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A weakly-nonlinear analysis of the transient evolution of two-dimensional, standing waves in a
rectangular basin is presented. The waves are resonated by periodic oscillation along an axis aligned
with the wavenumber vector. The amplitude of oscillation is assumed to be small with respect to the
basin dimensions. The effects of detuning, viscous damping, and cubic nonlinearity are all
simultaneously considered. Moreover, the analysis is formulated in water of general depth.
Multiple-scales analysis is used in order to derive an evolution equation for the complex amplitude
of the resonated wave. From this equation, the maximum transient and steady-state amplitudes of
the wave are determined. It is shown that steady-state analysis will underestimate the maximum
response of a basin set into motion from rest. Amplitude response diagrams demonstrate good
agreement with previous experimental investigations. The analysis is invalid in the vicinity of the
“critical depth” and in the shallow-water limit. A separate analysis, which incorporates weak
dispersion, is presented in order to provide satisfactory results in shallow wat2@0® American
Institute of Physics.[DOI: 10.1063/1.1569917

I. INTRODUCTION rigorous explanation of this phenomenon was provided by
Benjamin and Urseff.Since then, theoretical and experimen-
tal studies of Faraday waves have significantly advanced the
While studies of finite-amplitude effects can be tracedunderstanding of nonlinear standing waves. A detailed re-
back to Stoke$ for the case of progressive waves, a similaryiew is given by Miles and Hendersdn.
study of standing waves did not occur for another century.  Faraday resonance results in initial exponential growth
Penney and Priédormulated a weakly-nonlinear theory for of the forced wave. The inclusion of weak viscosity reduces
standing waves in infinite depth and Tadjbakhsh and K&llerthe growth rate and establishes a minimum forcing amplitude
considered the more general case of arbitrary depth. The rerecessary for growtt. If cubic nonlinearity is considered, it
sults for the standing wave case were found to be similar tean be shown that the waves do not grow unbounded, but
the progressive wave case in the sense that the wave freather attain a maximum amplitude due to nonlinear fre-
quency became amplitude dependent and the free-surfaggiency detuning. Generally speaking, an evolution equation
profile distorted due to the presence of bound superharmormf the form
ics. Of particular interest was the result that the sign of the
frequency shift(from the linear valug depended upon the a=iAa—iBa* —(1—i)aa—iraZa* (1)
relative depth(ratio of depth to wavelengihof the water.
Tadjbakhsh and KeIIérfqund the cri.tical value of this ratio is obtained, whera is a complex amplitude, and, 8, a,
to be equ_al t0 0.17. MOt'Va.tEd by tk_ns work, Fditonducted .and\ are real-valued detuning, forcing, damping, and non-
an experimental study which confirmed the presence of th'ﬁnear interaction coefficients.
frequency reversal, but showed the critical value to be 0.14.
In a multiple-scales, slowly-varying analysis of finite depth
standing waves, Roskeslemonstrated that sideband insta-
bilities would occur beyond a critical depth of 0.162, which
is precisely the critical depth determined in the present stud

A. Nonlinear standing waves

Investigations of Faraday resonance have not been lim-
ited only to surface water waves. For example, Foda and
Tzandg! and Kumat? both studied the Faraday resonance of
thin viscoelastic layers. Umbanhowat al*®* have shown
¥hat Faraday resonance can excite three-dimensional stand-
ing “waves” in a pure granular medium as well. Finally, the
Faraday resonance of interfacial waves has been pursued by
The above studies focused on the characteristideeef  many authors, including Benielli and Somméfiand Hill 1°
i.e., unforced, weakly-nonlinear standing waves, with little The experimentally determined growth rates and maximum
emphasis on the generation of the waves. Vertical oscillatioramplitudes of the former authors were found to agree well
known as Faraday resonance, of a fluid domain, can generatéth the predictions of the latter author.
subharmonic standing waves. Because the base state of the Parametric instabilities may also be driven by nonlinear
flow in this case is periodic, this type of instability is known interactions between modes. An elegant example is that of
as a parametric instabilify/First observed by Faraddythe edge waves on sloping boundaries. These trapped modes

B. Parametric instability
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propagate in the alongshore direction and were shown bto “soft spring” behavior as the water depth had passed
Guza and Davi€ to be resonated by weakly nonlinear, nor- through the critical value. The re-scaling by Waterh@tise
mally incident surface waves. It has been hypothesized thainified the two responses, illustrating that the shallow-water
edge waves resonated in this fashion play a role in generakard-spring behavior was, in actuality, a soft-spring response
ing the regularly spaced beach cusps that are found in manyith an extra “kink.” As a result, a quintic equation in maxi-
coastal areas. As with the case of Faraday resonance, a magium amplitude was derived.
mum resonated wave amplitude, which is much larger than  Finally, the important works of Faltins&hand Faltinsen
the incident wave amplitude, can be determined. This thirdgat 5126 must be discussed, as they closely relate to the cur-
order analysis has begen performg<jlgby Guza and BdWen,rent analysis. In the former paper, the author used perturba-
Minzoni and Whithant? and Rockiiff: tion methods and inviscid analysis to derive a cubic equation
governing the maximum wave amplitude in water of general
depth. A solution of this equation yielded an amplitude re-
If a basin of fluid is oscillated horizontally, rather than sponse curve similar to those discussed above. The latter
vertically, waves can again be resonated, although there apaper relaxed many of the assumptions of the former and
some important differences. Generally speaking, an ampliused multi-dimensional modal analysis to analyze the tran-
tude evolution equation of the form sient behavior of the resonated waves. Damping was consid-
a=p+ida—(1—i)ea—ira%a*, ) ered phen.omenologically. Good agreement between thgory
and experiment was reported and many of the observations
whereA, B, a, and\ are as above, is now obtained. The gre consistent with the present analysis. Of particular note is
initial growth is now linear in time and the effect of viscosity the conclusion that, in large tanks, steady-state analysis is not
is to contribute to placing an upper bound on the wave ampayticularly valuable. This is becaugi¢ the maximum tran-
plitude rather than solely reducing the rate of growth. sient amplitude can far exceed the steady-state amplitude and

There have been a number of studies in the past thafj) the time that it takes to actually achieve a steady-state
have dealt with horizontal resonance. ChéStand Chester can far exceed the duration of the forcing.

and Bone$' included the effects of weak dispersion and
weak viscosity in their theqr_encal and experimental st_udleq_). Present analysis
of resonant waves. The individual roles played by nonlinear- S . .
ity, dispersion, and damping are summarized by the latter The present analysis distinguishes itself from previous
authors?! studies in that it simultaneously considers the effects of weak

The leaning over of the curve near a local maximum...musx/ilscosny’ general water depth, and transient wave evqutioq.
be a nonlinear effect closely associated with “hard spring” ost previous S“_’d'es focused only on §teady-state analy3|s
solution of Duffing's equation. The existence of severaland did not describe tr_le ten_]poral evqu.tlon of the amplitude.
maxima is the result of dispersion, and the fact that a maxi] N0S€ that gave consideration to transient aneﬂ%?syvere
mum is actually attained and that the response curve is coflumerical in nature, with only limited results being pre-
nected arises from dissipation. sented. By using a multiple-scales analysis, the present study
.yields an amplitude evolution equation with extremely com-
bl'gact coefficients. As a result, consideration of a wide range
of parameter space is possible. Upon comparison with exist-

C. Horizontal resonance

The experimental data indicated that the number of
furcation points in the amplitude response diagram was
decreasing function of the relative depth of the fluid. For, . . o

. . : , .ing experimental studies, the present analysis is seen to per-
example, experiments performed at identical forcing ampli-
tudes yielded a response curve with six bifurcations when thgorm well. .
relative depth was 0.042, but a curve with only three bifur- The prese_nt study also elaborates upon the dlfferenc_e
cations when the depth was 0.083. between trar_15|ent and steady-state amplitude response dia-

Lepelletier and RaichléR used long-wave theory, also gram.s. In this context, .“tranS|'ent" refers tp the mf'mmum
with dispersive and dissipative terms, and paid particular ag@MPlitude the system will obtain once set into motion from
tention to the transients associated with the commencemeffESt @nd “steady-state” refers to the fixed-point solution of
and cessation of the basin motion. Their study gave an exD® sysFem.O gpqn comparison, it is seen that previous
plicit result for the initial linear growth rate of the resonated formulat!on§ “will underestimate the maximum response
wave. Solving the nonlinear problem numerically, the au-Of & basin set into motion from a state of rest.
thors produced amplitude response diagrams that showed the One potential application of the current study is to the
same lean to the r|ght as the studies listed above. Maximurﬂrediction of Seismica”y forced waves in lakes, reservoirs,
amplitudes were found to be one to two orders of magnitud@nd fluid storage containers. An understanding of the rate of
greater than the forcing amp“’[ude and experiments WergrOWth and maximum amplitude of resonated waves will al-
found to agree very well with the theory. low for a prediction of shoreline inundation, spillway over-

The work of Waterhoug@ is significant in that it paid topping, and dynamic loading. As an example, Rusther
special attention to resonance at near-critical depths. Followsonducted experimental studies of a scale model of the Los
ing the lead of Ockendon and Ockenddrihe problem was Angeles Reservoir following the 1994 Northridge Earth-
re-scaled to handle this special case. Prior to this, responspiake. The results noted in particular the rich variety of
curves had demonstrated a transition from “hard spring” modes that can be generated in seemingly simple geometries.
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’ gé+ D= — jU-U—£Dy— 3£y~ zé[u-uly,
y=0, (8)
U_gt:ué:x_é:vy_ %fzvyy+uy€§x, y=0. (9)

Next, the problem is to be solved at successive orders,
based upon an expansion in a small parametbr this case,
the small parameter is formalized as the ratio of the forcing
amplitudeb to the tank length.. For cubic nonlinearity to
balance the forcing, therefore, it is seen frd@) that a
~ €3 is required. Additionally, both detuning and the slow
time scale on whicta evolves should scale bg?’®. Finally,
the viscosity of the fluid should scale le$f>. Thus, the prob-

FIG. 1. Schematic of rectangular basin geometry. The basin length, breadtigm may be nondimensionalized by adopting the following:
and undisturbed depth are given by D, andh, respectively.

L

h* = h D*= b b* = b =1
L L el 7
II. FORMULATION
1) A
As illustrated in Fig. 1, two-dimensional waves, of t*=tJyg/lL, o*=—, A*= T Wwral
wavenumbek, in a basin of deptth and lengthL are con- va/L €Vo/L
sidered. The breadth of the basinOs The fluid density and
kinematic viscosity are and v, respectively. Periodic forc- L @ . v . u
ing of the basin in thet direction is facilitated by prescribing a=ar VT RN U= EEINAT
the velocity of thex=0 andx=L vertical walls to be
bow . * — ¢
U0=UL=7e"(“’+A)‘+c.c., (3) &=
whereb is a real-valued displacement amplitudeijs a lin- The asterisks are subsequently dropped and nondimen-

ear resonant frequency of the basinis some small detun- sional quantities are upderstood. In the resul_ts section, some
ing from this resonant frequency, and c.c. denotes the conflimensional results will be presented to facilitate compari-
plex conjugate. sons with previous stu_dles. This WI|.| be clarified locally.

The free-surface displacement is describedtpy;t). If The free-surface displacement is taken to be
the fluid is assumed to be weakly-viscous, the velocity vec-
tor, u=(u,v,w), is given by the sum of the gradient of a
potential function®(x,y,t), which satisfies Laplace’s equa- + €’y ,cog2nmx)e 2+ ey, cognax)e
tion,

£=eP3yocognmx)e “t+ €23y,

+ enyzcog3nmx)e F¢+c.c., (10)
V2d=0, —hsy<¢, (4)
wheren is the integer mode number of the wave. As indi-

and a rotational velocity vectdd=(U,V,W). By definition,  cated by this expansion, both a bound superharmonic and a
therefore,V-U=0. Through a restriction to weak viscosity, set-down of the water surface are expected at second order.
the rotational velocity vector is only of significance in the At third order, a bound superharmonic and a term in phase
vicinity of boundaries. A solution for these boundary layerith the fundamental are expected. The expansion for the
corrections and their incorporation into the boundary valugselocity potential is similar, with the exception that there is
problem are discussed at length by Mei and’Eiand Me?® 1o equivalent set-down term.
and will not be presented here. At the leading order, there is only the well-known solu-

The problem is to be solved subject to the familiartion for the linear standing wave,
boundary conditions

u=0, all solid boundaries, (5) 7701=;7 (12)
gé+d+ 3u-u=0, y=§¢ (6) e
Etub=u, y=¢. @ Po1= S sinhnarhy COSANTY+M1, (12)

Since cubic nonlinearity will be considered, the free surfacewith w?=ns tanhfizh).
boundary conditions are Taylor expanded about the undis- At the next order, the familiar Stokes wave solution for
turbed free surface, yielding the superharmonic is fourid:
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_a’nmcostinmh) 5 cosR(nmh 4 1 13 18F
N12= 16 Sinﬁ%(nﬂ_h) [ Cos (nﬂ- ) ]1 ( ) 6 :_
_ - 3| (,!)a2 2 n h 14 1.4 E_
¢12_ 32 Sinﬁl(nﬂ_h) COS}‘[ n’7T(y )] ( ) E
The “zeroth” harmonic, i.e., the steady-state set-down of 12F
the water surface, is given by E
710= 3 w?|a|?[ 1+ cottP(narh)]cog 2n7x) Eosz
nalal? . E
4 sin2nwh) (15) 06F
Tadjbakhsh and Kelléderived the first term, which applies 04 H
to standing waves only, but omitted the second term, which
is well-knowrf®*%and which applies to both progressive and 02
standing waves. oF T T
Finally, at the third order, there are two problems to 0 10 20
solve. The first is for the bound superharmonmjig;, whose T
free surface displacement is given by FIG. 2. Temporal evolution of wave amplitufi, obtained from(21)—(22)

for the case ofx=0.25, 8=1,\=1, andA=0.
723

_ 3n®m*a’[1+8 cosfi(nh)] level of detail is unwarranted in the present analysis. More-
512 cosit(nh)—3 cosf(nh) +3 cosk(nmh)—1]"  over, within the formal framework of the current perturbation
(16 approach and the chosen scaling of the viscosity, damping in
the bulk does not enter the problem until an order higher than
Second, and of greater interest, an inhomogeneous probthat is being considered. Thus, the usg18) is justified.
lem for the fundamental harmonic is obtained. Because of The forcing coefficien is given by
the choice of scalings, the forcing, damping, detuning, and 1
cubic nonlinearity all enter the problem at this order. Due to  g=[1+(—1)""1]—[tanH(nwh)]32 (19)
the existence of a nontrivial solution at leading order, it is \/ﬁ

necessary to impose an orthogonality cor_1d|t|on on the homoémd the nonlinear interaction coefficients given by
geneous and inhomogeneous solutions to guarantee

solvability3! Known as the Fredholm alternative, this appli- B wn’m?
cation of Green’s theorem leads directly to a temporal evo- - 256 sinf(nh)coslf(nwh) [~ cosfiénmh)
lution equation for the wave amplitude:
o . _ ) +6 cosli4nh) + 2447 coshi2nwh)]. (20
a=ida-(1-iaa+tp=irala, (17) SettingA =0 reveals the critical depth to be 0.162. Note as
where the differentiation is with respect to the slow timewell that\ is a monotonically decreasing function of bdth
scaler. andn and that\ —« ash— 0, indicating the invalidity of the
In this equation,« is a damping coefficient, given by solution in shallow water.
Keulegari? as Noting that the complex amplitudecan be expressed as
its amplitude and phase, i.@=|ale'’, (17) is decomposed
a:i rol £+ n nm(1-2h) (18) into the coupled equations,
n 2|D sinh(2nrh) |’ dlal
It should be noted that this result is not exact, as it is based g, — /8 c0s6—alal, (21)

upon a boundary layer approximation and neglects damping
in the bulk. Indeed, the measurements of Keulégeiffered
significantly from(18) in the case of small, nonwettirnglis-

tilled water and lucitg basins. If the basin was large or wet- As an example, Fig. 2 shows the evolution of the ampli-

ting (glasg, the differences were only slight. In both Cases’tude|a| with 7 for the case ofr=0.25, B=1, A =1, andA

the discrepancies we re.partly attributed to ssusrfa.ce-tensmr; 0. Clearly evident are the maximum transient amplitude
and surface-contamination effects. Martef al>> give a

. At and the steady-state amplituég.
more complete treatment of damping, where the rate of en- " y plitucig

ergy dissipation in the bulk is included. Given the small vol-

. . . . IIl. RESULTS
ume to surface area ratio of their experiments on capillary
waves, this was warranted. Given the large volume to surface Before considering the nonlinear results, there are a few
area ratio of the experiments discussed in Sec. lll A, thisnteresting points to make. First of all, note that, from a state

do | ,
|a|E=—Bsm0+(A+a)|a|—)\|a| : (22
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FIG. 3. Transient amplitude response diagrams, obtained (&@nfor the ~ FIG. 4. Transient and steady-state amplitude response diagrams, as pre-

case ofg=1.0. The different curves denote different amounts of damping. dicted by nonlinear theor{25), (28). Also shown are sample transient re-
sults from numerical integration of the nonlinear equaii®¥ and sample

transient results from linear theof23). 8=1.0 for all curves and.=1.0
for all nonlinear curves. Damping values are specified in the legend.
of rest, no growth =0) is predicted for even modes. This
is because the horizontal forcing is anti-symmetric and two-

dimensional waves with even mode numbers are 27\ B2 1/3
symmetric* = { (26)
Next, if the linear limit is considered \=0), it is 4

sf[raightforward to derive expressions for the maximum tran-  The transient response is more difficult to obtain analyti-
sient and steady-state amplitudes: cally, in the case of general However, as will be illustrated

B 2a in Sec. Il A, it turns out thatx<1 for water waves in large
AT_[a2+(A+a)2]1/2 1+ ex;{ - m tanks. As a result, the 'damplng in this case has little rol'e in
determiningA; and it is reasonable to deduce a transient
am |2 response diagram for the inviscid limit. To do thig1)—(22)
+2 exp{ “Tat Al } , (23 are first divided and then rearranged to take the form of a
5 perfect differential. Integrating, it is seen that the quantity

A2+ (BT a1 @49 Blajsino— 1A]a?+ tx|al* 27)

which, in the inviscid limit, becomeA;=28/A and Ag is a constant of the motion.
=pIA. Next, if the basin is being set into motion from a state of
Figure 3 shows the variation @&; with A anda for a  rest (a]=0), it follows that the constant is zero for all times.
fixed value ofB. The steady-state amplitude response curvesinally, when|a| reaches a local maximum, the inviscid limit
are similar in shape. Fror23)—(24), it is clear that when of (21) shows that?= + 7/2. Thus, the equation
A=—a, As=A; and when|l+A/a|>1 or a—0, Ag
—A7/2. Similar response curves were shown by Lepelletier a3~ %|a| +4_,3:0 28)
and Raichlerf? minus the frequency shift due to viscosity. B
Of much greater interest is the response when nonlinear- , ) , )
ity is included. Considering first the steady-state responsé?a_‘y be solved e>_<actly to obtair. The single bifurcation
the derivatives if21)—(22) are set to zero and the equations POINt Of the transient response occurs at
are subsequently squared and added to yield
20A+a a?+(A+a)? 2
e

27}\32 1/3

2

A= (29

|al®~
Figure 4 shows the variation &g, as obtained from
This equation, which is cubic ifa|?, is easily solvede.g.,  (25), with a andA for fixed values ofg and\. In this case
Abramowitz and Stegu) to obtain the response diagram \>0, so the water is relatively shallog.e., less than the
for As. For nonzeroa, there are two bifurcation points. In “critical” depth). As the damping increases, there is a slight
the inviscid limit, the single bifurcation point is easily shown migration of the response curve to the left and, more pro-
to be at nounced, the two bifurcation points tend towards one an-
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other. Note that the second bifurcation point is within the (a)
graph axes only for thee=0.5 case. At large enough values
of «, the bifurcation points vanish altogether and the ampli-
tude response becomes single-valued forAalFor the cur-
rent example, this occurs when=0.86.

Also shown, for the sake of comparison, are the un-
damped transient response curves, obtained f(28h and
(28). The former is included in order to highlight the inad-
equacy of the linear theory near resonance. Note that while
(28) predicts three possible amplitudes at values of detuning
beyond the bifurcation point, the two highest amplitudes are
spurious. This is because, in addition to the initial condition
|a|=0 that was used in derivin(28), there are other com-
binations of nonzerda| and @ that result in(27) being zero.
Finally, the damped 4=0.1) transient response curve, ob-
tained by numerically integratin@.7) from the initial condi-
tion a=0, is also shown. A fourth-order explicit Runge—
Kutta scheme, utilizing the Dormand—Prince paiwas used
to carry out the integration and, as alluded to earlier, the
omission of weak damping i1628) leads to only a slight
overestimation ofA;. Note also the “jump” to the lower
branch of the numerically-obtained transient response dia-
gram with increasing\.

Further insight into the steady-state and transient solu-
tions shown in Fig. 4 can be gained by introducing
=|a|cos# andv =|a|sin g, in which case the constant given
in (27) becomes

Bv— AU+ v2)+ IN(U+0v?)2, (30

Figure 5 shows contours of this constant =1, \=1, A
=1, 2, 3. Recall as well that=0 was assumed in obtaining
(27) and, therefore(30). In the case ofA=1, there is a
single, stable steady-state solution, as was shown in Fig. 4.
Tracing the zero contour from the initial condition ofv
=0, it is clear that the maximum transient response exceeds
the steady state. In the case df2, there are two stable
steady-state solutions, corresponding to the maximum and
minimum roots of(25), and one unstable solution. Consider-
ation of the contour passing through the origin reveals that
the maximum transient response exceeds all of the steady-
state values. Finally, in the case &f 3, there are again two
stable steady-state solutions and one unstable steady-state
solution. While Fig. 4 suggests that there should be three
possible solutions foA; at this value of detuning, recall that
the two largest solutions are spurious. This is evident when
the contour passing through the origin is considered. Com- I
paring Figs. B)—5(c), it is clear that the zero contour has A
“pinched off,” leading to the dramatic jump to the lowest
branch of the transient response diagram, as was observedpE. 5. Phase-plane diagrams(80) for 8=1 and\ = 1. Note tha(30) was
the numerical results in Fig. 4. derived assuming:=0. (8) A=1; (b) A=2; (c) A=3. In (a), one stable
An additional point of significant interest is under what steady-state exists while ifb) and(c), two stable and one unstable steady-

. . . . . states exist. Tracing the contour that passes through the origin reveals the
conditions the linear and the nonlinear theories diverge. Res, 9 P 9 g

maximum transient that occurs in a basin excited from rest.

calling Fig. 4, the linear and nonlinear transient response

diagrams were nearly coincident at large values of detuning.

Figure 6 shows, in gray, the regions of validity of the linearwhite indicate linear predictions that are more than 10%
theory for multiple values ofr and \. Here, validity is de- above the nonlinear predictions and regions that are black
fined by the arbitrary criterion that the linear prediction beindicate linear predictions that are more than 10% below the

within =10% of the nonlinear prediction. Regions that arenonlinear predictions.

[—R=]
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(a)

4 : 0 4

A

FIG. 6. An illustration of the range of validity of the linear theory. Gray denotes regions where linear predictibpsacé within =10% of nonlinear
predictions ofA;. White regions indicate linear predictions that are more than 10% greater than nonlinear predictions and black regions indicate linear
predictions that are more than 10% below the nonlinear predicti@hd.=1, «=0; (b) A=1, «a=0.5; (c) A=1, a=1; (d) A=10, @=0; (e) \=10, a

=0.5; (f) \=10, a=1.

Consider first the undamped & 0) moderately nonlin-  yielding amplitudes consistent with the nonlinear theory. As
ear \=1) case shown ifa). First, it is clear, and intuitive, A approaches 0, the “hard-spring” nature of the nonlinear
that as the system is forced harder, the detuning band wheresponse results in the linear theory over-predicting the am-
the linear theory is invalid increases. More interesting is theplitudes. AsA becomes positive, the two response curves
change in behavior witlh at a fixed value of3. If the spe- cross, leading to a brief band of agreement before the linear
cific value of =1 is considered, the conditions are the sametheory begins, severely under-predicting the response. Fi-
as the inviscid transient curve in Fig. 4. At large negativenally, when the nonlinear response “jumps” down to the
values ofA, the linear response is limited by the detuning, lower branch of the response curve, the two theories are
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FIG. 7. A comparison between the present theory and the experimental dafélG. 8. A comparison between the present theory and the experimental data
of Lepelletier and RaichlefRef. 22. Both transient and steady-state am- of Feng (Ref. 39. Only steady-state amplitude response diagrams are
plitude response diagrams are showi 0.0605, 3=0.185, A=141, € shown.a=0.0808,3=0.651, A= —34.0, e=0.000656.

=0.00322.

mencement of an experiment could lead to values-pthat
were ~10% different those predicted with the assumption,

again brought into agreement. The other plots in Fig. 6 i”us'vfyhich was used in deriving28), of zero initial conditions.

trate that, as damping increases, the range of a_ppllicability o' Some data on experiments in water of greater relative
%epth are provided by Feri The reported dimensional pa-
rameters ard. =0.2286 m,D=0.127 m,h=0.104 m, and
n=3. The relative depth is therefore 0.67. The kinematic
viscosity was not reported and is assumed to be 1
Figure 7 shows the predictions of the present analysisx 10" ® m?s™!. Regarding the forcing amplitude, the author
along with the experimental measurements of Lepelletier andontrolled his tank with a function generator. The unfortu-
Raichlen?? The dimensional parameters for this dataset aremate aspect of this is that, as the forcing frequency was var-
L=0.6095 m,D=0.23 m, h=0.06 m, b=1.96<x10 3 m, ied, so was the forcing amplitude. The only reference to the
r=9.4x10" " m?s !, andn=1. The relative depth is there- actual amplitude of oscillation is a statement that “the peak-
fore 0.0492. The corresponding nondimensional parametets-peak amplitude of the moving platform...is about 0.3
area=0.0605,8=0.185,A =141, ande=0.00321. The ex- mm.” Assuming, therefore, thdi=0.15 mm, the nondimen-
perimental results have been converted to the present nondiional parameters are=0.0808,3=0.651,\=—34.0, and
mensional convention. Note that the vertical axis indicates=0.000656. As shown in Fig. 8, the agreement between the
the maximum crest elevations, not the maximum values obbservations and the theory is reasonable, although large dis-
Ar andAs. crepancies exist at low forcing frequencies. More accurate
Considering first the steady-state results, the agreemenmtformation about the forcing amplitudes is needed to further
is quite good. The theory correctly predicts the major bifur-investigate this discrepancy.
cation atA~3.1, but is unable to predict the dispersion- Additional experiments were conducted by Faltinsen
associated bifurcation at~—1.5. This clearly shows the et al?® Note that, in the following comparison, the variables
inability of the present analysis to treat resonance in the shakre assumed to be dimensional, so as to facilitate comparison
low water limit. with reproduced figures. In their study, first-mode oscilla-
With regards to the transient results, the agreement isons of a tank 1.73 m in length and 0.2 m in breadth were
reasonable, but it is clear that the theory consistently overeonsidered. The water depth was 0.6 m, yielding a relative
predicts the free-surface elevation and fails to correctly predepth of 0.173. While the authors do not present amplitude
dict the location of the major bifurcation. Portions of the response diagrams, they do provide transient records of free-
discrepancy can be attributed to the shallowness of the bassurface elevation at the tank end-wall.
and the omission of viscosity in deducing the transient re-  Figure 9 shows the initial evolution of the free-surface
sponse diagram, as was illustrated in Fig. 4. A possible exdisplacement at the tank end-wall for two different values of
planation for part of the balance of the discrepancy is offeredletuning. For each case, the measurements and calculations
by Faltinsenet al?® They note that the maximum transient of Faltinsenet al?® are shown, along with the calculations of
amplitude is quite sensitive to initial conditions. They foundthe present study. In the first casb~=3.2 cm and A
that very slight motions existing in the tank at the com-=0.424 rads®. The corresponding nondimensional param-

the range obviously narrows.

A. Comparison with experiments
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FIG. 9. A comparison of end-wall free-surface displacement betésehe measurements of Faltinsenal. (Ref. 26; (b) the calculations of Faltinsest al.
(Ref. 26, and(c) the calculations of the present study. Note that this figure presents results in dimensional forhat3 m,D=0.2 m, h=0.6 m, b
=3.2cm,n=1,A=0.424 rad %, v=1x10"¢ m?®s~L. Portions(d), (e), and(f) are similar, but withh=2.9 cm andA =1.07 rad s*. Portions(a), (b), (d),
and (e) reproduced with permission from Cambridge University Press.

eters aree=0.0185, «=0.015, 8=0.453, A=2.55, and\ chronization between the observations and the calculations.
=-0.409. In the second caseb=2.9cm and A For both experimental cases, the present analysis, which is
=1.07 rads!. The corresponding nondimensional param-extremely compact, performs very well in terms of predict-
eters aree=0.0168, «=0.0160, 8=0.453, A=6.83, and ing the maximum free-surface elevation. The present analy-
A= —0.409. sis correctly predicts the period of the nonlinear “beating” to
Note first of all that, in both experimental runs, the basinbe ~6 s in the case oA =1.07 rad §*, but somewhat over-

was not set into motion untii~6 s, hence the lack of syn- estimates the period at-15s for the case ofA
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| A - present analysis
[ |— — — - A, - present analysis - i i i -
03fF|_ _ . A Ockendon & Ockendon 1973) the free-surface displacement and horizontal velocity are ex
E |- A, - Faltinsen (1974) panded as
025 no4
B q —qi(w+!
i £=2, - cosgkxe A, (33
| q=
=02
< - : " jwa
I e _ q.. —qi(w+A)t
015 %,,/""/ u qzl 2kh Slmqu)e ) (34)
[ re .
b ) wheren now refers to the number of modes retained and the
t /,/" complex conjugate is once again understood.
- e If weak detuning, viscosity, nonlinearity, and dispersion
0.05 = _/f;{-* are all considered simultaneously, the following evolution
e equation for thegth mode is obtained:
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FIG. 10. A comparison of amplitude response diagrams obtained from the n—q

present transient theof28), the present steady-state the¢2), the theory 3iw|(q )
of Ockendon and Ockenddfef. 24, and the theory of FaltinseiiRef. 25. ~an an,2+ q E a; AQpiq
=0, =0.185,A=141, ¢=0.00322. p=1
q/2—1
+q X ayaqp|, g even
=0.424 rad 5. The observations and calculations of Faltin- Pt
26 ;
senet al“® show the period to be closer to 13 s. . 2bw i(qw)3h
aqg=01q—— +|qiA+ ————(1
. . - ) a a L 69
B. Comparison with existing theories
As discussed in Sec. | C, there have been many previous . . [qQre2h+D|  Bie niq N
theoretical studies of forced waves in tanks. It is therefore ) 2 2hD 8q 8h qp:1 8pap+q
worthwhile to highlight the distinctions between those works
. (q+1)/2—-1
and the present study. For example, consider the results of E dd:
Ockendon and Ockend&hand Faltinser?® Both approaches +q & 8pq-p|» 0 0da; (35
were inviscid investigations of the steady-state response of
an oscillating tank. where § is the Kronecker delta. As an example, if seven

+

ai

As shown in Fig. 10, the steady-state predictions of botimodes are retained, the evolution equation for the primary
Ockendon and Ockend&hand Faltinsef? are very nearly (q=1) mode is given by

identical to those predicted b§25) with «=0. Since, as 3

suggested by the data in Fig. 7, transient amplitudes can far :Zb“’h iA+ tw”h —(1-i)~ [vo2h+D

exceed steady-state amplitudes, an application of these pre- - L 69 2 2hD

vious theories will underestimate the maximum amplitude in 3iw

a basin set into motion from a state of rest. Another short- — ——[afa,+alaz+ala,+alas+atag

coming of steady-state analysis is that, as pointed out by h

Faltinser?® it can take an inordinate amount of time for a

weakly-damped system to attain a fixed-point solution.

+agas].

While the techniques that led {@5) and(28) could, in
principle, be applied here to obtain coupled equations for the
IV. SHALLOW WATER transient and steady-state solutions, it is more expedient to
. . . integrate the evolution equations numerically from the initial
As is well known and as pointed out by Faltingén, condition ofa,=a,=---=a,=0. As in Sec. lll, a fourth-

theories formulated in general depth fail in shallow water. o .
. . . . order explicit Runge—Kutta scheme is used to carry out the
Quadratic self-interactions of the fundamental mode will re-. : . .
integration. As an example, Fig. 11 shows the transient am-

sult in higher harmonics evolving on a slow time scale, ;. . .

: plitude response curves for primary-mode resonance in a
rather than being bound. Thus, the problem must be "€ hallow basin (=117.5cm, D=12 cm, h=6cm, b
formulated, following the lead of Mei and UnluataNote ' ’ ’ ’

- : . =3. =9.4x10 " m?s?!
that the formulation in this section is presented in a dimen- 3.9 mm, y=9.4x10° 7 m's 7), as computed from the

sional format. Using the shallow water equations general-depth and the shallow-water theories. For compari-
' 9 q ' son, the data of Lepelletier and RaicHeare shown as well.

&+hu,+ Eu,+ué, =0, (3D Note that the dimensional results are plotted in a nondimen-
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2 Third, the theory, as formulated in water of arbitrary
[ [ General Depth Theory depth, is invalid at the critical depth and is also invalid in
| |~ — — - Shallow Water Theory very shallow water. By revisiting the analysis with the
- @  L&R(98Y)dam shallow-water Boussinesq equations and retaining a suffi-

cient number of modes, it was shown that good agreement
with experiments in shallow water could be obtained. In par-

ticular, the additional bifurcation frequencies associated with

dispersion were shown to be captured by the shallow-water
theory.

In closing, the differences between the transient and
steady-state responses raise some interesting questions that
could be answered by future experimentation. Of particular
interest is the hysteretic behavior that is observed in steady-
state response diagrams when experiments are performed by
3 scanning through forcing frequencies both forwards and

L backwards. When scanning along the lower branch, there is a

jump to the upper branch in the vicinity 26). Scanning in
the opposite direction along the upper branch, however, re-
FIG. 11. A comparison between the general-depth and shallow-water trarSUlts in a jump to the lower branch at a detuning value of
sient amplitude response gif{glram 117.5cm,D=12 cm,h=6cm, b greater magnitude. In light of the presence of an additional
(=Ri-f9 Z”Z)mérgzlgsﬁﬁgwnm s " The data of Lepelletier and Raichlen hjifi,rcation frequency(29) associated with transient motion,

' ' and the lack, to the author’s knowledge, of any published

experiments on the matter, it would be interesting to inves-

sional format consistent with Lepelletier and Raichiéitis  tigate the experimental location of this second jump. Also of
clear that the general-depth thed88) is inadequate, as it interest is t.he q_uestlon _of whether ;teady—state response
massively over-predicts the response. However, the shallovUrves obtained in a continuous experiment, where the fre-
water approach outlined above, with seven modes retaineduency is incrementally adjusted, are identical to those ob-
does a very good job of reproducing the observations. Notained in a series of experiments at different frequencies,
only are the amplitudes well predicted, but the major bifur-8ach beginning from rest.
cation point((A+ )/ w~1.08 and both minor bifurcation
points (~0.97, 1.02 are captured by the theory. For recent ACKNOWLEDGMENTS
and much more detailed work on the transient response of
shallow basins, the reader is referred to Faltinen.
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