Water for the World

Designing Community Distribution Systems Technical Note No. RWS. 4.D.4

A community water distribution system technically begins where the transmission main ends as described in "Designing a Transmission Main," RWS.4.D.3. Basically, this is the point at which water begins to be used either at individual services or public standposts. Designing a distribution system requires the assistance of an experienced engineer. This technical note only explains the basic steps involved in design.

As is true of all aspects of water system design, a map of the area to be served and a profile along the proposed line are necessary. These are illustrated in Figure 1 and 2. Homes to be served and their elevations should be accurately located on the map. This is important in locating public watering points.

Rural water distribution systems generally consist of one or more main lines which do not interconnect at the end. This is because the lines are generally far apart. In larger communities, the ends of the lines are "looped", or connected to one another, to keep the water in the end of the lines from becoming stagnant and to allow it to flow from more than one direction. Looping the lines provides more flexibility in operation and maintenance.

Looping should always be considered if the layout of the community is such that it is feasible.

The design of a community water system serving public standposts should follow certain standards. These include a minimum of one tap for each 50 users. Up to 300 people can be served by each standpost if sufficient taps are added. Figure 3 shows a single tap standpost and Figure 4 shows a standpost with multiple taps. Public watering points should be located within 200m of each household or up to 500m in sparsely populated areas. Each faucet should be designed to provide from 0.23-0.03 liters/second. Static

water pressure should be a minimum of 7m. Maximum water pressure should be less than 15-20m due to increased problems of leakage and wastage under higher pressures. Community standposts should be designed so that rain and wastewater drains away from the area and are not allowed to stand. Spigots or faucets are often leaky and easily broken. They should be designed for easy repair and replacement.

Design Example

Assume that a community distribution system using Figure 1 as the layout is being designed. While the population is relatively scattered, there are groupings of homes which can be served with public watering points. As shown on the map, there are five sections of 5, 9, 7, 15 and 12 dwellings. The estimated population is seven people per house. No other services are planned.

Since the map and profile have already been prepared, the next step is to plan the number of faucets for each watering point and calculate the expected peak flow using the information given. This is shown in Table 1.

Section	Number of homes	People	Number of Faucets	Peak Flow Per Faucet liters/second	Total liters/second
1	5	35	1	0.23	0,23
2	9	63	2	0.23	0.46
3	7	49	1	0.23	0.23
4	15	105	3	0.23	0.69
5	12	84	2	0.23	0.46

The pipelines can now be sized according to flow. Table 2 shows pipe sizes based on limiting the velocity of water in the pipeline to 0.75m per second or 1.5m per second. Each line should be sized individually and the head loss determined. This can be done tabular form as shown for this village in Table 3. Worksheet A shows step-bystep how to design a water transmission line from storage to distribution, including how to arrive at the information presented in Table 3.

Locity of	Range of Flow (1/sec) 0.1-1.3	Pipe Size Based on Velocity of 1.5 m/sec# 30mm
30mm	0.1-1.3	30mm
1		
4 Omm		40mm
50mm	2.3-3.5	50mm
80mm	3.6-8.9	80mm
LOOmm	9.0-13.8	100mm
		150mm
	LOOmm	

*Formula for determining pipe size:

Flow of 0.75 m/sec. Diameter = 1.3/QFlow of 1.5 m/sec. Diameter = 0.85/Q

Table 3. Head Loss for Design Example

Section	Line	Flow	Size mm (1)	Head Loss (2)	Length (1000m)	Head Loss	Difference in Elevation	Additional Head Required Head Loss <u>+</u> Elevation
1	AB BG	2.07 0.23	80 mum 30 mum	4m 4m	0.2	8m 0.8 8.8m	-10m	-1.2
2	AB DC CD DF	2.07 1.8 0.69 0.46	80mm 80mm 40mm 40	4m 3.2 16.0 7.3	2 0.5 0.2 1.0	8.0 1.6 3.2 <u>7.3</u> 20.1	-10	10.1
3	AB BC CD DE	2.07 1.8 0.69 0.23	80mm 80 40 30	4m 3.2 16.0 4	2 0.5 0.2 0.5	8.0 1.6 8.0 <u>2.0</u> 19.6	-15	4.6
4	AB BC CI IH	2.07 1.8 1.15 0.69	80mm 80 50 40	4m 3.2 10 15	2 0.5 0.5 0.5	$ \begin{array}{r} 8.0 \\ 1.6 \\ 5.0 \\ 7.5 \\ \hline 22.1 \\ \hline 22.1 \end{array} $	-10	12.1
5	AB BC CI IJ	2.07 1.8 1.15 0.46	80mm 80 50 30	4m 3.2 10 18	2 0.5 0.5 0.5	8.0 1.6 5.0 <u>9.0</u> 23.6	-15	8.6

From Table 3, it can be determined that the bottom of the storage tank will have to be at least 12.1m above ground level in order to provide the design flows to the most critical spot, Section 4. Section 2 would have been critical, but the pipes line from D to F was increased in size to reduce head loss. In addition to the 12.1m elevation to allow flow, an additional 5m should be added to the tank height to maintain a positive head during times of peak flow.

If the bottom of the storage tank had to be located at elevation 100, then friction losses would have to be reduced by increasing pipe sizes, limiting flow with flow controlling devices, or both. A flow controlling device can be a partially closed valve or an orifice design to limit flow to a preset level.

It should be noted that Section 1 shows a negative head (-) needed. This indicates that the head losses are less than the available head.

Worksheet A. Designing Water Transmission Line from Storage to Distribution

1. Design Flow - Present Line to _____ Peak demand from homes with individual services No. of homes served Range Actual x Demand in liters/second Total First 1 x 0.23 2 to 10 x 0.08 11 to 20 x 0.06 _____ x 0.06 x 0.05 21 to 30 31 to 50

Total _____

	Worksheet A. Design	ing Water Transn	nission Line	from Storage to Distribution	on (continued)
	Peak demand from p	public wateri	ng founta	ins	
	Number of faucets	Demand p	er faucet	in liters/second	Total
	1 to 6 7 to 9 10 to 12	x 0.23 x 0.19 x 0.17			
				Total	L
	Peak demand from o	other points	of use		
	Facility Number	er of fixture	s Dem	and in liters/secor	nd Total
	Schools Religious Commerical Industrial [*] Fire [*] Animal [*]		x x x x x x x x	0.23 0.23 0.23 varies varies varies	
				Тс	otal
* N	formally not include	ed in rural s	ystem.		
			Tota	l instantaneous der	nandl/sec.
2.		ign life. If of 2 times t	he preser	er information is a at population and an	
	Population	Present use	x 2	2 =l/sec.	
	Institutions & public fountains	Present use	x 2	2 =1/sec.	
	Animals	Present use	x 3	25 =1/sec.	
		Total futu	ire water	use =l/sec.	
3.				or each section of) 3 solves this form	
	Line to				
	Pipe diameter d = =	1.3/Q m ³ per 1.3/.001	second /sec. =	m	
	Convert meters to	mm 1000 x	m =	mm	
	Round mm calculat	ed to availab	le pipe s	size d =mm	
	Note: This method of The pipe to 0.75m/se		; is based	l on limiting the v	elocity of water

Worksheet A.	Designing Wa	ter Transm	ission Line from	Storage to D	stribution (continu	ued)
4. Head requirer To calculate Use Table 2 being conside	the head r to determin	equired, e fricti	first find on losses.	the total Do this f	dynamic head or each sectio	(TDH). on of pipe
TDH = static	head + fri	ction lo	sses			
Friction Loss	ses,					
a. Determine Equivalent	head requit length of	re to ov pipe du	vercome frict le to fitting	tion. s* (Table	2)	
Fitting		No. x	Equivalent	length		
Gate valve Elbow, 90° Elbow, 45° Tee (straight Tee (through Swing check v	side)	x x x x x x x x x x x x x x		m m m m		
	Total e	quivalen	t length	m		
b. Length of	pipe from	to	=	m		
c. Total pipe	e length =	a + b =	m			
Friction loss	$m = \frac{m}{1000}$	x	head loss pe	er 1000/m	=m	
*Note: When pipe usually be igno	elines exce pred.	ed 500m,	these losse	es are rel	atively small	and can
5. Tabulate resu	ilts of fir	st 4 ste	ps for each	length an	d branch.	
Line	l & 2 Flow l/sec	3 Pipe Size	4c Length m (x 1000)	4d Head loss 1000m (HL)	Elevation difference (EL)	Total required (HL-EL)
Branch to						
to to to to		Bra	 nch Total			
Branch to						
to						
to						
to		Bra	nch Total			

Worksheet A. Designing Water Transmission Line from Storage to Distribution (continued)

Branch				
to		 		
to to	. <u> </u>	 	 	
to		 	 	
to		 		
***		 Branch Total	 <u> </u>	
		Dianch iotai	 	
Branch				
to				
to		 	 	
to		 		
to		 - 	 	
to		 	 	
		 Banch Total		
_				
Branch			•	
to		 	 	
to		 		
to		 	 	
to		 	 	
to		 	 	
		Branch Total	 	
	n	 		