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In order to satisfy various market needs and remain competitive in the 

marketplace, high technology industries create cross domain products that are 

differentiated from current product designs by integrating new function attributes 

from multiple product domains. However, given the vast number of candidate 

function attributes to select from, there is a fundamental challenge when 

searching for the appropriate function attributes to include in next generation 

products. This work quantifies the semantic similarities between descriptive 

design requirements and function attributes in order to identify new function 

attributes that have the highest similarity to each requirement. This work 

hypothesizes that there is a correlation between these new function attributes and 

increased product sales. The case study presented in this work tests this 

hypothesis in the mechanical transmission systems domain. This work analyses 

the impacts of products that contain different function attributes on actual product 

sales in the market. Transmission system function attributes and product sales 

data, including new electronic gear shifting systems from Shimano’s bicycle 

division, are introduced in the case study. This case study reveals that the 

function attributes predicted by the method, increase the market sales of next 

generation products. 
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1 Introduction 

In order to satisfy market needs, companies actively seek to offer competitive 

and highly differentiated products (Alizon, Shooter, & Simpson, 2009; Kota, 

Sethuraman, & Miller, 2000; Pirmoradi, Wang, & Simpson, 2014). During the new 

product development process, product attributes are descriptors that represent a 

product’s characteristics within its design requirements, such as function (e.g., 

representing the specific objectives of a product) and form (e.g., representing the 

physical configurations of a product) (Ghani, Probst, Liu, Krema, & Fano, 2006; 

Mukherjee & Hoyer, 2001; Rounds & Cooper, 2002). A design requirement is a logical 

representation of designers’ purposes that is constructed in accordance with legislation 

and standards (Fox & Bilgic, 1996; Rounds & Cooper, 2002). A company may develop 

a new product by incrementally improving one or a few product attributes on the basis 

of limited design data relating to design requirements and previous product designs. In 

the presence of fierce market competition, these incremental improvements can erode a 

company’s competitive edge in the market by making their products less distinct than 

products offered by competitors (Alizon et al., 2009; Leifer, O’Connor, & Rice, 2001; 

Yannou, Jankovic, Leroy, & Okudan Kremer, 2013). Consequently, companies seek to 

constantly differentiate products in order to remain competitive. A function attribute 

represents the operational purpose of design requirements, which are based on 

designers’ understanding of customer needs (Guenov, 2008; Orfi, Terpenny, & Sahin-

Sariisik, 2012; Umeda, Kondoh, Shimomura, & Tomiyama, 2005). Analysing a 

product’s function attribute precedes the definition of other product attributes, such as 

form and material (Bohm & Stone, 2004; Bryant, Stone, McAdams, Kurtoglu, & 



Campbell, 2005; Stone, Wood, & Crawford, 1999; Umeda et al., 2005). In the design 

community, methods have aimed to develop cross domain solutions by searching for 

product attributes across different engineering domains in order to solve complex 

engineering design problems (Cross, 1999; Danilovic & Browning, 2007). However, 

these methods are restricted to searching for design knowledge from the specific 

domains designers have an interest in or experience with, which potentially limits the 

competitiveness of next generation products. 

Therefore, designers look for novel solutions during the initial steps of the 

design process by searching function attributes across product variants, product 

portfolios, and even across departments and organizations, in order to satisfy the 

continuously increasing variety of market needs (Tucker & Kang, 2012). Each year, 

more than 30,000 new consumer products are launched into the market, each with their 

own product attributes (Christensen, Cook, & Hall, 2005). The major challenge facing 

designers in the modern age is not a lack of product data, but the continuously 

increasing quantity and diversity of those data. Engineering design methods play a 

significant role in the product design process, as designers search and generate novel 

design solutions that address new and emerging customer preferences and market needs 

(Tuarob & Tucker, 2014, 2015a, 2015b; Tucker & Kim, 2008). Design methods that 

explore different product attributes have shown cross domain design synergies during 

the new product development process (Kang, Sane, Vasudevan, & Tucker, 2013; Kang 

& Tucker, 2015; Tucker & Kang, 2012). This work expands upon previous research by 

identifying new function attributes that have the potential to satisfy design requirements 

and increase product sales. Since designers across product domains may have different 

design and business objectives, the contributions of this work are limited to the 

exploration of novel functions for next generation mechanical transmission systems that 



have the potential to improve market sales. This work analyses the impact of 

implementing new function attributes in the development of next generation mechanical 

transmission systems by comparing actual market sales differences between products 

with new function attributes discovered by the method and products with function 

attributes discovered using existing product design methods. Future work will explore 

the validity of the method in domains beyond mechanical transmission systems, as more 

data is needed to generalize the findings beyond the domain explored in this work.  

This paper is organized as follows. This section provides a concise motivation 

and background; section 2 describes works closely related to the method; section 3 

presents a detailed description of the method; section 4 presents a case study that 

demonstrates the method with actual market sales data relating to new types of 

transmission systems (e.g., electronic gear shifting system) from a bicycle domain; the 

results of the case study are presented in section 5; and section 6 concludes the paper. 

2 Literature review 

This section reviews existing design methods relevant to the new product development 

process. 

2.1 Product design based on customer needs analysis 

Designers typically solicit feedback from current and potential customers during the 

creation of next generation product designs (Malen, 1996; Sullivan, Lee, Luxhoj, & 

Thannirpalli, 1994). Customer needs are defined as problems that customers intend to 

solve by purchasing products (Kurtadikar & Stone, 2003). In order to create next 

generation products that succeed in the market, designers focus on improving the 

attributes existing in the current product portfolio that are based on customer needs 

(Green, Rajan, & Wood, 2004). Techniques such as conjoint analysis (CA) quantify the 



probability of a customer’s choice between each competitive product or product 

attribute (Moore, Louviere, & Verma, 1999; Olewnik & Lewis, 2007). Preferences 

pertaining to product attributes are gathered by collecting customer surveys. A utility 

function quantifies customer preferences between competitive products using collected 

product data. Discrete Choice Analysis (DCA) is a probabilistic choice model that 

predicts a customer’s choice based on mutually exclusive, collectively exhaustive 

(MECE) alternative choices (Berry, 1994). In order to identify the most favored product 

across different expectation rates, the product design community has employed 

variations of the DCA model, such as multinomial logit (MNL), probit, nested logit, and 

ordered logit models (Hoyle, Chen, Ankenman, & Wang, 2009; Wassenaar, Chen, 

Cheng, & Sudjianto, 2005). The Quality Function Deployment (QFD) method aims to 

develop products that satisfy customer needs by identifying the interaction between 

customer needs and engineering metrics (EM) (Pullman, Moore, & Wardell, 2002). This 

interaction provides designers with functional engineering targets based on customer 

product preferences, which are obtained from customer surveys and focus groups 

(Green et al., 2004; Lowe, Ridgway, & Atkinson, 2000).  

In order to optimize product attributes during next generation product design, 

designers employ data mining techniques in order to identify customers’ choice patterns 

based on customer surveys (Kusiak & Smith, 2007; Lim, Liu, & Loh, 2012; Shao, 

Wang, Li, & Feng, 2005; Tucker & Kim, 2009). Semantic analysis techniques have 

been utilized to extract meaningful keywords from large scale product reviews in order 

to efficiently capture market needs (Tuarob & Tucker, 2013, 2014, 2015a, 2015b; Zhou, 

Jianxin Jiao, & Linsey, 2015).  

Engineering designers quantify commonality across related products to mitigate 

product development costs associated with product differentiation. Each product can 



then be grouped into a product family, hereby sharing an underlying product design 

architecture (Orfi, Terpenny, & Sahin-Sariisik, 2011). Researchers measure and 

evaluate product complexity levels across product families in order to minimize costs 

while concurrently meeting market needs (Orfi et al., 2012). Clustering techniques have 

been used for market segmentation during the product family design process (Agard & 

Kusiak, 2004). 

The aforementioned product design methods are limited to product attribute 

discovery in related product domains. However, discovering new product attributes 

from different products may provide vital information to engineering designers, who 

aim to create competitive next generation products, based on product differentiation. 

This work quantifies the semantic similarities between descriptive design requirements 

and function attributes in order to identify new function attributes that have the highest 

similarity values with each requirement. This work hypothesizes that there exists a 

correlation between these new function attributes discovered by the method presented in 

this paper and increased product sales. 

2.2 Product design based on functional models  

In engineering design, a functional model is a structured representation of the 

standardized functions within the formalized design space. The functions are defined on 

a functional basis, which designers describe with standardized jargon (Stone & Wood, 

2000). Discovering functions for next generation products allows fundamental 

explorations in product design and enables designers to explore function attributes that 

fit design requirements (Kurtoglu, Campbell, Arnold, Stone, & Mcadams, 2009; 

McAdams, Stone, & Wood, 1999). The functional model creates a product’s 

architecture, where the architecture represents the product’s functional structure. 

Designers have created functional architectures for next generation products on the 



basis of a functional model (Kurtoglu et al., 2009; Sangelkar & McAdams, 2013; Sen, 

Summers, & Mocko, 2010). A quantitative functional model that captures product 

functionality and customer requirements has been proposed (Stone et al., 1999). This 

model has created a product repository by assessing each product’s function attributes 

on the basis of related customer requirements. Designers have combined functional 

models and TRIZ (a Russian term for the theory of inventive problem solving) to create 

next generation product design concepts by exploring interrelated patents within design 

requirements (Fu, Cagan, Kotovsky, & Wood, 2013; Liang & Tan, 2007). Since patents 

contain large-scale textual data sets, researchers have employed text mining techniques 

to search the functional attributes that are not only analogical to the design 

requirements, but are also included in structured formats (e.g., contradiction table, 

engineering parameters, inventive principles, and standard solutions defined from TRIZ 

theory) (Cascini & Russo, 2007; Liang, Tan, & Ma, 2008). Therefore, these approaches 

may support designers with ‘reasonable’ function attributes, which designers can 

cognitively retrieve. However, these methods are strongly based on the designers’ 

analogies, and so they retrieve patents that are closely related to the designers’ domains. 

The method presented in this work quantifies the relationships between design 

requirements and functional descriptions that are not limited to designers’ domain 

knowledge. By comparing these quantified relationships, the method identifies function 

attributes that are from different domains and satisfies design requirements. Therefore, 

the method aims to provide designers with more efficient and insightful access in order 

to retrieve function attributes from different domain knowledge. 

In a systems engineering context, EIA 632 has been established to standardize 

the systems functions (Martin, 2000). The ISO/IEC 15288 standard provides structured 

design frameworks for organizing system development projects (Arnold & Lawson, 



2004). However, as the number of products continues to increase, designers are faced 

with the challenge of exploring novel function attributes that can lead to next generation 

products. To overcome these challenges, text mining techniques have been employed to 

extract function attributes from text-based product data, such as product technical 

descriptions (Ghani et al., 2006; Romanowski & Nagi, 2004). Researchers have 

extracted product function attributes from their functional descriptions through text 

mining techniques that can derive semantics from textual data sets (Kang et al., 2013; 

Tuarob & Tucker, 2014; Tucker & Kang, 2012; Tucker & Kim, 2011).  In order to 

improve or differentiate product designs, the existing literature has focused on 

discovering function attributes from product descriptions and customer reviews. 

However, researchers have not demonstrated how their results impact real market sales. 

This work aims to provide designers with new function attributes for developing next 

generation products by identifying these attributes from different products that are not 

only novel to current generation products but will also increase market sales. 

2.3 Product design based on different domain knowledge  

Researchers have proposed design methods that develop novel engineering design 

solutions by discovering product attributes across multiple domains (Helms, Vattam, & 

Goel, 2009; Nagel, Nagel, Stone, & McAdams, 2010). In order to develop conceptual 

designs for new products, designers have employed design by analogy, which searches 

product attributes that meet customer requirements in multiple domains by comparing 

these attributes based on designers’ product cognitions (Fu, Chan, et al., 2013). 

Designers have created novel design solutions by employing design by analogy 

techniques to search for new function attributes in unfamiliar product domains (Chan et 

al., 2011; Linsey et al., 2010). However, it is difficult to search for feasible attributes in 

other product domains, especially when there is a large difference between designers’ 



knowledge and the product domain (Fu, Chan, et al., 2013;). In order to discover 

function attributes across multiple domains, researchers employ text mining techniques, 

such as WordTree and latent semantic analysis, to derive common parts from multiple 

product patents (Fu, Cagan, et al., 2013; Fu, Chan, et al., 2013; Linsey, Markman, & 

Wood, 2012). Because design by analogy provides multiple function attributes for next 

generation products, designers may find it challenging to identify which specific 

attribute may lead to designing next generation products. The method presented in this 

work predicts the candidate function attributes that can increase next generation product 

sales. 

Bio-Inspired Design allows designers to take product attributes from nature and 

develop new design solutions for existing engineering design problems (Cheong, Chiu, 

Shu, Stone, & McAdams, 2011; French, 1994; Helms et al., 2009; Nagel et al., 2010; 

Vakili & Shu, 2001). In order to increase the bio-inspiration effects on the new product 

development process, researchers have presented rule-based models or have utilized text 

mining techniques (Cheong et al., 2011; Nagel et al., 2010). Cheong et al. have 

employed text mining techniques to search for meaningful function attributes from 

biological domains relevant to function attributes in engineering design (Cheong et al., 

2011). Nagel et al. have generated design concepts by combining biological phenomena 

and engineering function attributes based on a function-based design model (Nagel et 

al., 2010). Vakili and Shu have proposed a rule-based model to identify suitable 

biological phenomena that could be related to a product’s mechanical attributes (Vakili 

& Shu, 2001). Biological domain knowledge inspires designers to generate concepts 

that can solve engineering problems. Biologists try to understand designs in nature, 

while engineers generate designs by solving problems that appear in the physical world. 

Each domain has different viewpoints on design and uses different terminologies to 



investigate product attributes (Cheong et al., 2011; Helms et al., 2009; Nagel et al., 

2010).  These differences make it difficult for engineering designers to generate and 

discover inspiration between the biological domain and the engineering domain.  

In engineering fields, bisociation aims to explore and analogize cross domain 

knowledge, which is shared knowledge across multiple domains, in order to search for 

creative information across multiple domains (Dubitzky, Tobias, Schmidt, & Berthold, 

2012). The concept of bisociative design has been proposed to quantify previously 

unknown design synergies across engineering products (Tucker & Kang, 2012). In order 

to evaluate the degree of synergy between products, Tucker and Kang have presented a 

mathematical model that quantifies the similarities among product attributes (Tucker & 

Kang, 2012). Kang et al. have proposed a method that combines subassemblies from 

multiple End of Life (EOL) products and estimates a new product’s value (Kang et al., 

2013). Researchers in business have discovered that engineering companies can identify 

more entrepreneurial opportunities when the companies’ decision makers explore 

bisociations across each individual’s prior knowledge (Ko & Butler, 2002, 2006). 

However, the existing literature has only discovered product attributes across multiple 

domains that may lead to novel product design concepts. The method presented in this 

paper overcomes this limitation by searching for new function attributes across multiple 

product domains that meet design requirements and also contribute to an increase in 

sales. 

2.4 Semantic analysis in product design  

Semantic analysis techniques that discover knowledge from large-scale textual data sets 

have been proposed across a wide range of science and engineering disciplines. 

Utilizing these techniques, which mine statistically significant terms, in the science and 

engineering fields gives researchers access to an immense amount of textual data.  



 In the engineering design fields, semantic analysis techniques have been 

employed to extract product attributes from text-based product data, including customer 

feedback and product technical descriptions, in order to design products that better meet 

customers’ needs (Ghani et al., 2006; Menon, Tong, Sathiyakeerthi, Brombacher, & 

Leong, 2003; Romanowski & Nagi, 2004). Researchers have extracted product 

functions from their functional descriptions, such as patents or official manuals, through 

text mining techniques that can derive semantics from textual data sets (Kang et al. 

2013; Tucker and Kang 2012; Ghani et al. 2006; Tseng, Lin, and Lin 2007; Tuarob and 

Tucker 2014). For example, Menon et al. employed a vector space document 

representation technique to derive useful product development information from 

customer reviews (Menon et al., 2003). Tuarob and Tucker have collected 2.1 × 109 

tweets in order to search for cell phone related knowledge and identify lead users and 

their product feature preferences through semantic analyses, which discovers potential 

product features for next generation cell phone designs (Tuarob & Tucker, 2015a). 

Tuarob and Tucker have analysed product favorability from large-scale social media 

data in order to improve next generation product design by adding or removing design 

features based on preferences (Tuarob & Tucker, 2015b). Zhou et al. have extracted 

latent customer needs from customer product reviews through semantic analysis, which 

identifies the hidden analogical reasoning of customers’ preferences (Zhou et al., 2015). 

Gu et al. have employed a semantic reasoning tool to represent functional knowledge as 

function-cell pairs, where the cell is defined as a conceptual structure denoting the 

structure category that interacts with similar functions (Gu, Hu, Peng, & Li, 2012). 

Ghani et al. have extracted semantics as product attributes on the basis of textual 

product descriptions by employing a generative model with the expectation 

maximization (EM) technique (Ghani et al., 2006). Tucker and Kang have extracted 



semantics as functions and behaviors of products from textual descriptions to discover 

cross-domain knowledge among multiple product domains (Tucker & Kang, 2012). 

 While the results from the aforementioned works were limited to the same 

domain, the method introduced in this paper discovers potential attributes across 

multiple product domains. Furthermore, the analyses of product attributes presented in 

other works are categorized on the basis of experts’ classifications, thereby limiting 

potential information that could improve current products. The method introduced in 

this paper aims to provide designers with candidate attributes across multiple product 

domains that meet design requirements.  

In order to discover function attributes from multiple product domains, the 

Latent Dirichlet Allocation algorithm (LDA) is employed in this work. Comparing to 

other semantic analysis techniques which are presented in the aforementioned works 

(e.g. latent semantic analysis), the LDA algorithm has shown promising results on the 

basis of structured formats that describe products’ functions in detail (e.g. patent, 

official description) (Anaya, 2011; Kang, 2016).  

In the early stages of the product design and development process, automatic 

approaches or platforms have supported designers during each step in searching for next 

generation product attributes, as shown in Table 1. Step 3 focuses on retrieving the 

function attributes from product domains that designers are particularly interested in, 

which therefore potentially limits the competitiveness and market sales increase of next 

generation products. 

Table 1 Exploring function attributes for new product development  

Step 1. 

Identify customer 

requirements 

Step 2. 

Establish design 

requirements 

Step 3. 

Map requirements onto 

design specifications 



- Voice Of Customer 

(VOC) 

- Requirement extraction 

models based on semantic 

analysis 

- Consumer preference 

models 

- Consumer opinion 

mining models 

- Discrete Choice Analysis 

(DCA) 

- Quality deployment 

(QFD) 

- Conjoint Analysis (CA) 

(Gamon, Aue, Corston-

oliver, & Ringger, 2005; 

Wei, Chen, Yang, & Yang, 

2009; Yang, Wei, & Yang, 

2009; Zhan, Loh, & Liu, 

2009) 

(Hoyle et al., 2009; Malen 

& Hancock, 1995a, 1995b; 

Petiot & Grognet, 2006) 

(Huang & Mak, 1999; 

Pullman et al., 2002; X. 

(Luke) Zhang, Simpson, 

Frecker, & Lesieutre, 

2012) 

 

The method presented in Section 3 employs a topic model algorithm and a 

textual similarity measure to search for new function attributes that have the potential to 

increase next generation product sales from different product functions. 

3 Method 

This work quantifies the semantic similarities between descriptive design requirements 

and function attributes in order to identify new function attributes that have the highest 

similarity to each requirement. The hypothesis of this work is that there exists a 

correlation between these new function attributes which are discovered by the method 

presented in this paper, and increased product sales. The method summarized in Figure 

1 outlines the steps towards testing this hypothesis. Collecting existing products’ 

functional descriptions in a structured database allows designers to search for function 

attributes that can fit design requirements across different products. In order to identify 

which product’s function attributes are closest to design requirements, Latent Dirichlet 

Allocation is employed in this research for analysing the semantic similarities between 

the product’s functional descriptions and the described requirements.  



 

Figure 1 Flow chart of the method proposed in this work 

 

The method aims to provide new function attributes that have the potential to 

increase next generation product market sales. In order to progress through each step of 

the method, the design data acquisition process is needed to create the database.  

3.1 Step 1 Create a product database  

The first step in the method is to create a database comprised of textual product 

specification data, as seen in Figure 2. 



 

 

Figure 2 A database consisting of product functions 

 

Data pertaining to a product’s functions can be collected from the textual data 

that describes it, which can be found in official specification documents, technical 

manuals, or patents (Kang et al., 2013; Tucker & Kang, 2012). The collected data sets 

are integrated into one database with a structured format, as shown in Figure 2. It is 

assumed that each product has a unique identification number (ID) that will be used as 

the primary key for retrieving corresponding descriptions (di) in the method. Each 

description (di) is structured with the number of paragraphs (Fa), and these paragraphs 

are composed of textual terms (tx) as the following representations. 

 di: represents the textual description of product i 

 tx: represents the textual terms that exist in the textual description of product i 

 Fa is the ath function attribute (paragraph) in the functional description of 

product i.    

 Mi : represents the number of functions of product i. This is the same as the 

number of paragraphs (specifications) in the product’s functional description  



The parameter Fa also indicates each function attribute that can found in the 

textual descriptions existing in the product database. For instance, let’s assume product 

i=1 (di=1) has 27 function attributes (Mi=1 = 27; Fa=1, Fa=2, Fa=3, … Fa=27), then the first 

function attribute of the second product in the database (di=2) is described as Fa=28. 

Therefore, the total number of function attributes (Fa) is the sum of Mi , where i =1 to n 

and n represents the total number of products in the database.  

Because engineering documents such as product functional descriptions are 

formally laid out, a paragraph of the description may contain one topic, which can be 

regarded as a function attribute (Nagle, 1996). 

3.2 Step 2 Extract function attributes 

In the context of engineering design, the topics of a product’s functional description can 

be represented as the function attributes of the product. Since a functional description is 

usually written in natural language, it includes many terms that do not provide 

important information. Therefore, unnecessary terms, such as linking verbs and stop 

words (e.g., is, and, the, etc.), are eliminated in order to reduce noise (Munková Daša, 

Michal, & Martin, 2014; Murphy et al., 2014). In order to capture the function attributes 

from textual descriptions, all terms in the descriptions are tagged with a part-of-speech 

(POS) using the Stanford Log-linear POS Tagger (Toutanova & Manning, 2000). The 

functional descriptions can be replaced with triplet combinations (e.g., verb-noun-

adjective/adverb) or subsets (e.g., noun-adjective, verb-adverb, etc.) of the combinations 

(W. Y. Zhang, Tor, Britton, & Deng, 2001). The National Institute of Standards and 

Technology (NIST) has developed standardized representation of function attributes in 

order to provide a common basis for the exchange of function attributes among 

individuals, teams, or software tools involved in product development (Hirtz, Stone, 

McAdams, Szykman, & Wood, 2002). A verb represents an action relating to a function 



attribute. A noun describes a target object (e.g., component) of the action. Additional 

function information is explained with complements (adjective/adverb) by describing 

how the action or object is performed.  

After the preprocessing step, Latent Dirichlet Allocation (LDA) extracts the 

function attributes from the descriptions. LDA is a generative probabilistic model for 

compilations of text corpora, which can be regarded as functional descriptions with 

infinite mixtures over intrinsic topic groups (Blei, Ng, & Jordan, 2003). Each paragraph 

of the functional descriptions, such as patents, may represent its topic as each product’s 

function attribute (Sheldon, 2009). In this work, the topics from the descriptions 

represent the products’ function attributes. The LDA algorithm postulates that the 

description is a finite mixture of the number of functions and that each term’s 

establishment is due to one of the functions from the description. LDA provides the 

mixing proportions of functions through a generative probabilistic model on the basis of 

the Dirichlet distribution, as shown in the following equation (1): 

  𝑝(𝑡𝑥|𝑑𝑖) = ∑ 𝑝(𝑡𝑥|𝐹𝑎)𝑝(𝐹𝑎|𝑑𝑖)

𝑀𝑖

𝑎=1

 (1) 

Where, 

 di: represents the textual description of product i 

 tx: represents the textual terms that can found in the textual description of 

product i 

 Fa is the ath function attribute (paragraph) in the functional description of 

product i  

 Mi: represents the number of functions of product i 



LDA extracts function attributes by computing a probability (p(Fa|di)) of a 

function (Fa) being a topic of a description (di), where each term retrieval probability 

p(tx| Fa) quantifies each function attribute being a keyword of a function (Fa). Each 

product’s function is extracted with topic probabilities p(Fa|di), as shown in Table 2.  

Table 2 Extracted function attributes for product 1 

ID(i) Product Function 1 Function 2 … Function Mi=1 

1 Camera p(Fa=1|di=1) p(Fa=1|di=1) … p(Fa=M1 |di=1) 

 

Table 2 demonstrates a structural example of how each product’s functions can 

be extracted. These function attributes represent the topics of each functional 

description in terms of contextual semantics. Each product’s function attributes are 

extracted with fewer terms than its entire textual description. Therefore, the next section 

utilizes the acquired function attributes to discover new function attributes that have the 

potential to increase the market sales of next generation products. 

3.3 Step 3 Identify new function attributes 

Once each function attribute of product i is quantified by employing the LDA 

algorithm, designers can search for which product function attributes are closest to 

design requirements based on the following equation: 

 Sim(𝐹𝑟 , 𝐹𝑎) =  
𝐹𝑟 ∩ 𝐹𝑎

𝐹𝑟 ∪ 𝐹𝑎
 (2) 

subject to, 

 𝐹𝑟 ∈ 𝑅 (3) 



 𝐹𝑎 ∈ 𝐴 (4) 

 count(𝐴) = ∑ 𝑀𝑖

𝑛

𝑖=1

 (5) 

where, 

 Fr: represents each design requirement  

 R: represents a set of the design requirements 

 Fa: represents each function attribute discovered in the textual descriptions 

existing in the product database  

 A: represents entire sets of the function attributes in the database 

 Mi: represents a set of product i’s function attributes 

 n: represents the total number of products existing in the database 

In the engineering design field, design requirements guide designers in 

compiling, organizing, and analysing function attributes that should be considered 

during the new product development process (Rounds & Cooper, 2002). The design 

requirements are described on the basis of a company’s standards, such as ontologies, 

which are formal descriptions of engineering objects and their attributes, constraints, 

and relationships. This section of the method explores the semantical similarity between 

these requirements and the extracted function attributes from section 3.2. The similarity 

values are measured on a {0,1} scale, where 1 represents the highest similarity between 

the function attribute and the design requirement, and 0 represents completely 

unmatched function attribute to the design requirement.  

In order to identify new function attributes that can be semantically matched 

with each requirement, the method iteratively processes a similarity measure (equation 



(2)) for searching function attributes that have the maximum results with the 

requirements. The algorithm, as shown in Figure 3, logically describes this iteration 

process. 

 

Figure 3 Pseudo code of new function attribute identification algorithm 

 

On the basis of each design requirement (Fr) and function attribute (Fa), this 

work compares similarity values between the requirements and attributes in order to 

search the maximum similarity value. Since each function attribute is comprised of 

terms, the algorithm may extract the same function attributes (e.g., the same terms, the 

same similarity value) for the new function attribute (Fl) that satisfies a certain function 

requirement. For instance, let the algorithm result in the same function attributes (e.g., 

hydraulic suspension) from product 1 (e.g., an aircraft) and product 2 (e.g., a car). The 

designer then needs to choose one of the attributes from the products, which operate in 

different ways. The method presented in this work reduces the above case by 

identifying the new function attribute (Fl) from the most similar product to the set of 

design requirements on the basis of each product’s function sets. Equation (6) compares 

the entire functional similarity between a set of design requirements and the sets of each 

product’s function attributes. Note that Equation (6) applies only if the algorithm 



(Figure 3) results the same function attributes such as the ones mentioned above (e.g., 

hydraulic suspension from an aircraft and a car). 

  Sim(𝑅, 𝐹𝐴𝑖
) =  

𝑅 ∩ 𝐹𝐴𝑖

𝑅 ∪ 𝐹𝐴𝑖

 (6) 

where, 

 R: represents a set of the design requirements 

 𝐹𝐴𝑖
: represents a set of product i’s function attributes discovered from the 

method (referring to table 2, Fa=1…, M1  ∈ 𝐹𝐴1
) 

The method selects a new function attribute, which is extracted from a product 

that has the highest similarity to the set of design requirements by Equation (6). 

Therefore, the method manages redundant data and maintains analogical function 

retrieval.  

The method provides designers with new function attributes that are not only 

close to the requirements but are also different from current generation products. 

Therefore, the next generation product can remain competitive in the marketplace by 

satisfying market needs with new function attributes as well as differentiating these 

attributes from current products. To evaluate the research hypothesis, the next section 

demonstrates the method with actual market sales data and functional descriptions 

relating to each bicycle transmission system: electronic gear shifting systems as next 

generation products and wire tension bicycle transmission systems as current products. 

4 Case study 

This section analyses each product’s market sales data and functional descriptions 



collected from Shimano’s bicycle component division. Shimano deals in bicycle 

transmission systems, with a 70% market share throughout the world (Yamada, 2014). 

The bicycle transmission systems domain, while a non-traditional application of study 

for design related research, represents a sizable market worth around $3.5bn in 2010 

that is still growing globally (Yamada, 2014). Understanding and developing new 

bicycle transmission systems have been proposed in the engineering design community 

ranging from introductory level of mechanical engineering to intelligent transportation 

systems relating to a human’s heart rate control (Corno, Giani, Tanelli, & Savaresi, 

2015; Kosky, Balmer, Keat, & Wise, 2015). This case study introduces functional data 

and market sales of Shimano’s products. This research discovers novel function 

attributes for the Shimano’s new transmission systems and compares product sales 

between new systems and the old systems. The case study demonstrates each step of the 

method to test the hypothesis of this research. Shimano products are categorized in two 

types of transmission systems: automatic transmission systems, a traditional 

transmission systems. This company’s innovation in product development has promoted 

the recent release of new types of automatic transmission systems (Di2) in the 

commercial market (Austen, 2009; Takeishi & Aoshima, 2006). The Di2 system uses 

electronic power to shift gears by sending digital signals rather than moving the gears 

with physical wire tension. In order to allow riders to focus on cycling (a common 

customer demand), Shimano designers applied new function attributes from products 

not related to a bicycle domain to develop a tension free transmission system 

(Mossman, 2005). The spec comparison between Di2 systems and non-Di2 systems is 

described below in Table 3. 

 

 



Table 3 Spec comparison between the Di2 systems and Shimano’s non-Di2 systems. 

parts specs Di2 non-Di2 

PC interface 

 

It is a control system that contains a 

power source (battery) for the entire 

transmission system and converts 

electronic signals from each shifter and 

derailleur 

electronic 

signal 

control 

N/A 

shifter 

 

It is lever that operates the gear switch 

 

 

 

 

electronic 

signal  

control 

 

 

manual 

tension 

control 

 

 

derailleur 

(front) (rear) 

 

It is a chain drive system that shifts 

chains on a crankset (front derailleur) or 

sprockets (rear derailleur) 

 

 

electronic 

signal  

control 

 

 

manual 

tension 

control 

 

 

wire 

 

It transmits interactive signals from 

each shifter to each derailleur 

 

electronic 

signal  

control 

manual 

tension 

control 

crankset 

 

It is a power transfer system that 

converts human power to bicycle speed 

identical 

 

identical 

 

sprockets 

 

It is a power transfer system converting 

human power to a rear wheel 

 

 

 

identical 

 

 

 

 

identical 

 

 

 

 

chains 

 

It is a system of interlinking pins, plates, 

and rollers that transmits power from 

the crankset to sprockets 

 

identical 

 

 

 

identical 

 

 

 

 

In order to test the hypothesis of this research, this section collects related patents, 

issued from 1976 onwards, as functional descriptions for each system, because 

according to The United States Patents and Trademark Office (USPTO), patents from 

1976 onwards, contain the full contents (USPTO, 1994). Between 2008 and 2015, a 

total of forty two patents were found to be related to the Di2 systems, while a total of 

one hundred and forty two patents were found to be related to the non-Di2 systems. In 



the Di2 systems, Shimano designers cited twenty six patents relating to different 

product domains that introduced new function attributes, such as an automatic gear shift 

and an electronic switch. These function attributes were integrated into the design of the 

Di2 parts (Table 3) that differ from the non-Di2 systems.  

Thirty five patents from different product domains are cited in the non-Di2 

system relating patents. However, the technologies from these patents have not 

contributed to design the non-Di2 systems, which were launched in 2008. These patents 

have been cited for creating the initial versions of each system model, which could be 

considered next generation products in certain eras. For instance, Shimano Total 

Integration (STI) levers, which are still implemented in the current systems, were 

launched in 1990. Therefore, these thirty five patents are out of the scope of the analysis 

since they are not new attributes relating to systems designed between 2008 and 2015. 

Each patent relating to both systems (Di2 and non-Di2) are described in APPENDIX A 

and B. This work demonstrates that new function attributes from different product 

domains were employed to design the Di2 systems, whereas these attributes were not 

found in the non-Di2 systems. By comparing the market sales relating to each system, 

the above question is answered in section 5. Shimano’s actual sales data from 2008 to 

2015 is demonstrated in Figure 4. From 2008 to 2015, Shimano has made 29 products, 

including 4 Di2 systems: DURA-ACE Di2, ULTEGRA Di2, XTR Di2, and ALFINE 

Di2. Each Di2 system has been categorized into different bicycle models. The Di2 

systems for both DURA-ACE and ULTEGRA are developed for road cycling. Each 

XTR Di2 and ALFINE Di2 is built for mountain bikes and city bikes (for comfortable 

riding in daily life), respectively. The Di2 systems are developed for the top lines for 

each bicycle model (e.g., road, mountain, city). Note that several products have been 

launched in different years because of upgrades from earlier versions. For instance, the 



initial version of DURA-ACE Di2 was launched in Q3 2009, then the second version 

was launched in Q3 2013 with better functional performance than the previous one, 

such as being of lighter weight, fast gear shift mechanisms, etc. For similar reasons, 

traditional transmission systems were launched in different years. These products can be 

distinguished by serial numbers.  

 

 

Figure 4 Shimano's bicycle division market sales data (Shimano Inc, 2015b) 

 



This case study demonstrates how the method presented in this work can search 

and identify novel functions, which have yet to be integrated into bicycle systems, in 

order to develop novel versions of Di2 systems. Electronic transmission systems are 

now launched in the market by major bicycle transmission industries; Shimano  50% 

market share; Campagnolo 40% market share; SRAM 10% market share (Yamada, 

2014). Among these companies, Shimano is the first and the largest bicycle 

transmission company that launches the electronic transmission systems in the market. 

Searching new function attributes for creating next generation transmission systems 

(e.g., the Di2 systems) across multiple different domains challenges designers. The 

method in this work extracts new function attributes that have contributed to creating 

the Di2 systems by searching various function attributes from different products that are 

closest to the following design requirements (Fr). Note that the Di2 systems have 

already been launched in the market in accordance with design requirements, and 

therefore this case study retrieved these requirements from the Di2 systems’ official 

specs (Shimano Inc, 2015a): 

 Fr=1: Shift gears automatically 

 Fr=2: Operate transmission electronically 

 Fr=3: Electronic switch to change transmission 

 Fr=4: Connect the system via electrical wire 

4.1 Create a database of products  

To perform the experiment, this research follows each step of the method (referring to 

Figure 1 of section 3). Since the gear shifting system is a subassembly of a bicycle, each 

data set in the database is also filled with subassemblies from multiple products, as 

shown in Table 4. 



Table 4 A database containing the functions of each product (Beulich, Wagner, & 

Kirchberger, 2008; Blumer, 2009; Fischer, Esly, Berger, & Kimmig, 1999; D. Kim, 

2009; D.-J. Kim, 2005; Okabe, Fukuoka, Yamauchi, & Nakamura, 2010; Prosperis, 

Sisto, & Borkowski, 2014; Solomon, Doczy, & Massaro, 2007; Svendsen, 2002; Tsai, 

2009; Wagner, 2007) 

ID(i) Product Description (di) 

1 automotive 

transmission system (a) 

US2002002641 A1: “A motor vehicle … 

transmission … automatic operating mode …” 

2 automotive 

transmission system (b) 

US5954178 A: “A control unit … transmission 

system in a motor vehicle … electric motor …” 

3 automotive brake 

system (a) 

US7219965 B2: “ The first brake lever can be a 

hand brake lever … a foot brake lever …”  

4 automotive brake 

system (b) 

US7357464 B2: “The brake system assigned to the 

front wheel has a conventional design …” 

5 phone camera system 

(a) 

US7502558 B2: “An optical arrangement of an 

illuminating system for a camera according to…” 

6 phone camera system 

(b) 

US7585121 B2: “The camera module mainly 

includes a body and a turn member …” 

7 tablet display system (a) US20050030706 A1: “A tablet monitor includes a 

monitor main body …  connector combining …” 

8 tablet display system 

(b) 

US20070097014 A1: “Electronic device 

comprises a computer-type device preferably …” 

9 marine transmission 

system (a) 

US20100248565 A1: “The boat includes a hull, …, 

water and a marine propulsion unit …” 

10 marine transmission 

system (b) 

US6123591 A: “A marine drive includes ... 

transmission and shifting … reverse drive …” 

11 aircraft engine system 

(a) 

US20090212156 A1: “The auxiliary power unit 

provides pneumatic or electric power to start…” 

12 aircraft engine system 

(b) 

US20140244133 A1: “Combustion turbines 

include a compressor, …, compressed airflow…” 

 

The number of each product’s function attributes (Mi) is quantified using the 

number of paragraphs in the collected descriptions: Mi=1  = 46, Mi=2  = 299, Mi=3  = 14, 

Mi=4  = 11, Mi=5  = 22, Mi=6  = 14, Mi=7  = 19, Mi=8  = 11, Mi=9  = 74, Mi=10  = 39, Mi=11  = 

21, Mi=12  = 37  

4.2 Extract function attributes from each product’s functional descriptions 

The collected descriptions are pre-processed by multiple natural language processing 

techniques. Stop words and linking verbs are removed for reducing noise. The POS 



tagger captures each term (e.g., verbs, nouns, adjectives, and adverbs) in the 

descriptions, and transfers each description into formalized textual data sets before 

performing LDA, as shown in Table 5. The pre-processing and function extraction 

processes are taken into account in step 2 of the method (Figure 1).  

Table 5 Pre-processed functional descriptions 

ID 

(i = 1 to 12) 

Product Preprocessed description (n: noun, v: verb, 

adj: adjective, adv: adverb) 

1 automotive 

transmission system (a) 

wheels (n) vehicle (n) driven (verb), …,  

device (n) functionally (adv), …” 
︙ ︙ ︙ 
12 aircraft engine system 

(b) 

Combustion (n) turbine (n) include (v) 

compressor (n), …, compressed (adj) …” 

 

Given the functional descriptions of the 12 products, the method extracts each 

product’s function attributes, as shown in Figure 5. Based on each number of 

paragraphs in the collected descriptions, LDA extracts more than 600 function attributes 

from the entire function descriptions (A):  count(𝐴) = ∑ 𝑀𝑖
𝑛
𝑖=1  = 607, referring to 

equation (5), where Mi=1  = 46, Mi=2  = 292, Mi=3  = 14, Mi=4  = 11, Mi=5  = 22, Mi=6  = 14, 

Mi=7  = 19, Mi=8  = 11, Mi=9  = 74, Mi=10  = 39, Mi=11  = 21, Mi=12  = 37.  

 

Figure 5 Extracted function attributes from each product  

 



After LDA extracts each function attribute from each product, this research 

aggregates each function into a set of function attributes (referring to equation (2)): 

producti=1’s first function is represented with Fa=1 … producti=12’s the last function is 

represented with Fa=607. 

4.3 Identify new function attributes for the Di2 system 

Searching for the closest function attributes (Fa) to the design requirements (Fr) 

is the final step (Step 3 in Figure 1) of the method presented in this research. In order to 

identify the new function attributes for the Di2 system, the method quantifies the 

semantic similarities (equation (2)) between each product’s function attribute and 

design requirements.  

The new function attributes implemented to create the Di2 systems are identified 

from patents related to each automotive transmission system (a) and (b) (ID: 1 and 2, 

referring to Table 4) by searching the maximum similarity values across 2428 values 

(Fa: 607 × Fr: 4) with the new function attribute algorithm (Figure 3) and equation (6) 

in section 3.3. Table 6 describes each similarity value between the identified function 

attributes and the requirements.  

Table 6 Identified new function attributes for the Di2 system 

Fl  (Fa)  

 
Fl=1 (Fa=53): 
automatically 

transmit 

gears 

Fl=2 (Fa=59): 

operates 

transmission 

electronic 

Fl=3 (Fa=2): 

changing 

switch 

automatically 

Fl=4 (Fa=205): 

connects 

transmitting 

wires 

product (ID) 

Fr 

2 2 1 2 

Fr=1: shifts 

gear 

automatically 

0.667 0 0.333 0 

Fr=2:operates 

transmission 

electronically 

0.333 1 1 0.333 

Fr=3 : 

electronical 

switch change 

0 0.333 0.667 0 



Fr=4: connects 

electrical wire 

0 0.333 0 0.667 

 

Referring to Table 6, each design requirement corresponds with each function 

attribute from product 1 and 2: Sim (Fr=1, Fa=53) = 0.667, Sim (Fr=2, Fa=59) = 1, Sim 

(Fr=3, Fa=2) = 0.667, and Sim (Fr=4, Fa=205) = 0.667. The function description 

(US20020026841) of automotive transmission system (a) was referenced in Shimano’s 

patent (US6682087) to develop the transmission control system for the Di2 systems 

(Takeda, 2004). The function description (US5954178) of automotive transmission 

system (b) was referenced in Shimano’s patent (US8282519) to design the electronic 

derailleur for selecting multiple gears to change speed in the Di2 systems (Ichida & 

Fujii, 2012). In order to verify the feasibility of the method presented in section 3, this 

research analysed 42 patents closely related to Shimano’s electronic transmission 

systems by processing the same steps shown in this case study. Since the Di2 systems 

have already been launched into the market, design requirements that have been used 

for creating certain functions for these systems can be found in the description section 

of each patent, which explains the objects of the invention. Although some inventions 

related to the Di2 systems were patented back in the 1990s, the actual product was 

commercialized in 2009. Competitors such as Campagnolo, who also developed an 

electronic transmission system in the past (1992), launched a product (EPS) similar to 

the Di2 in 2012 (Campagnolo Corp, 2012). This occurred due to fact that related 

technologies that met the function attributes were not advanced enough in the past. For 

instance, electronic parts (e.g., batteries, computing systems, motors) that can be fitted 

to bicycles had low mechanical and electronic performance (Campagnolo Corp, 2012).  



5 Results and discussion 

Comparing the collected function descriptions (patents) related to each transmission 

system (e.g., the Di2 and non-Di2 systems launched since 2008) shows that the Di2 

systems have been designed with function attributes from other product domains, 

whereas non Di2 systems have been created with bicycle-related function attributes.  

Table 7Number of patents that are related to each system 

Products launched since 2008 Di2  Non-Di2 

number of related patents 42 132 

number of other product domain patents that have been cited 

in the related patents   

26 0 

 

Referring to section 4, 35 patents from different product domains were 

discovered from the non-Di2 system relating patents. However, these other product 

domain patents were employed for designing each initial version of the non-Di2 

systems, which were created before 2008. Since these patents are not in the scope of this 

work, the actual result for the case study indicates that no patent has been cited for 

designing the recent versions of non-Di2 systems (e.g., launched since 2008). The 26 

patents (referring to Table 7) have been discovered from 11 patents among the 42 

patents related to the Di2 systems, as shown in Table 8. 

Table 8 Non-bicycle domain patents that are related to the Di2 system 

Di2 patents Different product domain patents cited by Di2 patents 

US6835148 US4922424 

US7874567 US6480761, US20050200606 

US7651423 US4391159, US4520907, US4817463, US5004077, US5832784  

US8286529 US6498474, US7104152 

US20060183584 US4790202, US6357313  

US20070191159 US5407101 

US8282519 US5180959, US5954178  

US6741045 US4638496, US5424709, US5952914, US642644 

US7980974 
US4928206, US5903440, US6842325, US6909405, 

US2005001404 



US6682087 US20020026841 

US7306531 US5025563 

 

The method presented in this research identifies new function attributes for the 

Di2 systems from 19 patents among these 26 patents (referring to Table 8): US4922424, 

US6480761, US4391159, US4817463, US5004077, US5832784, US7104152, 

US4790202, US6357313, US5407101, US5180959, US5954178, US5424709, 

US5952914, US4928206, US5903440, US6909405, US2005001404, US5025563. This 

research includes 10 patents that are unrelated to the Shimano case (referring to Table 

4). From a total of 11 experiments, the method did not select any of these patents. 

Therefore, this research shows that the method has 73.08% accuracy when 

benchmarked against the actual Shimano case. 

 Since this work presents feasible results compared to the actual Shimano case, 

which has been shown to be effective for developing a new product, the following 

sections discuss next generation products’ impacts on an increase in market sales. 

5.1 Exploring the Correlation between Market Sales and New Product 

Attributes 

In order to test the hypothesis of this research, this section utilizes the market sales 

variation between each system launch quarter and the next quarter. Please note that 

Shimano produces bicycle transmission systems. Therefore, most of the sales proceeds 

come from bicycle assembly companies (e.g., business to business model) such as Trek, 

Giant, and Specialized, which results in financial transactions during the next fiscal 

quarter from the product sales period. 

The Di2 systems were launched in 5 quarters from 2008 to 2015 (referring to 

Figure 4). In order to analyse the correlation between the Di2 systems launch and  



market sales, this research quantifies the sales difference from each quarter, as shown in 

Table 9. Each period relating to the Di2 system launch is highlighted with asterisks: 

09'Q4-Q3, 11'Q4-Q3, 13'Q4-Q3, 14'Q3-Q2, and 14'Q4-Q3.  

Table 9 Sales difference between each quarter 

period sales difference  period sales difference 

 (Japanese million yen)  (Japanese million yen) 

08'Q2-Q1 2366 12'Q1-11'Q4 1213 

08'Q3-Q2 -1053 12'Q2-Q1 -1611 

08'Q4-Q3 7912 12'Q3-Q2 27 

09'Q1-08'Q4 -17182 12'Q4-Q3 3737 

09'Q2-Q1 -2511 13'Q1-12'Q4 -831 

09'Q3-Q2 1940 13’Q2-Q1 3836 

09'Q4-Q3 7257 * 13'Q3-Q2 -1882 

10'Q1-09'Q4 -2079 13'Q4-Q3 4999 * 

10'Q2-Q1 1750 14'Q1-13'Q4 2965 

10'Q3-Q2 -116 14'Q2-Q1 3613 

10'Q4-Q3 4699 14'Q3-Q2 6067 * 

11'Q1-10'Q4 -5454 14'Q4-Q3 6790 * 

11'Q2-Q1 2658 15'Q1-14'Q4 4422 

11'Q3-Q2 990 15'Q2-Q1 -878 

11'Q4-Q3 4145 *   

 

Compared to other periods, which launched traditional bicycle transmission 

systems (e.g., 3 different products were launched in 10’Q2) or nothing (e.g. 10’Q4), 

market sales increased in all of the periods related to the Di2 systems launch. 

Furthermore, only the Di2 systems were launched in these quarters: 09’Q3, 11’Q3, 

13’Q3, 14’Q2, and 14’Q3. Table 10 summarizes the sales variation impacts of the Di2 

systems. 

 

 



Table 10 Sales comparison between the Di2 system launch periods and the other periods 

 

likelihood of 

sales decrease 

(%) 

likelihood of 

sales increase 

(%) 

average sales 

increase (Japanese 

million yen) 

periods relating to the Di2 

systems launch  
0 100 

5851.6 

periods not relating to the Di2 

systems launch  
41.667 58.333 

355.458 

 

5.2 Statistical Verification of the Correlation Between Radical Sales Increase 

and the Introduction of New Function Attributes from Different Product 

Domains 

The Di2 systems are innovative products that represent competition with emerging 

technologies (e.g., electric bicycles). Therefore, the manufacturer will receive a higher 

market valuation than traditional transmission systems that represent competition with 

the existing dominant designs/redesigns (Pardue, Higgins, & Biggart, 2000). Although 

there exists a correlation between launching the Di2 systems and increased sales of 

Shimano’s bicycle products as shown in Table 10 in section 5.1, the Di2 system launch 

periods need to show higher sales increase than the traditional transmission system 

launch periods. By analysing the differences in sales across the periods with the Box-

and-Whisker plot and deviation analysis, this research reveals a correlation between the 

Di2 systems and radical market sales increases.



 

Figure 6 Box-and-Whisker plot on sales difference 

 

In statistics, the values that are higher than the upper limit of the box (e.g., 4699 

in Figure 6) are identified as the top 25% across the entire values in the Box and 

Whisker plot. This research explores each sales difference value that overwhelms the 

upper limit of the box, which presents a radical increase in market sales. Please note that 

the difference between each market sales value represents absolute numbers, since this 

plot is employed for analysing the amount of sales difference. Therefore, each period 

09’Q1-08’Q4 (actual difference value: -17182) and period 11’Q4-Q3 (actual difference 

value: -5454) is not considered as a radical market increase period. 

The market sales radically increased in each period 08’Q4-Q3 (7912), 09’Q4-Q3 

(7527), 10’Q4-Q3 (4699), 13’Q4-Q3 (4999), 14’Q3-Q2 (6067), and 14’Q4-Q3 (6790), 

respectively.  



Table 11 Radical sales increase comparison between the Di2 system launch periods and 

the other periods based on a Box and Whisker plot 

 
likelihood of radical market 

sales increase (%) 

periods related to the Di2 systems launch  80 

periods not related to the Di2 systems launch  8.333 

 

Table 11demonstrates that the Di2 systems have larger impacts on a radical sales 

increase than the other products. In terms of the Di2 system launch period, 4 of the 5 

(80%) periods related to the radical sales increase periods (09’Q4-Q3, 13’Q4-Q3, 

14’Q3-Q2, 14’Q4-Q3), while periods not related to the Di2 systems launch were related 

2 over 24 (8.333%) to the radical sales increase periods (08’Q4-Q3, 10’Q4-Q3).  

Analysing sales deviation across the periods also verifies the existence of a 

correlation between Di2 systems and radical increased market sales, as shown in Figure 

7. 

 

Figure 7 Sales difference deviation analysis from 2008 to 2015 

 



The standard deviation (σ) of the sales difference is quantified as 4732.581, as 

shown in Figure 7. In statistics, the standard deviation is a measure that quantifies the 

amount of variation. This research explores each deviation value that overwhelms the 

positive standard deviation, hereby identifying a radical increase in market sales. The 

market sales radically increased in each period 08’Q4-Q3 (6608.931), 09’Q4-Q3 

(5953.931), 14’Q3-Q2 (4763.931), and 14’Q4-Q3 (5486.931), respectively.  

Table 12 Radical sales increase comparison between the Di2 system launch periods and 

the other periods based on deviation analysis 

 
likelihood of radical market sales 

increase (%) 

periods related to the Di2 systems launch  60 

periods not related to the Di2 systems launch  4.167 

 

Table 12 demonstrates that the Di2 systems have a larger impact on radical sales 

increase than the other products. In terms of the Di2 system launch period, 3 of the 5 

(60%) periods related to the radical sales increase periods (09’Q4-Q3, 14’Q3-Q2, 

14’Q4-Q3), while periods not related to the Di2 systems launch were related 1 over 24 

(4.167%) to the radical sales increase periods (08’Q4-Q3). 

Although this paper is limited in developing mechanical transmission systems 

for the bicycle gear systems, the method presents novel function attributes from 

different product domains. The highest Di2 system (Dura-Ace Di2 9070) is around 

$3000 (USD) whereas the price of the highest traditional transmission system (Dura-

Ace 9000) from the same manufacturer (Shimano) is less than half of the Di2 system 

(approximately $1200). In terms of functional aspects, the significant difference 

between each system is whether using electronic power or not for changing gears. 

Comparing to the Di2 systems and other products in Shimano, including the high-end 

goods for the traditional transmission systems (e.g., Dura-Ace and Ultegra), this 



research shows that there exists a correlation between the novel functions discovered 

and an increase in markets sales. The method presented in this work identifies new 

function attributes from different product domains that have contributed to develop the 

Di2 systems. Therefore, the method supports designers to search and discover new 

function attributes for mechanical transmission systems in the bicycle business.  

6 Conclusions and future work 

This work includes an extensive literature review of research in the engineering design 

methods relevant to the early stages of the new product development process. The 

literature review has shown that engineering design methods continue to introduce more 

automated approaches that explore next generation products’ function attributes from 

product domains that designers are particularly interested in. Although the existing 

approaches have greatly affected product designs, results from these approaches will 

limit the competitiveness and market sales of next generation products. Semantic 

analyses have been employed in the engineering design field to extract function 

attributes from customer reviews and functional descriptions. This work explores 

function attributes from multiple products’ function descriptions and quantifies the 

semantic similarities between design requirements and the extracted function attributes. 

To support designers in identifying function attributes for creating next generation 

products, this work extracts new function attributes that are semantically closest to the 

design requirements. In order to analyse the impact of new function attribute 

implementations on market sales, this work conducts a case study by performing the 

method with actual market sales data and patents related to different types of 

transmission systems from Shimano’s bicycle component division.  

The case study demonstrates that launching next generation products (the Di2 

systems) is correlated to an increase in sales, compared to selling traditional products 



(non-Di2 systems). In the engineering design field, investigating small mechanical 

transmission systems, such as bicycle components, have been employed for 

understanding and creating cross domain products ranging from introductory level of 

mechanical artifacts to sophisticated transportation systems that employ function 

attributes from multiple product domains. In terms of bicycle transmission systems, the 

Di2 systems represent competition with emerging technologies by using electronic 

powers for automatic gear changing/trimming, hereby creating higher market valuation 

than traditional transmission systems. Actual market sales data from Shimano shows 

that launching innovative products (e.g., the Di2 systems) that operate new function 

attributes (e.g., electronic gear shifting function) correlates to increased market sales. 

By analysing functional descriptions related to each system, this study discovers that the 

Di2 systems have been designed with new function attributes from different product 

domains, whereas non-Di2 systems’ functions were incrementally improved. Therefore, 

designers need to actively search for new function attributes, which results in 

developing competitive and highly differentiated designs for next generation products. 

The method in this research achieves comparable results to Shimano’s actual 

new product development practice by identifying function attributes for the Di2 system 

implementations. In order to satisfy the design requirements, including customer 

preferences and market needs, designers may search limited data or rely on their own 

knowledge. This research verifies that function attributes identified by text mining 

techniques are feasible to implement as new function attributes for next generation 

products. Future work will explore the validity of the method in domains beyond 

mechanical transmission systems. 
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