponential
decay and growth, respectively. By combining the two
mechanisms, the competition between them was clearly
demonstrated. Careful scaling of the viscoelasticiy rel-
ative to the nonlinearity was crucial to the tractability
of the solution and allowed for the use of a boundary
layer approximation at the rigid bottom.

Results were presented and discussed in the context of
a typical estuarine environment. It was shown that the
lower layer viscoelasticity was capable of significantly
reducing or even completely suppressing the instability
of the interface. As such, the analysis proves to be a
useful predictive tool, indicating under what conditions
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significant transfer of energy to the internal wave field
is likely to occur.

Appendix

The quadratic forcing terms Q)(4,p,c) represent con-
tributions from the quadratic terms in the free surface
and interfacial boundary conditions. As detailed in sec-
tion 2, the nonlinear boundary conditions for ¢ are ob-
tained through combination (in order to eliminate the
displacement variables n and £) and Taylor expansion
(to allow for imposition at the equilibrium positions).
The nonlinear portions of these boundary conditions are
given by the following:

Qa(2,2) = —(VO - V), + $t(Prsy + Dyy) y==H

Q(®,®) = 15 [(Ve~ - Vah) - (yva;

- VEr) - (85, - ¥)08F —87)]  y=0
Qc(P,®) = —(Ve™ - Vo),
+y(VET- V), + 555 [(18F — &)
(’yq)?;y + V(I)ery = ®@ppy — <I>y—y)]

y = 0.

Next, the expansion for ® is substituted into these
expressions and terms are sorted by order and by phase.
For example, when considering the forced problem for
#3, quadratic products between ¢; and ¢} are collected
to yield the following forcing functions:

w2cth(|Alh) 1 =] [wsh(|A|H)
QA ¢ a¢* = - } |:
(81, 93) 4|7 5 TN
h(|\|H
(8]A]* +2 - wﬂﬁ—%&[——l(w —16|\)? — 3w4)J
0.24 T T T T T T T
— G=0 Pa -
022} |- - G=25Pa -

critical amplitude (m)
o o o
= > ®

©
N

0.1

0.08 ) L L .
2 22 24 26 28

h? ) 3?2 3:4 3f6 BTB 4
Figure 4. Critical surface wave amplitude as a function
of h. H=4m, v =0.1m?/s, w=1.257 rad/s, and
v = 0.57. :
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1 wcth(|A]h)

w cth(|/\|h) =1/ oiyp2

(1= 29+ IAP) + [ S s
wcth(h)cth(JA|R)

+ 3/2)} + [w?ch(H) - sh(H)]{ 8IA|

cth(h) [w2cth(])\|h) 1= }
4v|A| ¥

(=7 —2+4A) })

(=4I +3) + —

Qold,y) = 1B = wPsh(dD)] {w[—cth(lAlh)

1-7 4|
H) | PN

) 2
1 [w’cth(]Alh)
wl 4yl

1—v _ B

-1 - -1
weth(h)cth(|A|R)
+[w2ch(H)—sh(H)]{ NI =) [2(1—|A1*) =]
w(l—7) w3cth(h) w3cth(|A|h)

2 8 4\

v [wlcth(Alh) 1-7 o
1—7[ 4y|A| v Hw(l K

+

cth(h)

N 2|/\|2cth(h)] }

w

+

Note that ch, sh, and cth are used, for brevity, to rep-
resent the hyperbolic functions cosh, sinh, and coth,
respectively. The interaction coefficients o and 8 are
then given by the following expressions:

- (0 =50 e
1

_ __”7__] h(A|H) + 4I/\Ish 1A|H)} —Qc)/

oo [0 =g

M;(wmf)

5= [~ i vy ] / [ssi(aim) (201

w2ecth(|Alh)
- 27{[ 4y|A|

w2cth(|AlR)
4| Al

-f‘ﬂmwm
Y

i Wmﬁﬁ}
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