\[p < p_0 \]

\[p_{DA} \rightarrow \Delta p = 0 \]

completely adiabatic fuel

\[s \]

\[s_f \]

\[\frac{s_f}{s_0} \]

\[p \]

\[p_{1,0} \]

\[p_{1} \]

\[p_{1} \]

\[\text{with heat transfer } p_{as} > p_0 \]

\[\text{no heat transfer} \]
Rod ejection

\[P(t) \]

\[P_m \]

\[P_h \]

\[t \]

\[P(t) \]

\[P_m \]

\[P_h \]

Why?
Example:

\[P_0 = 1.2 \text{ kPa} \]
\[\beta/\lambda = 0.62 \times 10^4 \text{ s}^{-1} \]
\[Y_e = 0.8 \text{ kPa/} P_m \]

\[P_m - P^0 = -\frac{Q^2}{2 \lambda \beta} \]

\[= 38.8 \text{ kPa} \]

\[P_m = 2500 \text{ kN/m}^2 \]
1. \(P_0 = 0.1 P_m \) (HZP)
 \[P_m = P_0 = 388 P_0 \]
 \[P_m = 399 P_0 \]

2. \(P_0 = P_m \) (HFP)
 \[P_m = 49.8 P_0 \]
FLUX TRANSIENT DURING A SUPERCritical excursion

$P > \beta$

Starting with the first integral:

1. $\lambda \left[\dot{S}_p(t) - \lambda P^0 \right] = \frac{1}{2} \left[S_p^2(t) - S_p^2 \right]$

Rearranging:

2. $2 \lambda \dot{S}_p(t) = S_p^2 - S\beta^2$

with

3. $S_b^2 = S_{pi}^2 - 2\lambda \gamma P^0 \geq S_{pi}^2$
Dividing Eq. 2 by its right side and integrating with respect to time (from 0 to t):

\[t = 2 \Lambda \int_{S_p(t)}^0 \left(\frac{d S_p}{S_p^2 - S_b^2} \right) = 2 \Lambda \int_{S_p(t)}^0 \frac{d S_p}{S_b^2 - S_p^2} \]

or

\[\frac{t}{\Lambda} = \frac{1}{S_b} \left[\ln \frac{S_b + S_p(t)}{S_b - S_p(t)} - \ln \frac{S_b + S_p(t)}{S_b - S_p(t)} \right] \]

to find the time at which the maximum of the flux is seen, we set $S_p(t) = 0$
\[t_m = \frac{1}{S_b} \ln \frac{8_b + 8_p(t)}{8_b - 8_p(t)} \]

Then:

\[\frac{t - t_m}{\frac{1}{S_b}} = -\frac{1}{S_b} \ln \frac{8_b + 8_p(t)}{8_b - 8_p(t)} \]

Solving \(\text{Eq. 7} \) for \(8_p(t) \):

\[8_p(t) = 8_b - \frac{1 - \exp \left[\frac{8_b (t - t_m)}{1} \right]}{1 + \exp \left[\frac{8_b (t - t_m)}{1} \right]} \]

Here we used Eq. 6 to simplify Eq. 5, leading to Eq. 7.
According to Eq. 8:

at $t = 0$
$S_p \left|_{t=0} \right. = S_p^i$

at $t = t_m$
$S_p \left|_{t_m} \right. = 0$

at $t = 2t_m$
$S_p \left|_{2t_m} \right. = -S_p^i$

Now, inserting Eq. 8 into

$\Delta V \left[p(t) - p^0 \right] = \frac{1}{2} \left[S_p^2(t) - S_p^2 \right]$

and using that:

$S_b^2 = S_p^2 - 2 \Delta V p^0$
and
$P_m = -\frac{S_b^2}{2 \Delta V} \Rightarrow \ldots$
\[\Delta T = \frac{4 \Lambda}{\gamma_{p_1}} \left(1 - \frac{P_0}{P_{\mu}} \right) \]

Case 1: \(P_{\mu} \gg P_0 \)

\[\Rightarrow \Delta T = \frac{4 \Lambda}{\gamma_{p_1}} \]

Case 2: \(P_{\mu} \ll P_0 \)

\[\Rightarrow t_{\mu} = \frac{\Lambda}{\gamma_{p_1}} \left(\ln 4 \frac{P_\mu}{P_0} \right) \]

From the figure:

1. If transient starts at nominal power: (shown in the figure)
 - \(t_{\mu} \) is not much larger than \(\Delta T \) => maximum is quickly reached.
(2) If transient starts at near zero power:

Let \(P_0 = 10^{-6} P_n \)

\[t_m \leq 16.5 \frac{L}{8P_n} \]

The maximum is reached in only 4 times of \(t \)

\[\Rightarrow \text{the burst will be very narrow (the maximum is much larger)} \]
Post-Burst Transient

\[P(t) = \frac{P_{in}}{\cosh \left(\frac{3b}{2\lambda} (t-t_m) \right)^2} \]

- Flux is decreasing rapidly after passing \(P_{in} \)
- Flux continues to drain away after 2\(t_m \) - not realistic
 - Reason - neglect of the delayed neutrons
- After reaching the reactivity domain \(0 < \phi < \phi \) - PTA is not valid
- PTA - valid
 - (flux changes are slow) \(\Delta \phi = 0 \)
Using the initial value of a delayed neutron source and reactivity after the burst \(S(t_a) = \beta - S_{p_1} \):

After the burst, the flux stays at a level \(P_{ab} \) given by:

\[
P_{ab} = \frac{S_{do}}{\beta - S_{p_1}} = \frac{S_{do}}{S_{p_1}} = \frac{\beta}{P_{p_1}} P_0
\]

If \(S_{p_1} = 0.1 \% \) \(\Rightarrow P_{ab} \) is 10 times \(P_0 \) (initial power)
Superprompt-critical transient (\(\rho_l = 1.1 \), \(p_0 = 0.1 p_n \))

with reactivity feedback

\[
\begin{align*}
\text{short time of the burst} & \quad \text{we can use} \quad \lambda \\
\Rightarrow \lambda z_0 &= \beta P_0 \\
\int_0^{t_2} p(t') dt' &= -2 \frac{\beta_p \lambda}{\gamma}
\end{align*}
\]

If: \(P_0 = 0.1 \) \(\Rightarrow \)
\[
-2 \frac{\beta_p \lambda}{P_0 \gamma} = \frac{-2 (0.15) (0.565 s^{-1})}{(0.1) - 0.08 ms^{-1}} = 1.21
\]

\(\approx 140 \% \)

increase of

the delayed reactivity feedback

including the precursor increase:

\[
P_{tb} = \frac{\beta_p \lambda}{\beta_p \lambda} \left(1 - 2 \frac{\beta_p \lambda}{P_0 \gamma} \right)
\]
Temperature increase during the entire transient:

\[
\Delta T_{\text{total}} = \Delta T_{\text{burst}} + \Delta T_{\text{post-burst}}
\]

\[
= -\frac{1}{\gamma T} \left[2(g_1 - \beta) \right] - \frac{1}{\gamma T} \left[g_1 - 2(\beta \cdot \beta) \right]
\]

\[
= -\frac{p_1}{\gamma T}
\]

reactor accidents:

Example: \(g_1\) is almost never much larger than \(\beta\)

\(\Rightarrow\) \(\Delta T_{\text{post-burst}}\) is only a small part of \(\Delta T_{\text{total}}\)

\(g_1 = 1.1\% \Rightarrow 18.1\text{ energy release during post-burst}\)

\(22.1\% = \) during the burst.