
 DRAFT 14 JULY 2002

1

A Simple Guide (with Examples) to Generating a
Finite Element Mesh

of Linear Triangular Elements Using Battri

by

Karen Edwards
and Cisco Werner

Marine Sciences Department
12-7 Venable Hall, CB# 3300
University of North Carolina
Chapel Hill, NC 27599-3300
(http://www.opnml.unc.edu)

Draft: 14 July 2002

 DRAFT 14 JULY 2002

2

Introduction

This manual illustrates by way of examples how to generate a finite element mesh of linear
triangles using Battri. It is intended to provide a quick introduction on how to use BatTri and is
complementary to the Manual “BatTri 2D FE Grind Generator” by Ata Bilgili and Keston Smith
(included in Appendix A of this document). As described in the manual by Bilgili and Smith
(Appendix A):

“BatTri is a graphical Matlab interface to the C language two-dimensional quality grid
generator Triangle developed by Jonathan Richard Shewchuk. BatTri does the mesh
editing, bathymetry incorporation and interpolation, provides the grid generation and
refinement properties, prepares the input file to Triangle and visualizes and saves the
created grid. Triangle is called within BatTri to generate and refine the actual grid using
the constraints set forth by BatTri. BatTri and Triangle are known to work on a number
of platforms, including SGI's, SUN's, Pentium PC's under Linux (2.2.x and 2.4.x
kernels), and Pentium PC's working under Windows. This version of BatTri is known to
work under both Matlab R11 and R12.”

The present manual is not intended to be exhaustive. It is intended to serve as a starting
point for BatTri users using examples to illustrate the mesh-generation procedure. It
should be used together with the more comprehensive manual of Appendix A where a
complete description of parameter options is provided as well as the triangle website
http://www-2.cs.cmu.edu/afs/cs/project/quake/public/www/triangle.html. Experimentation
by users on the various options of BatTri is necessary!

Basic Requirements:

1. Matlab (version 5.3 or greater)
2. Installation of FE_toolbox folder (available upon request - shortly it will be posted at the

website http://www.opnml.unc.edu)

Note that FE_toolbox contains utilities that are of more general use than those required by the
enclosed mesh-generation procedure. For example, see Brian Blanton’s description of
contributed utilities at http://www.opnml.unc.edu/OPNML_Matlab and a brief introduction to
available utilities at http://www.opnml.unc.edu/OPNML_USERS_GUIDE/OUG.driver.html.
.

Summary of steps:

1. Generate a “poly” file.
2. Run in a matlab environment using: generate_mesh
3. Edit the mesh within matlab
4. Output the mesh data (nodes, elements and bathymetry).

 DRAFT 14 JULY 2002

3

What is a .poly file?

Construction of a poly file is the first step to the mesh generation process. It contains information
of the nodal locations, boundaries of the mesh and islands (if any). The poly file can be
generated from a digitized data base using genpolyfile (in preparation – not yet available), by
hand, cut-and-paste, etc.

See http://www-2.cs.cmu.edu/afs/cs/project/quake/public/www/triangle.poly.html and Appendix A
for additional details.

The structure of a poly file is:

Line 1: nn nd natt nbm nn: total number of nodes (x,y pairs)

nd: # of dimensions (must be 2)
natt: # of attributes (0 in these examples)
nbm: # of boundary markers (0 in these examples)

Next nn lines: n x y n: node number
x: x-coordinate
y: y-coordinate

Next line: nedges nbm nedges: total # of land and open
 boundary element (node pairs)

nbm: # of boundary markers (0 in these examples)

Next nedges lines: edge na nb edge: number of the edge (or boundary line segment)
na: first node of edge
nb: second node of edge

Next line: nisl nh: number of islands (holes) in mesh

Next nh lines: isl xisl yisl isl: island (hole) number
 xisl: x-coord of a point that lies within the island (hole)
 yisl: y-coord of a point that lies within the island (hole)

 DRAFT 14 JULY 2002

4

Example poly files:

Figure 1. Node numbers and boundaries and associated simple.poly file. No island (or hole)
included.

16 2 0 0
1 1.0 1.0
2 1.0 2.0
3 1.0 3.0
4 1.0 4.0
5 2.0 1.0
6 2.0 2.0
7 2.0 3.0
8 2.0 4.0
9 3.0 1.0
10 3.0 2.0
11 3.0 3.0
12 3.0 4.0
13 4.0 1.0
14 4.0 2.0
15 4.0 3.0
16 4.0 4.0
12 0
1 1 2
2 2 3
3 3 4
4 4 8
5 8 12
6 12 16
7 16 15
8 15 14
9 14 13
10 13 9
11 9 5
12 5 1
0

 DRAFT 14 JULY 2002

5

Figure 2. Node numbers and boundaries and associated island.poly file. Island (or hole)
included.

16 2 0 0
1 1.0 1.0
2 1.0 2.0
3 1.0 3.0
4 1.0 4.0
5 2.0 1.0
6 2.0 2.0
7 2.0 3.0
8 2.0 4.0
9 3.0 1.0
10 3.0 2.0
11 3.0 3.0
12 3.0 4.0
13 4.0 1.0
14 4.0 2.0
15 4.0 3.0
16 4.0 4.0
16 0
1 1 2
2 2 3
3 3 4
4 4 8
5 8 12
6 12 16
7 16 15
8 15 14
9 14 13
10 13 9
11 9 5
12 5 1
13 7 6
14 6 10
15 10 11
16 11 7
1
1 2.469 2.539

 DRAFT 14 JULY 2002

6

Mesh Generation using the BatTri 2D FE Grid Generator – Examples

Example 1: Simple Example using a 4x4 grid.

To start, you need to create 3 files:

simple.nod contains the node numbers and the nodal coordinates
simple.bat contains the bathymetric information
simple.poly nodes and edges as decribed in previous pages

The .nod and .bat file structure conform to the NML Data File Standards as described in
http://www-nml.dartmouth.edu/Publications/internal_reports/NML-99-1/

The simple.nod file (see Figure 1) is:
1 1.0 1.0
2 1.0 2.0
3 1.0 3.0
4 1.0 4.0
5 2.0 1.0
6 2.0 2.0
7 2.0 3.0
8 2.0 4.0
9 3.0 1.0
10 3.0 2.0
11 3.0 3.0
12 3.0 4.0
13 4.0 1.0
14 4.0 2.0
15 4.0 3.0
16 4.0 4.0

The simple.bat file is:
1 0.0
2 1.0
3 2.0
4 2.5
5 0.0
6 1.5
7 3.0
8 5.0
9 0.0
10 1.0
11 3.0
12 4.0
13 0.0
14 0.5
15 2.5
16 4.0

The first column is the node
number, the second column
is the x-coordinate and the
third column is the y-
coordinate.

The first column is the node
number from simple.nod and
the second column is the
depth at that node.

 DRAFT 14 JULY 2002

7

The third file needed is the simple.poly file:
16 2 0 0
1 1.0 1.0
2 1.0 2.0
3 1.0 3.0
4 1.0 4.0
5 2.0 1.0
6 2.0 2.0
7 2.0 3.0
8 2.0 4.0
9 3.0 1.0
10 3.0 2.0
11 3.0 3.0
12 3.0 4.0
13 4.0 1.0
14 4.0 2.0
15 4.0 3.0
16 4.0 4.0
12 0
1 1 2
2 2 3
3 3 4
4 4 8
5 8 12
6 12 16
7 16 15
8 15 14
9 14 13
10 13 9
11 9 5
12 5 1
0

Once these files are created, you can begin to run the program in Matlab. To run generate_mesh
you need to have an x, y, and z defined. In the examples that follow, all matlab commands and
responses to prompts by the programs are indicated in boldface red.

In Matlab (define x,y and z for the program):

load simple.nod
x=simple(:,2);
y=simple(:,3);
load simple.bat
z=-simple(:,2);

note that the z is defined as the negative of simple.bat column 2.

generate_mesh(x,y,z)

you will be asked for a series of inputs as follows:

Enter ‘simplekp’ (BE SURE TO INCLUDE THE QUOTATION MARK IN YOUR REPONSE) to
save the final grid under this name in the current directory when prompted for where you would
like the output mesh files to be saved. This may include an explicit path followed by the mesh
filename if you do not want to save the final grid in the current directory. Enter the contour lines
to plot while building the boundary: [-1]

16 = number of nodes
for the next 16 lines:
node number, x-coord, y-coord.

Note that these coordinates do not
have to be the same as in the
simple.nod and simple.bat file but I
have used those. These will be the
vertexes created by BatTri

12=number of edges defined below
for the next 12 lines:
edge number, node 1, node 2

0=number of islands (holes) defined

 DRAFT 14 JULY 2002

8

Enter the minimum depth for nodes in the grid. This is to ensure that any depths in the database
that are smaller than this will be truncated to it. For example, if your datum is mean sea level and
the average tidal range is 1 meter along the coastline in the domain, enter +0.5. We entered 0.

The program will then prompt you to choose between various input options. Let's choose Option
1 and enter 'simple.poly' when prompted for the .poly filename.

When prompted, enter 1 if there are any islands defined in the .poly file (as shown in Figure 2) or
0 if there are none. If there are no islands defined, user can define them later in the mesh
generating process. In our case, this is 0.

When prompted, enter 1 if there are any previously defined zones in the .poly file (refer to
Appendix A) or 0 if there are none. Zones can be defined by the user later in the mesh generation
process. In our case, this is 0.

The program will then ask you if you would like to plot the bathymetric data point locations
defined in the bathymetric database given by (x,y,z). If you would like to see how the bathymetric
data is located relative to the model domain, hit 1 for yes. Otherwise hit 0 for no. Let's choose 1 in
this case.

At this stage, the program will display the domain on the screen (Figure 3). The grey line
represents the –1m contours given as input. The green dots show the nodes containing
bathymetric data. The node numbers (1-16) from the .poly file have been added. The mesh-
editing menu of 13 choices will appear in the Matlab command window. You can use these to edit
the input .poly file.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 3. Nodal locations. The 1 meter contour line is indicated.

 DRAFT 14 JULY 2002

9

At this point, we could continue to refine and edit the domain using the menu choices 1-12. In this
simple example, we are not going to do any further editing and choose 13 to get a first cut at
triangulation. The newly created domain will be automatically saved to "simplekp_triangle.poly"
file in the current directory and program will start getting user input for the creation of the
preliminary (or first-cut) mesh.

You will be asked for the following information:
Minimum angle constraint: we have used 20
Maximum number of nodes to add: we have selected 0
Maximum element area (m2): we have used 1 (please note that this is not a realistic value for
most situations).

If you have defined regions or zones you will be asked to input this information for each region.
See definition of “region or zone” on preceding page.

After all the input parameters are entered, BatTri will call Triangle, and automatically generate the
preliminary grid, save it under filename “simplekp_triangle.1.*”, display grid properties and run-
time statistics and interpolate the grid bathymetry. The interpolation may last a long time,
depending on your computer properties and you may receive a number of warnings, which is
normal. After the interpolation is complete, you will be greeted with a number of diagnostic
plotting options.

Choose Option 6 to look at the elements in the grid. They should look like the following figure.

 Figure 4.

 DRAFT 14 JULY 2002

10

Choosing Option 3 allows us to look at the grid elements superimposed on the bathymetry:

This grid is suitable as a preliminary one so let's choose 9 and proceed to the mesh refinement
section. Since we are happy with the first-cut mesh, let's hit 1 and get into the refinement menu.
From this menu, you have 6 different refinement options to choose from. For our simple example,
this choice is not very meaningful but we have selected 3 maximum slope refinements which
does not actually change the final grid from this preliminary grid. After all the input parameters are
specified, BatTri will call Triangle to generate the grid as in the generation of the preliminary grid
above. This time the grid will be automatically saved under filename “simplekp_triangle.2.*”.

After grid refinement, you are back at the plotting menu and can look at your final grid. You can
then refine further or accept this grid.

BatTri will have created the following files:

simplekp.bat
simplekp.ele
simplekp.nod (These 3 files can then be loaded using the OPNML loadgrid command.)
simplekp_triangle.poly
simplekp_triangle.1.area
simplekp_triangle.1.ele
simplekp_triangle.1.node
simplekp_triangle.1.poly
simplekp_triangle.2.ele
simplekp_triangle.2.node

Figure 5.

 DRAFT 14 JULY 2002

11

If you load in matlab the simplekp grid and graph it with the node numbers included:

g=loadgrid(‘simplekp’);
drawelems(g);
plotbnd(g);
axis(‘equal’);
numnodes(g);

You should get something like the figure below. The node numbers in the .nod file have been
renumbered to minimize bandwidth but have not been changed in the .poly files.

Figure 6.

 DRAFT 14 JULY 2002

12

Example 2: Simple 4x4 grid with island

Starting with the simple.nod and simple.bat files from the first example there are two ways to add
an island in the middle of this grid. The first uses the same simple.poly file and then uses the
editing options in generate_mesh to add the edges and island, which gives practice in using
these editing commands. The second option is to edit the simple.poly file to add 4 edges and one
island.

Option 1: editing in generate_mesh

Begin with the first example up until Fig (1). We have called our output files (simplekp in example
1) ‘island’ in this example.

You should begin with the same grid as in Fig. (1). Using Option 4 to add edges to the grid, we
want to add edges to create a square in the center of the grid (nodes 6, 7, 10, and 11). You can
then use Option 8, add holes (or islands) to the grid. Simple click in the center of the square
created and a red cross will mark the island created. You should now have a grid that looks like
the figure below.

We can now select 13 and generate the preliminary grid as in example 1. Choosing plot options 6
and 3 shows the following grid:

Figure 7.

 DRAFT 14 JULY 2002

13

Figure 8.

Figure 9.

 DRAFT 14 JULY 2002

14

In running generate_mesh, a new .poly file has been created called “island_triangle.poly” where
the number of edges has been increased to account for the 4 around the island and a hole has
been added. The poly file should look like this:

island_triangle.poly
16 2 0 0
1 1.000000 1.000000
2 1.000000 2.000000
3 1.000000 3.000000
4 1.000000 4.000000
5 2.000000 1.000000
6 2.000000 2.000000
7 2.000000 3.000000
8 2.000000 4.000000
9 3.000000 1.000000
10 3.000000 2.000000
11 3.000000 3.000000
12 3.000000 4.000000
13 4.000000 1.000000
14 4.000000 2.000000
15 4.000000 3.000000
16 4.000000 4.000000
16 0
1 1 2
2 2 3
3 3 4
4 4 8
5 8 12
6 12 16
7 16 15
8 15 14
9 14 13
10 13 9
11 9 5
12 5 1
13 7 6
14 6 10
15 10 11
16 11 7
1
1 2.469298 2.539474

Option 2: editing the .poly file
Instead of starting with the original poly file from example 1, you could edit that file to create the
edges and hole in the ending poly file above.

When running generate_mesh and prompted to enter 1 if there are any islands defined in the
.poly file (refer to Appendix A) or 0 if there are none. In this case enter 1. Then proceed as above.

16 nodes defined.

16 edges defined.
Numbers 13-16 define the
island.

1 island defined with its x
and y coordinates.

 DRAFT 14 JULY 2002

15

Example 3: Lake Maracaibo mesh

Starting with an existing OPNML mesh for Lake Maracaibo, we have done two examples. The
first uses the existing boundary and nodes and generates a new mesh. This turns out to be very
similar to the existing mesh used in previous studies, e.g. see Figure 13 below. The second
example just uses the existing boundary to generate a new mesh.

3a: Existing Boundary and Nodes.

Starting with the existing OPNML mesh files, included in the distribution of the FE_toolbox folder:

mcbo.nod
mcbo.bat
mcbo.ele

we need to first create a boundary file and then a poly file to run generate_mesh.

In Matlab, for example:

loadgrid(mcbo);
write_bnd(mcbo,mcbokp.bnd)

This will create a file that has:
Column 1 = edge number
Column 2 and 3 = nodes connecting edge.

To create the poly file (mcboall.poly), you need to use the mcbo.nod and mcbo.bnd files.
The first line of the poly file should be:

444 2 0 0

There are 444 nodes in the original mcbo mesh, the dimension of the grid is 2, and there are 0
attributes and 0 boundary markers. You then need to copy the mcbo.nod file into the next 444
lines to provide the x,y coordinates of each node.

Following this, you need a line specifying the number of edges (161 edges, 0 boundary markers):

161 0

You then need to copy the mcbo.bnd file into the poly file to provide the edge information.

There is an island in the mcbo mesh, we can either define here in the poly before running
generate_mesh or through the editing options of generate_mesh. To include it in the .poly file,
the next two lines should be (again the indicated x,y coordinate is a point within the island):

1
1 60780.846 215956.190

If you choose to define the island through the editing options, you will have one line with a 0.

Save the mcboall.poly file and we are ready to begin running generate_mesh.

 DRAFT 14 JULY 2002

16

In Matlab (define x,y, and z for the program):

load mcbo.nod
x=mcbo(:,2);
y=mcbo(:,3);
load mcbo.bat
z=-mcbo(:,2);

note that the z is defined as the negative of simple.bat column 2.

generate_mesh(x,y,z);

you will be asked for a series of inputs as follows:

Enter ‘mcboall’ (INCLUDING THE SINGLE QUOTATIONS IN THE RESPONSE) to save the
final grid under this name in the current directory when prompted for where you would like the
output mesh files to be saved. This may include an explicit path followed by the mesh filename if
you do not want to save the final grid in the current directory. Enter the contour lines to plot while
building the boundary: [-10]

Enter the minimum depth for nodes in the grid. This is to ensure that any depths in the database
that are smaller than this will be truncated to it. For example, if your datum is mean sea level and
the average tidal range is 1 meter along the coastline in the domain, enter +0.5. For this grid
enter: -1

The program will then prompt you to choose between various input options. Let's choose Option
1 and enter 'mcboall.poly' when prompted for the .poly filename.

When prompted, enter 1 if there are any islands defined in the .poly file (Appendix A) or 0 if there
are none. If there are no islands defined, user can define them later in the mesh generating
process. If you’ve defined the island, enter: 1.

When prompted, enter 1 if there are any previously defined zones in the .poly file (Appendix A) or
0 if there are none. Zones can be defined by the user later in the mesh generation process. In our
case, this is 0.

The program will then ask you if you would like to plot the bathymetric data point locations
defined in the bathymetric database given by (x,y,z). If you would like to see how the bathymetric
data is located relative to the model domain, hit 1 for yes. Otherwise hit 0 for no. Let's choose 0 in
this case as the bathymetry data is at the same points as the defined nodes.

At this stage, the program will display the domain on the screen (Figure 10). The mesh-editing
menu of 13 choices will appear in the Matlab command window. You can use these to edit the
input .poly file.

 DRAFT 14 JULY 2002

17

In order to add the island, if not done in the .poly file, you need to zoom in on the area in Fig (11).

Choose Option 8 add holes (or islands) from the editing menu and click in the center of the island.
This will place a red x there. If you defined the island in the .poly file, there should already be a
red x in this spot.

Figure 10.

Figure 11.

 DRAFT 14 JULY 2002

18

We are not going to do any further editing and choose 13 to get a first cut at triangulation. The
newly created domain will be saved to "mcboall_triangle.poly" file in the current directory and
program will start getting user input for the creation of the preliminary (or first-cut) mesh.

You will be asked for the following information:
Minimum angle constraint: we have used 20
Maximum number of nodes to add: we have selected 0
Maximum element area (m2): we have used 250000

After all the input parameters are entered, BatTri will call Triangle, generate the preliminary grid,
AUTOMATICALLY save it under filename 'mcboall_triangle.1.*', display grid properties and run-
time statistics and interpolate the grid bathymetry. The interpolation may last a long time,
depending on your computer properties and you may receive a number of warnings, which is
normal. After the interpolation is complete, you will be greeted with a number of diagnostic
plotting options.

Choose Option 6 to look at the elements in the grid. They should look like the following figure.

This is very similar to the original mcbo mesh shown in Figure 13.

Figure 12.

 DRAFT 14 JULY 2002

19

This grid is suitable as a preliminary one so let's choose 9 and proceed to the mesh refinement
section. Since we are happy with the first-cut mesh, let's enter 1 and get into the refinement
menu. From this menu, you have 6 different refinement options to choose from. We have
selected 6 delta h/h constraint and enter:

Alpha: 5
Maximum area (if violates delta h/h<5): 250000
Bathymetric range: []
Minimum angle constraint: 20
Maximum nodes to add: 0

My purpose in running this example was to see how close BatTri came to the original mcbo
mesh, so we’ve again selected to add 0 nodes.

After all the input parameters are specified, BatTri will call Triangle to generate the grid as in the
generation of the preliminary grid above. This time the grid will be saved AUTOMATICALLY
under filename 'mcboall_triangle.2.*'. Since we’ve allowed no nodes to be added, the final mesh
is the same as the preliminary mesh in Figure 12.

3b: Existing Boundary Only

This example is more interesting in that we will allow BatTri to place the nodes within the existing
mcbo boundary. Creating the poly file for this example is more difficult in that I’m not sure if
generate_mesh needs the nodes numbered sequentially starting at 1. So, we’ve used the
mcboall.poly and started the same as above then edited out the interior nodes.

Figure 13: Original Maracaibo mesh.

 DRAFT 14 JULY 2002

20

In Matlab (define x,y, and z for the program):

load mcbo.nod
x=mcbo(:,2);
y=mcbo(:,3);
load mcbo.bat
z=-mcbo(:,2);

note that the z is defined as the negative of simple.bat column 2.

generate_mesh(x,y,z);

you will be asked for a series of inputs as follows:

Enter ‘mcbokp’ to save the final grid under this name in the current directory when prompted for
where you would like the output mesh files to be saved. This may include an explicit path followed
by the mesh filename if you do not want to save the final grid in the current directory.
Enter the contour lines to plot while building the boundary: [-10]

Enter the minimum depth for nodes in the grid. This is to ensure that any depths in the database
that are smaller than this will be truncated to it. For example, if your datum is mean sea level and
the average tidal range is 1 meter along the coastline in the domain, enter +0.5. For this grid
enter: -1

The program will then prompt you to choose between various input options. Let's choose Option
1 and enter 'mcboall.poly' (INCLUDE SINGLE QUOTES)when prompted for the .poly filename.

When prompted, enter 1 if there are any islands defined in the .poly file (as described by Triangle
manual) or 0 if there are none. If there are no islands defined, user can define them later in the
mesh generating process. If you’ve defined the island, enter: 1.

When prompted, enter 1 if there are any previously defined zones in the .poly file (as described in
Triangle manual) or 0 if there are none. Zones can be defined by the user later in the mesh
generation process. In our case, this is 0.

The program will then ask you if you would like to plot the bathymetric data point locations
defined in the bathymetric database given by (x,y,z). If you would like to see how the bathymetric
data is located relative to the model domain, hit 1 for yes. Otherwise hit 0 for no. Let's choose 1 in
this case as we are going to erase the currently defined nodes.

At this stage, the program will display the domain on the screen (Figure 10 above). The mesh-
editing menu of 13 choices will appear in the Matlab command window. You can use these to edit
the input .poly file. By zooming in on different areas of the figure and choosing Option 12
block delete of nodes, you can delete all of the interior nodes in the figure and get the following
grid:

 DRAFT 14 JULY 2002

21

The green dots represent the bathymetry points (and the nodes we have deleted). But the blue
line represents the boundary and the boundary nodes that we have not deleted. You can see
from the red x that the island has already been defined.

Choose 13 to get a first cut at triangulation. The newly created domain will be saved
AUTOMATICALLY to "mcbokp_triangle.poly" file in the current directory and program will start
getting user input for the creation of the preliminary (or first-cut) mesh.

You will be asked for the following information:
Minimum angle constraint: 20
Maximum number of nodes to add: 500
Maximum element area (m2): 250000

After all the input parameters are entered, BatTri will call Triangle, generate the preliminary grid,
AUTOMATICALLY save it under filename 'mcboall_triangle.1.*', display grid properties and run-
time statistics and interpolate the grid bathymetry. The interpolation may last a long time,
depending on your computer properties and you may receive a number of warnings, which is
normal. After the interpolation is complete, you will be greeted with a number of diagnostic
plotting options.

Choose Option 6 to look at the elements in the grid. They should look like the following figure.

Figure 14.

 DRAFT 14 JULY 2002

22

In deciding how to refine the mesh further, we’ve looked at several of the other plotting options,
including Options 3 and 5:

Figure 15.

Figure 16.

 DRAFT 14 JULY 2002

23

We then choose 9 to finish plotting and go to the mesh refinement menu. Choosing option 6 the
delta-h/h constraint which corresponds to the plotting Option 5 shown in Figure 17 above, we
provide the following input:

Enter alpha: 5
Maximum area (if delta-h/h<5 violated): 100000
Bathymetric range: []
Minimum angle constraint: 20
Maximum nodes to add: 100

After grid refinement, back at the plotting menu, we choose Option 6 again to see the final grid:

Figure 17.

 DRAFT 14 JULY 2002

24

During refinement, the program has added the maximum number of nodes, 100, so it is possible
that not all of the other criteria have been met and that we should rerun this and add more nodes.

Since, Option 5 shows us the criteria that we have used to refine the mesh, here is the new
picture of delta-h/h:

Figure 18.

Figure 19.

 DRAFT 14 JULY 2002

25

As you can see, the maximum value of delta h/h has dropped to 4.6778 from 9.2073 in the initial
grid (Figure 17).

Whether or not this is the best criteria to be used for refining this mesh, is to be determined. We
picked it from looking at the different plots available. We also did not consider whether the other
constraints such as minimum angle and maximum area are optimal. These are merely provided
as an example of what BatTri can produce.

 DRAFT 14 JULY 2002

26

Creation of a .bel file: running genbel4

To run the Fundy/Quoddy model suites (http://www-nml.dartmouth.edu/circmods/gom.html), a
.bel file is needed to include boundary condition information in the mesh. A description of the
contents of a .bel file is available at
http://www-nml.dartmouth.edu/Publications/internal_reports/NML-99-1/NML-99-1.html#bel.

Note: genbel4 is not part of the BatTri code. It is part of the OPNML finite element Matlab
utilities generated by Brian Blanton (http://www.opnml.unc.edu/). It is described here as it
provides a graphical way of generating the input files needed to run the Fundy/Quoddy
suite of models after the mesh generation has been completed.

 Description of .bel file (from the above NML website)

.bel: A boundary element description of the boundary conditions. There is a two-line header:

line 1: the geometric meshname
line 2: arbitrary text identifying the contents fo the file
Following these lines, there are NBE lines of the form:

 LIN(1,L)IN(2,L)IBC(left)IBC(right)

where:
element L is a line segment beginning at node IN(1,L) and ending at node IN(2,L)
IBC(1) indicates the nature of the boundary on the left of the element
IBC(2) indicates the nature of the boundary on the right of the element
IN(I,L) is a conventional incidence list for 1-D, linear boundary elements
L indexes from 1 to NBE, where NBE is the number of boundary elements

The node numbers refer to the nodes in the triangular mesh file meshname.nod, identified in the first
header line. The boundary codes are as given in the FUNDY4 Users' Manual (Lynch, 1990):

0: interior
1: land
2: island
3: nonzero normal velocity
4: geostrophic outflow
5: elevation
6: corner: elevation with land or island
7: corner: geostrophic with land or island
8: corner: nonzero normal velocity with land or island
9: corner: elevation with geostrophic
10: corner: both components of velocity = zero
11: corner: both components of velocity nonzero

Only codes 0-5 are required to describe boundary elements; the additional corner codes are needed
only for boundary node classification; they never appear in .bel files.

 DRAFT 14 JULY 2002

27

In a matlab window, type:

 genbel4

The following window (Fig. 20) should appear:

In this example we will impose boundary conditions on the mcbo mesh. Select “Load Grid” and
specify the input .nod and .ele files. In this case, mcbo.nod and mcbo.ele.

Since there is no existing .bel file at this point, click on “New Bel”, and then on “Axis Equal”. You
should see the following display (Fig. 21):

Figure 20. Initial window generated running genbel4.

 DRAFT 14 JULY 2002

28

The northern boundary of the mesh is an open boundary and thus an “Elevation” boundary
condition (type 5) needs to be specified. To see the node numbers along the open boundary,
under “Tools” in the upper toolbar, click on “Zoom”, choose the area of the zoom graphically.
Follow this by clicking on “Number bnd” and a figure something like (Fig. 22) should result:

Figure 21. Window after loading mcbo.nod, mcbo.ele and “Axis Equal”.

Figure 22. Node numbers on northern open boundary.

 DRAFT 14 JULY 2002

29

Specify the starting and ending node 407 and 372 respectively in the available boxes, then click
on “Elevation 5” and finally on “Connect”. The following (Fig. 23) should result:

To specify the land boundary, click on “Land (1)”, click on “Switch” and finally on “Connect”.
The result in Figure 24 should result:

Figure 23. Open boundary condition (Elevation 5) has been imposed
on the northern boundary. Note the green color of the boundary.

Figure 24. Result after imposing the “Land (1)” boundary
condition. Note the green and red boundaries.

 DRAFT 14 JULY 2002

30

To view the entire domain, zoom out and the following (Fig. 25) should be obtained:

To add the island, zoom into the region of the island and obtain (Fig 26):

Figure 25. View of entire domain. Green open boundary along the
northern boundary and land (red) boundary in remainder of domain.

Figure 26. Zoom into the region of the island (in black outline).

 DRAFT 14 JULY 2002

31

Zooming in even more and clicking on “Number Bnd” results in Fig. 27:

To specify the island boundaries, enter 264 and 271 in the “Starting N#” and “Ending N#”, click
on “Island (2)” and then click on “Connect”. To complete the island, click on “SWITCH” and click
on “Connect” again. You should see the following (Fig. 28) result:

To finish the creation of the .bel file, click on “Output Bel” and answer the prompts in the window
that will pop out. Under “Domain name” enter mcbo, under “Comment” enter any comment (this
will be ignored by the circulation models), under “.bel filename” enter mcbo.bel. Other boundary
conditions such as “Geostrophic (4)” would be generated in a similar fashion.

Figure 27. Further zoom and numbering of island nodes.

Figure 28. Island conditions now defined (blue).

 DRAFT 14 JULY 2002

32

Chopping an existing mesh

This set of utilities is also not part of the BatTri code. These utilities were developed by Brian
Blanton and are not yet formally part of the OPNML finite element Matlab release package. In
the following example, we will illustrate the chopping of the Gulf of Venezuela (the northern basin
of the mcbo mesh from Lake Maracaibo proper (the southern basin).

1. load a fem_grid_struct and attach element finding information

mar=loadgrid('mcbo');
mar=belint(mar);

2. draw original mesh

drawelems(mar)
plotbnd(mar)
axeq

The result is shown in Figure 29.

Figure 29. Original mcbo mesh.

 DRAFT 14 JULY 2002

33

3. Generate a polygon that is closed, and defines the region of the domain that is to
remain. genpoly is mouse-driven

p=genpoly;
label_polygon(p)

The following response will appear in the window:

Click on verticies with left mouse-button, right button to end

The following figure shows a possible selection (where the blue * correspond to locations
where the mouse-clicks took place and the numbers correspond to the boundary
segments.

Figure 30. Resulting display after genpoly and label_polygon.

 DRAFT 14 JULY 2002

34

4. Move nodes in the interior of the domain onto the polygon segments. Depending on grid
size, this can take quite a while.

mar2=global_snap(mar,p);

 The following response and Figure (31) are obtained:

Processing polygon segment 1
Pass 1...
Pass 2...

5. Extracts the interior/exterior of the polygon as the new fem_grid_structs

[mar2_in,mar2_out]=chomp_grid(mar2,p);

6. Add element geometry info

mar2_in=belint(mar2_in);
mar2_in=el_areas(mar2_in);

figure
drawelems(mar2_in)
plotbnd(mar2_in)

 axeq

mar2_in.name= 'lake_mcbo2';
writegrid(mar2_in, 'lake_mcbo2')

Figure 31. Results after global_snap command.

 DRAFT 14 JULY 2002

35

Figure 32. The result of the chopping of the mcbo mesh. This mesh is the
‘lake_mcbo’ mesh.

 DRAFT 14 JULY 2002

36

APPENDIX A: BatTri 2D FE GRID GENERATOR

Version 7.2.01

BatTri is a graphical Matlab interface to the C language two-dimensional quality grid generator
Triangle developed by Jonathan Richard Shewchuk (jrs@cs.berkeley.edu). BatTri does the mesh
editing, bathymetry incorporation and interpolation, provides the grid generation and refinement
properties, prepares the input file to Triangle and visualizes and saves the created grid. Triangle
is called within BatTri to generate and refine the actual grid using the constraints set forth by
BatTri. BatTri and Triangle are known to work on a number of platforms, including SGI's, SUN's,
Pentium PC's under Linux (2.2.x and 2.4.x kernels), and Pentium PC's working under Windows.
This version of BatTri is known to work under both Matlab R11 and R12.

This report will summarize the usage of BatTri. For Triangle usage and definitions of Triangle
related files and terms, reader is referred to the original Triangle web page at
http://www.cs.cmu.edu/afs/cs/project/quake/public/www/triangle.html. Help about Triangle can
also be accessed by running Triangle with the -help option, i.e. "triangle -help > trianglehelp.txt".

DOWNLOADING AND INSTALLING BatTri, THE OPNML TOOLBOX
AND THE TRIANGLE MESH GENERATOR

To be able to use BatTri, one should first download and install the following components:

- J.R. Shewchuk’s Triangle mesh generator and Delaunay triangulator can be downloaded
from http://www.cs.cmu.edu/afs/cs/project/quake/public/www/triangle.html. Information on
how to install and compile Triangle on various platforms can be found in the README file
included in the package. For PC's working under Windows, GNU C compiler "gcc" works
for compiling Triangle. You can get gcc in the latest Cygwin distribution from
http://sources.redhat.com/cygwin. Triangle also includes an X display program, called
ShowMe. You can compile and install this in a Unix or Linux X environment to achieve a
faster grid display performance. Otherwise, Matlab is used for displaying meshes.

- The most recent version of the OPNML toolbox can be downloaded from

http://www.opnml.unc.edu/OPNML_Matlab. Make sure the location of the toolbox is
included in your Matlab path.

- Finally, the latest version of BatTri can be downloaded from http://www-

nml.dartmouth.edu/Software/BatTri in a gnu zipped tar format. To install, gunzip (gunzip
*.gz) and untar (tar -xvf *.tar) the distribution in a base directory. This will create a BatTri
directory in the base directory and copy all the files, including example directories, in it.
The last thing that needs to be done is to add the directory location of the BatTri to your
Matlab path.

Once Triangle, the OPNML toolbox and BatTri are correctly installed, the user should define the
location of the Triangle mesh generator and the ShowMe display package (if using Unix or Linux)
explicitly. This is done by changing the triangle_path and showme_path variables in
generate_mesh.m routine of the BatTri distribution. The path to the ShowMe display package
should only be defined if it is compiled and installed in Unix or Linux. Otherwise, comment this
line with a %.

 DRAFT 14 JULY 2002

37

INPUT FILES AND BATHYMETRIC DATA

To generate a grid, the user should input the boundary node information, boundary segment
information and hole (or island) information in form of a .poly file, as described in the Triangle
manual (http://www.cs.cmu.edu/~quake/triangle.poly.html). These input nodes and segments in
the .poly file are forced into the triangulation of the domain. If necessary, all this information can
be created from an ordered coastline point data with the use of the editing options of BatTri (this
process may require manual deleting of unnecessary segments and nodes, closing of islands by
segment adding, addition of an open ocean boundary segment, etc...). As a starting point,
ordered digital coastline node data can be extracted from the National Geophysical Data Center's
webpage (http://rimmer.ngdc.noaa.gov/coast/getcoast.html) at various scales ranging from
1:70,000 to 1:5,000,000. If the coastline is very highly resolved, causing an excessive number of
elements along the shoreline, the routine "xy_simplify.m" can be used to reduce the number of
nodes to the desired resolution. Remember to format this data into a .poly file, consisting of
nodes and segments, before inputting into BatTri. To refine an already created grid, the user can
input the above referenced information either in the form of a previously created .poly file or in the
form of NML standard .nod, .ele and .bat files (see next section, Running BatTri).

Bathymetric data covering the entire domain should also be entered for generation and
refinement. There are three ways of accomplishing this:

- As gridded bathymetric data:

>>g=generate_mesh(x,y,z)
where
z (MxN) grid of bathymetric depths, negative down from the datum.
x (1xN) x-coordinates of columns of z
y (Mx1) y-coordinates of rows of z.

- As scattered bathymetric data with a pre-defined triangulation (the triangulation is used for
interpolation and contouring):

>>g=generate_mesh(x,y,z,e);
where
x (Nx1) x-coordinates of depth measurements;
y (Nx1) y-coordinates of depth measurements;
z (Nx1) water depths at locations (x,y), negative down from the datum;
e (Kx3) vertex numbers for triangles in x and y.

- As scattered bathymetric data with no pre-defined triangulation (Delaunay triangulation is used
for interpolation):

>>g=generate_mesh(x,y,z);
where
x (Nx1) x-coordinates of depth measurements;
y (Nx1) y-coordinates of depth measurements;
z (Nx1) water depths at locations (x,y), negative down from the datum.

RUNNING BatTri

The Matlab command for running the mesh generator is:

generate_mesh(x,y,z,e)

Here, x, y, z, and e are as defined in the previous section with e being an optional input.

 DRAFT 14 JULY 2002

38

BatTri will then displays the defined Triangle and ShowMe (if compiled, installed and defined in
generate_mesh.m) paths. In the case the ShowMe path is defined, BatTri will also ask you how
the mesh plotting will be handled during the current session. Enter either 1 to use ShowMe or 0 to
use Matlab. Remember that ShowMe is a faster option for grid plotting.

You will then be prompted to enter the filename of the final grid ('finalgrid') that will be generated
in the BatTri session. This filename will be added the standard .nod, .ele and .bat Dartmouth NML
extensions. Note that the final bathymetry file, .bat, will be positive down from the datum, unlike
the input bathymetric data, which is negative down from the datum. Also note that intermediate
.poly and Triangle grid files (.node and .ele) will be generated and saved every time the input
.poly file is changed during a BatTri session. These files will be saved under the filename
'finalgrid_triangle.#.*' where # is a number of iteration changed every time the grid is changed and
saved during the same BatTri session. Read http://www.cs.cmu.edu/~quake/triangle.iteration.html
for more information.

You will then be prompted to enter the array of bathymetric contour values that will be drawn on
the screen when the input .poly file is displayed. The format is [C1,C2,C3,...,CN] for multiple
contours or [C] for a single contour, where C and C1,...CN are contour depths. Remember to
precede these with a (-) sign if they are below the datum. This contour plotting may help user to
decide what contour line should be drawn and transformed into edges whose presence will be
forced into triangulation during the mesh editing session. One can also use a contour line to
divide high and low resolution zones in a grid, as explained in the Mesh Editing section.

BatTri will then ask the user to enter the minimum depth for nodes in the grid. In the final mesh
with interpolated depths, any depth larger than this value will be truncated to the value of the
minimum depth. For example, on a final NML grid with a Mean Sea Level (MSL) vertical datum,
the smallest depth value will be -0.5 m if the minimum depth parameter is set to +0.5 m at the
beginning of the mesh generation process.

The next step is to enter the name of the .poly file that you will edit or create a grid from. BatTri
gives 3 options at this stage:

-The first option (0) is to start from scratch. When given this option, BatTri reads the previously
defined bathymetric database (x,y,z) and draws the contours on the screen. If "plotting the
locations of the bathymetric data points" option is also chosen later on, the user can actually build
the domain boundary by zooming in and adding nodes and segments later on in the mesh editing
process. The bathymetric database limits should also define the domain boundary in this case.

- The second option (1) is to load a .poly file that you intend to edit. You can enter the explicit
path or just the name of the .poly file if it is in the current Matlab directory when prompted. Do not
forget to include the apostrophes.

- The third option (2) is to load a previously created NML type grid by loading its .nod, .ele, .bat
and .bnd files for editing. Enter the name of the grid in apostrophes, without any extensions.

If you choose the first option (0), the program will only ask you if you would like to plot
bathymetric data point locations. This is intended to be used if the bathymetric data is scattered
and has highly variable density. After answering this question, it will switch to the mesh editing
menu.

If you choose the second option (1), the program will ask you if there are any already defined
islands (or holes) in the input .poly file. Enter 1 for yes and 0 for no at this stage. Similarly, in the
next question, enter 1 if you already have defined zones (or regions) in your input .poly file or 0 if
you have no zones defined. After answering these two questions, BatTri will ask you if you would
like to plot bathymetric data point locations for diagnostic purposes. At this stage, press either 1
for yes or 0 for no. As an example, this option is useful to check if your bathymetric data stays

 DRAFT 14 JULY 2002

39

well within the limits of your boundary defined by the coastline. Assuming that the measured
bathymetric data locations have the correct coordinates and datum, one can then zoom in and
move coastline nodes accordingly so that the bathymetric data points will lay on the water and not
on land. This is especially useful in the case of domains with a number of narrow channels. The
program will then draw the boundary on the screen, together with any requested contours or
bathymetric point locations and switch to the editing mode in Matlab command window.

If you choose the third option (2), the program will read the corresponding .nod, .ele and .bat files,
will ask you if you would like to plot bathymetric data point locations and will switch to the mesh
editing mode after you answer the question.

MESH EDITING

Mesh editing menu consists of 13 options:

- Option 0 adds a contour line to the mesh. Unlike the input contour option to
generate_mesh.m, which only draws the contours on the screen, this actually adds nodes
and segments whose presence will be forced in the triangulation. One can use this to
mesh along contour lines (important for some hydrodynamic models with wetting and
drying), to increase resolution along a contour (to better resolve a shelf or sharp changes
in bathymetry) or to define various zones where different element criteria will be applied
(like a higher resolution zone shallower than the 10 meters and a lower resolution one
deeper than 10 meters). Once the contour is extracted internally, the program asks user
to choose between a number of smoothing algorithms. These include box-car smoothing,
spline smoothing, Douglas and Peucker smoothing and no smoothing. Once the option
number for the chosen algorithm and smoothing variables for different methods are
entered, the program requests the user to input the node spacing (in meters) to be used
when the contour will be incorporated in the grid. The user should choose a distance
optimized for his/her purposes. Giving a small value highly resolves the contour and
creates a large number of nodes and probably badly shaped elements too, because of
resolution differences between the contour line and the rest of the grid. One solution to
this is to use an element inside angle constraint (explained later), which will better the
shape of these transition elements. Choosing a large node spacing results in a smaller
number of nodes but may fail to resolve the contour. If a contour is going to be used to
create zones (or regions) with Option 10, it is important to connect its endpoints to
domain boundary by adding segments. This will ensure that the zones are going be
enclosed in segments and not stay open.

- Option 1 adds individual vertices to the grid using the left mouse button. Vertices can be

entered one after another. Right mouse button exits from the graphical interface and
returns to the MATLAB command window mesh editing menu.

- Option 2 removes vertices from the grid using the left mouse button. If a vertex is

connected to an edge, the edge will be moved from the domain also. Vertices can be
removed one after another. Right mouse button returns to the main menu.

- Option 3 moves vertices on the screen. To choose the vertex to be moved, the user

should click the vertex with the left mouse button. To move the vertex, go to the new
location with your mouse and left click. This process can be repeated to move multiple
vertices. Right mouse button returns to the main editing menu.

- Option 4 adds edges (or segments) to the grid. Segments are lines whose presence is

enforced in the final grid. To add an edge, one needs 2 vertices. First choose the first
vertex of the edge using the left mouse button and repeat the same thing to choose the

 DRAFT 14 JULY 2002

40

second vertex. A red line will connect these two vertices, defining the edge. Edges can
be formed one after another. Right mouse button exits to the main editing menu.

- Option 5 removes edges from the grid. To do this, the user should choose the edge to be

removed by clicking on the small circle whose center is located at the midpoint of the
edge. The circle will be marked with a red cross. Multiple edges can be chosen one after
another. To remove and return to the editing menu, hit the right mouse button. Deleting
an edge does not delete the corresponding vertices.

- Option 6 divides an edge into a smaller number of segments. Choose the edge to be

divided in the same way as Option 5 and enter the number of pieces to divide the edge
into in the command window. This process cannot be repeated and the user should
choose the main mesh editing Option 6 as many times as the number of edges to be
divided. This option is helpful in dividing long open ocean boundary lines.

- Option 7 adds a spline curve to the grid. User has an option to choose between a closed

(0) and an open (1) spline. Closed splines may be used to define simple islands (see
Option 8) or zones (see Option 10) while open splines can be used to create curved open
ocean boundaries. Spline nodes are entered one after another by clicking the left mouse
button. Clicking the right mouse button once will draw the spline on the screen using a
red line. At this stage, user can move the spline nodes around similarly to Option 3. Once
one is happy with the spline shape, clicking the right mouse button will exit to the editing
menu and program will ask for the desired node spacing along the spline. In choosing the
node spacing, same ideas as in Option 0 apply.

- Option 8 adds holes (or islands) to the grid. Even if there are enclosed areas bounded by

segments in the grid, these are not treated as islands unless they they are defined as
islands. An enclosed area is defined as an island by entering the x and y coordinates of a
random point that lies inside the area of question. This is done by clicking the left mouse
button. Islands can be added repeatedly in one session. A red cross will mark closed
zones that are defined as islands. Clicking the right mouse button exits to the main
editing menu. One should make sure that a zone defined as an island is actually closed
by segments, otherwise, the entire triangulation will be eaten away by Triangle until an
edge is encountered.

- Option 9 removes holes from the grid. Holes are removed by left clicking on red crosses

that define the individual islands. Multiple islands can be removed during one session.
Right mouse button exits to the main mesh editing menu.

- Option 10 adds zones (or regions) to the grid using the same approach as in Option 8.

Zones are areas enclosed by segments where regional area constraints can be imposed
on elements. Zones are defined the same way as islands, but they are marked with a
green cross, followed by the zone number. Area constraints are imposed using the zone
numbers at the preliminary mesh generation stage. The zone numbers start from one
every time a zone adding session is started, even if there were previously defined zones.
However, once zones are added and the session is closed, they are renumbered
correctly automatically.

- Option 11 removes zones from the grid the same way as in Option 9.

- Option 12 deletes nodes and corresponding edges found in a box defined by the user.

The box is defined by clicking the left mouse button on one corner of the box and
dragging it until the other corner is reached. The nodes found in the box are marked with
red crosses. On the command window, enter 1 if you want to remove them from the grid
or 0 if you made a mistake and want to keep them in the grid. Clicking the right mouse
button on the graphics window exits to the main editing menu.

 DRAFT 14 JULY 2002

41

- Option 13 exits from the mesh editing menu and saves the changes to the
"finalgrid_triangle.#.poly" file.

PRELIMINARY (FIRST-CUT) MESH GENERATION

First-cut mesh generation generates a preliminary grid from which the refined one will be derived.
Since the refinement schemes included in BatTri are functions of element bathymetry and/or
element areas, this preliminary grid serves as a base and provides the input element area and
depth information that the refinement schemes will use.

The user should be careful in choosing the input parameters to the preliminary grid process and
should find a good optimization between the minimum angle constraint, maximum element area
constraint and the maximum number of nodes to add. Creating a very coarse first-cut grid may
result in a poorly resolved domain where major bathymetric changes are missed, while creating a
very fine one may result in an unnecessary excessive number of elements, increasing
computation time and system requirements. Having a ballpark idea about the scale of bathymetric
changes in the domain is a good place to start with in determining the input parameters. Channel-
mudflat-marsh widths, characteristic lengths of major bathymetric changes like sea mounts or
series of sand waves can provide some of the physical clues that the user may find useful in
determining the area and inside angle constraints. The generation of a first-cut grid is an iterative
process that the user can repeat in a trial and error loop if the generated preliminary grid is not
satisfactory.

The input variables to preliminary mesh generation process are as follows:

- Minimum angle constraint: This limits the maximum inside angle (in degrees) that an
element can have in the preliminary grid. For example, if this value is set to 25 degrees,
no elements will have any inside angles smaller than 25 degrees in the grid. Note that the
angle constraint does not apply to small angles between input segments; such angles
cannot be removed. If the minimum angle is 20.7 degrees or smaller, the triangulation
algorithm is theoretically guaranteed to terminate (assuming infinite precision arithmetic,
Triangle may fail to terminate if you run out of precision). In practice, the algorithm often
succeeds for minimum angles up to 33.8 degrees. For highly refined meshes, however, it
may be necessary to reduce the minimum angle to well below 20 to avoid problems
associated with insufficient floating-point precision. The specified angle may include a
decimal point. Entering a value of 0 voids this restriction.

- Maximum element area constraint: This limits the maximum area that elements can

have in the preliminary grid. For example, if this is set to 50,000 m2, no elements whose
area is larger than 50,000 m2 will exist in the preliminary grid. If user has defined zones
using Option 10 of the mesh-editing menu, he/she will be asked to enter different area
constraints for all of the defined zones. If there are major differences between the
element areas of different zones, it is likely that elements with bad aspect ratios (i.e.
small angles) will be created at the common boundary of the zones. This problem can be
solved by increasing or just providing a minimum angle constraint on top of the area
constraints for different regions. Entering a relatively large number ensures that this
constraint never gets into effect.

- Maximum number of nodes to add: This is the maximum number of nodes (or Steiner

points) that can be added to the preliminary grid while trying to meet the constraints of
minimum angle and maximum area. Remember that this should be kept at a minimum,
which is optimized (using the angle and area constraints) to provide a nicely resolved and
discretized domain with the Delaunay property. If Triangle can create a triangulation
before reaching the preset maximum number of nodes, this restriction never gets into
effect. If one does not want to restrict the number of nodes to add, the solution is to input
a very large number and Triangle will work freely without any restrictions. Be forewarned

 DRAFT 14 JULY 2002

42

that this number may result in a conforming triangulation that is not truly Delaunay,
because Triangle may be forced to stop adding points when the mesh is in a state where
a segment is non-Delaunay and needs to be split. If so, Triangle will print a warning.

After all the input is provided, BatTri will call the grid generation program, Triangle, and the first-
cut grid will be generated and saved into the current directory. The program will then display the
filenames for the new grid and some other input and output information (grid generation
milliseconds, number of input nodes, segments and holes, number of output nodes, elements,
edges, and boundary segments). Then the grid bathymetry (depths for newly created nodes) will
be interpolated using the input bathymetry database (x, y, z Matlab column vectors). The
interpolation may take a long time, depending on the number of newly created nodes. It is also
normal to receive interpolation warnings at this stage if there are any nodes whose horizontal
locations are outside of the bathymetry database. Depending on the results that the user derives
from the diagnostic plotting routines that are explained in the next section, the preliminary grid
can be regenerated if it does not meet the user's criteria by entering 0 when prompted by the
program. Entering 1 proceeds to the mesh refinement step.

DIAGNOSTIC PLOTTING OF THE PRELIMINARY GRID

During mesh refinement it may be desirable to compute and plot characteristics of the mesh
before deciding how to refine the mesh further. To facilitate mesh exploration during refinement,
the subroutine diagnostic_plots.m is called between refinements or can be called from the
command line:

>>diagnostic_plots(g, (optional)bat);

where g is a finite element mesh structure and bat is the BatTri bathymetry structure. If
diagnostic_plots.m is called from the command line, the user should convert the (x,y,z)
coordinates of the scattered or gridded bathymetric database to the BatTri bat structure using the
xyz2bat.m routine (running 'help xyz2bat' and/or 'help BatTriStructs' should provide more
information on this and BatTri structures in general). Most of the plotting options implemented are
for viewing which areas of the current mesh will be affected by various constraint types. The
inventory of plotting options presented by diagnostic_plots.m is by no means all-inclusive. It is
expected that the users will add their own options to the menu. Each plotting option launches a
new figure window in which the user can zoom, rotate, and edit the plot with Matlab's figure
window tools. The following plotting options are supported:

- h / [grad(h)*A] (Option 0) : This makes a colored patch of h/[grad(h)*A] function on the
elements of the current mesh. All variables are defined as in the mesh refinement menu
(see next section). If you plan to use a h/[grad(h)*A] constraint in the next refinement, you
can use the figure colorbar under the plot to select the value for the parameter alpha, so
that h/[grad(h)*A] ≥ alpha. All elements that are colored with a color to the left of alpha
on the colorbar will be refined by the constraint. The farther to the left on the colorbar, the
more the element will be refined.

- h / A (Option 1) : Same as Option 0 but for h/A, instead of h/[grad(h)*A].

- 1 / [grad(h)*A] (Option 2) : Same as Option 0 but for 1/[grad(h)*A], instead of

h/(grad(h)*A).

- Bathymetry Plot (Option 3) : Plot the bathymetry of the mesh. This makes a colored
patch object of the mesh with the coloring corresponding to the depths of the nodes. The
user specifies a color axis so that they can focus on a particular bathymetric range.

 DRAFT 14 JULY 2002

43

- Contour Comparison (Option 4) : This plots the contour mesh bathymetry on top of
database bathymetry. This option can be used to check that topographic features are
adequately resolved by the current grid's discretization. For example, if one were trying to
resolve a 10 m deep dredged channel in a harbor whose out of channel depth was no
deeper than 5 m, one could contour the current mesh's 9 m isobath against that of the
bathymetry databases. If the database produces two non-intersecting (blue) curves
denoting the edges of the channel and the grid produces a series of elongated islands
(red), then the channel has not been properly resolved by the current mesh. A gradient or
slope based refinement might fix the issue by forcing more elements onto the "walls" of
the channel. (You can check by using plotting option 0 or 2). This option requires the bat
structure to be input if diagnostic_plots.m is manually run.

- delta(h) / h (Option 5) : This makes a colored patch object of delta(h)/h for each element.

delta(h)/h is defined as in mesh refinement Option 6.

- Grid Plotting (Option 6) : This makes a simple wire-frame drawing of the current mesh.

- Minimum Angle Plot (Option 7) : This makes a colored patch of the element minimum
inside angles. Equilateral triangles appear red, while triangles with small angles are
shifted towards blue.

- Element Quality Plot (Option 8) : This makes a colored patch of each element's "quality"

measure. The quality of an element is defined as:
q = 4*√3*A / (L1

2+L2
2+L3

2),
where A is the area of the element and L1, L2, and L3 are the length of the sides.
Equilateral triangles have q = 1. Elements with a low quality number can cause numerical
problems.

- Quit (Option 9) : This quits the diagnostic plotting menu and proceeds to the mesh

refinement section.

MESH REFINEMENT

The mesh refinement schemes of BatTri are a collection of simple depth dependent formulae
whose goal is to provide the grid generator Triangle with an array of maximum area constraints
for refining individual elements. As explained in
http://www.cs.cmu.edu/~quake/triangle.refine.html, Triangle is able to impose different area
constraints on each element of the triangulation, besides the possibility of imposing one area
constraint for all elements of the domain. This is done by creating an .area file that has one line
for each element of the grid consisting of the element number and the corresponding maximum
area that this specific element can have. If the area of the preliminary mesh element is larger than
the one specified in the .area file, Triangle divides that element into smaller ones until the
constraint is met. If it is smaller than the specified area, it is left unchanged. Elements with no
constraints are marked with -999 in the .area file.

Additional control is provided through selection of a bathymetric depth range to refine. This
applies a particular bathymetry based constraint only to elements which have one or more nodes
with depth inside the depth range or which straddle the depth range interval. Elements outside of
the depth range may still be refined due to the minimum angle constraint. If the user is interested
in applying a gradient based constraint to resolve sand waves in the near shore without overly
refining the shelf break, one could choose a depth range of [-40 , 0] so that the gradient constraint
wouldn't be dominated by the shelf break. Choosing [-Inf, Inf] or [] will apply the constraint to the
entire grid. Another use for the depth range parameter is to avoid singularities of the constraints.
If one wants a mesh that handles wetting and drying and "0" bathymetric depth is referenced to
mean low tide then inevitably the h/A constraint (or wavelength constraint) will be unbounded
near the low tide line. To avoid this singularity the h/area constraint can be applied to the depth

 DRAFT 14 JULY 2002

44

range [-Inf, -0.5]. During the next refinement, a constant area constraint can be applied to [-.5,
Inf].

When an element-by-element maximum area constraint is applied using depth dependent
schemes, it is possible to have sharp transitions between elements in areas where there is a
sudden and large change in domain bathymetry (i.e., continental shelf, marsh limits, etc...).
Similarly to the zone refinement of the preliminary grid, this unwanted problem can be solved by
increasing the minimum inside angle constraint, which will lead to a mesh with smoother
transitions.

- h/grad(h) Refinement (Option 0) : This scheme uses the following formula to relate the
maximum element area to the average element depth and change in depth:

h/[(grad(h)*alpha] ≥ A,
where h is the absolute value of the average element depth, grad(h) is the absolute value
of the gradient of h on the vertices of the element, alpha is a constraint ratio set by user
and A is the maximum element area to be imposed.

- h Refinement (Option 1) : This relates the maximum element area to depth linearly via a

simple factor a, according to:
h/alpha ≥ A

where h is the absolute value of the average element depth, alpha is a constraint ratio set
by user and A is the maximum element area to be imposed.

- 1/grad(h) Refinement (Option 2) : This scheme relates the maximum element area to

the change in bathymetry according to:
1/[grad(h)*alpha] ≥ A .

Here, grad(h) is the absolute value of the gradient of average element depth h on the
vertices of the element, alpha is a constraint ratio set by user and A is the maximum
element area to be imposed.

- Maximum Slope Refinement (Option 3) : This scheme refines all elements whose

maximum slope with respect to the x or y axes along any edge is larger than a user set
value. Inputs are the threshold angle in degrees and the maximum element area required
on the elements. This option may be used to resolve the effects of local small bottom
disturbances like sand waves and boulders on small meshes. It is normal to have Matlab
warnings of "division by zero" in this scheme. These do not interfere with the final solution
since the maximum slope is filtered out and used.

- Tidal Wavelength to Grid Size Refinement (Option 4) : This scheme is based on the

Courant condition, which requires a higher grid resolution in shallower areas than deeper
water zones because of the slower wave celerities experienced in shallow water. The
maximum area that an element can have is calculated using the following formula:

[(g*h*T2)/R2] ≥ A.
Here, g is the gravitational acceleration in m/sec2, h is the average depth of an element in
meters, T is the tidal period of interest in seconds (44714.16 sec for M2), R is the tidal
wavelength to grid size ratio set by the user and A is the maximum area that an element
can have in the final grid. An element minimum inside angle constraint may be needed to
top the Courant condition to smooth the grid by creating elements with better aspect
ratios.

- Constant Maximum Area Refinement (Option 5) : This imposes a constant maximum
element area constraint on all the elements of the domain, without using the bathymetry.

- delta(h)/h Refinement (Option 6) : This scheme first checks to see if elements of the

current grid meet the
delta(h)/h ≤ alpha

criteria. Here, delta(h)/h is defined as:

 DRAFT 14 JULY 2002

45

delta(h)/h = (hmax -hmin)/hmin,
where hmax is the depth of the deepest node on the element and hmin is the depth of the
shallowest. If delta(h)/h is less than or equal to the ratio alpha, the condition is satisfied
and no refinements are performed on that element. If it is larger than alpha, the area of
sub-elements in the refined mesh can be no larger than another user defined constant,
'tarea'.

Once the restrictions entered by the user are applied to the pre-cut triangulation and a refined
grid is generated, BatTri asks the user to choose from a series of diagnostic plots explained in the
next section. Depending on the results shown by these plots, users can choose to end the
refinement process and proceed to the generation of the final grid (Option 1), to continue refining
from the current mesh (Option 0) or to go back n steps to a previous version of the grid if the
current one is not satisfactory at all (Option -1, -2, etc., depending on how many times the grid is
refined in the current BatTri session).

DIAGNOSTIC PLOTTING OF THE REFINED GRID

As in Diagnostic Plotting of the Preliminary Grid.

CREATION OF THE FINAL GRID

If user chooses the Option 1 at the end of the refinement process, BatTri interpolates the grid
bathymetry, reduces the bandwidth of the mesh by using the Cuthill-McKee algorithm, displays
the initial and reduced half-bandwidths, together with mesh properties (number of nodes, number
of elements, number of boundary nodes, bandwidth) and exits. The final grid will be saved in
Dartmouth NML standard mesh format under the filenames finalgrid.nod, finalgrid.ele and
finalgrid.bat in the current directory ('finalgrid' is the filename of the final mesh defined in the
Running BatTri section).

POSSIBLE FUTURE IMPROVEMENTS

The following bullets in no particular order summarize possible future improvements to BatTri that
we may implement depending on the reactions that we receive from users:

- Capability to input a scanned geo-referenced map picture (jpeg) to digitize coastline
and/or bathymetry for scratch building;

- Capability to move bathymetric data points and to change depth attributes manually;
- Bathymetry based refinement by zone;
- "On the fly" zone specification during refinement (i.e. re-define zones as you refine);
- Automatic identification of islands;
- "Bathymetry approximation error" based constraints;
- triangle2fe_struct.mex, fe_struct2triangle.mex (to speed up I.O.);
- scattered_contour.mex (speed up contouring).

ACKNOWLEDGEMENTS

We would like to thank B. Blanton (UNC), C. Denham (USGS), D. Fugate (VIMS), T. Gross
(NOAA), D.R. Lynch (Dartmouth College), J. Manning (NMFS) and J. Veeramony (NRL) for their
many useful contributions of code and insights. Of course, our appreciation must also be
extended to J.R. Shewchuk for producing Triangle. This work was partly supported under NFS
grant #97-163.

This manual is put together by Ata Bilgili (ata.bilgili@dartmouth.edu) and Keston Smith
(ksmith@whsun1.wh.whoi.edu). Please report all errors or comments to Ata Bilgili.

