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Introduction: Many chronic disorders have genomic etiology, disease progression, clinical

presentation, and response to treatment that vary on a patient-to-patient basis. Such variability 

creates a need to identify characteristics within patient populations that have clinically relevant

predictive value in order to advance personalized medicine. Unsupervised machine learning 

methods are suitable to address this type of problem, in which no a priori class label information 

is available to guide this search. However, it is challenging for existing methods to identify 

cluster memberships that are not just a result of natural sampling variation. Moreover, most of

the current methods require researchers to provide specific input parameters a priori.  

Method: This work presents an unsupervised machine learning method to cluster patients based 

on their genomic makeup without providing input parameters a priori. The method implements

internal validity metrics to algorithmically identify the number of clusters, as well as statistical 

analyses to test for the significance of the results. Furthermore, the method takes advantage of 

the high degree of linkage disequilibrium between single nucleotide polymorphisms. Finally, a 

gene pathway analysis is performed to identify potential relationships between the clusters in the

context of known biological knowledge. 

Datasets and Results:  The method is tested with a cluster validation and a genomic dataset 

previously used in the literature. Benchmark results indicate that the proposed method provides 

the greatest performance out of the methods tested. Furthermore, the method is implemented on 

a sample genome-wide study dataset of 191 multiple sclerosis patients. The results indicate that 

the method was able to identify genetically distinct patient clusters without the need to select 

parameters a priori. Additionally, variants identified as significantly different between clusters

are shown to be enriched for protein-protein interactions, especially in immune processes and 

cell adhesion pathways, via Gene Ontology term analysis. 

Conclusion: Once links are drawn between clusters and clinically relevant outcomes,

Immunochip data can be used to classify high-risk and newly diagnosed chronic disease patients

into known clusters for predictive value. Further investigation can extend beyond pathway

analysis to evaluate these clusters for clinical significance of genetically related characteristics

such as age of onset, disease course, heritability, and response to treatment. 

 © 2018 Elsevier Inc. All rights reserved.
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1. Introduction 

With advancements in genome-wide association study 

(GWAS) techniques and the advent of low cost genotyping 

arrays, researchers have developed a significant interest in 

applying Machine Learning (ML) methods to mine knowledge 

from patients’ genomic makeup [1,2]. This knowledge has 

allowed researchers to improve gene annotation and discover 

relationships between genes and certain biological phenomena 

[3,4]. 

 The fields of personalized and stratified medicine benefit 

greatly from ML. For example, many cases in the field of 

pharmacogenetics have identified genetic variants with clinically 

actionable impacts on drug response and metabolism [5,6]. 

Moreover, many chronic disorders (e.g., asthma, diabetes, 

Crohn’s disease) have genomic etiology, clinical presentation, 

and response to treatment that vary on a patient-to-patient basis. 

Such variability reveals a need to identify characteristics within 

patient populations that have clinically relevant insights. For 

example, Multiple Sclerosis (MS) is a chronic inflammatory 

disorder in which progressive autoimmune demyelination and 

neuron loss occur in the central nervous system. MS varies from 

patient-to-patient in genomic etiology, disease progression, 

clinical presentation, and response to treatment. Hence, MS 

patients, like other chronic autoimmune patients, could benefit 

from ML methods that advance personalized medicine. 

Machine learning methods are commonly classified into 

supervised and unsupervised methods. Supervised methods, such 

as Support Vector Machines [7] and Random Forests [8,9], have 

been extensively used in the field of bioinformatics. These 

methods classify new objects to a determinate set of discrete 

class labels while minimizing an empirical loss function (e.g., 

mean square error). However, supervised methods require the use 

of a training set that contains a priori information of several 

objects’ class labels. In contrast, unsupervised methods do not 

require a training set that contains a priori information of 

objects’ class labels as input. Unsupervised methods are able to 

detect potentially interesting and new cluster structures in a 

dataset. Moreover, they can be implemented when class label 

data is unavailable. Hence, if the objective of a study is to 

discover the class labels that best describe a set of data, 

unsupervised machine learning should be implemented in place 

of supervised methods [2]. However, it is challenging for existing 

unsupervised ML methods to identify object memberships that 

are due to the underlying cluster structures in the dataset, rather 

than the results of natural sampling variation [10]. Moreover, 

most current methods require researchers to provide certain input 

parameters a priori (e.g., number of clusters in the dataset), 

which can limit their applicability.  

In light of the limitations of existing methods and the need to 

advance personalized medicine, an unsupervised machine 

learning method to cluster patients based on their genomic 

similarity is presented. The method integrates statistical analysis 

that accounts for family-wise-error rate, allowing the method to 

identify clusters resulting from the underlying structure of the 

data and not just due to random chance. Moreover, the method 

takes advantage of the high degree of linkage disequilibrium 

between Single Nucleotide Polymorphisms (SNP) by pruning 

correlated nearby SNPs, which helps reduce redundant variants in 

the dataset. Finally, a gene pathway analysis shows the potential 

relationships between the clusters in the context of known 

biological knowledge. The proposed method is capable of 

clustering patients based on their genomic similarity without a 

priori information. Moreover, it is capable of identifying the 

significant variants (i.e., SNPs) between patient sub-groups 

within a cohort with a common disorder. Successfully identifying 

distinct genetic subtypes of patients within genomic datasets 

demonstrates the potential of this method to advance 

personalized medicine of complex diseases with heritable 

components, especially autoimmune disorders which have many 

shared susceptibility loci [11]. 

 

2. Literature review 

In the last decade, the field of bioinformatics has seen a 

significant number of publications implementing unsupervised 

machine learning methods, such as clustering algorithms [12-14]. 

Clustering algorithms partition data objects (e.g., genes, patients) 

into groups (i.e., clusters), with the objective of exploring the 

underlying structure on a dataset [15]. In the medical field, these 

algorithms have been implemented to identify sets of co-

expressed genes [16], compare patients’ prognostic performance 

[17], cluster patients based on their medical records [18], and 

identify subgroups of patients based on their symptoms and other 

variables [19]. 

In previous work, genomic stratification of patients (i.e., 

stratified medicine) has been able to match specific therapy 

recommendations to genetic subpopulations by predicting 

therapeutic response [5,6]. However, most of these studies 

implemented class label data (i.e., response to treatment) to 



cluster patients. In clinical datasets, class label information is not 

widely available for convenient patient clustering. Unsupervised 

machine learning methods can be used in such cases to identify 

clusters within the dataset. Further investigation of genetic 

subgroups within a cohort of patients can offer a better clinical 

prediction of age of onset, disease course, heritability, and 

response to therapy, leading to improved outcomes [20]. 

 

2.1. Hierarchical clustering algorithms. 

Agglomerative hierarchical clustering algorithms are one of 

the most frequently used algorithms in the biomedical field  

[21,22]. Researchers have found that hierarchical clustering 

algorithms tend to perform better than other algorithms (e.g., k-

means, partitioning around Medoids, Markov clustering) when 

tested on multiple biomedical datasets [23]. The objective of any 

agglomerative hierarchical clustering algorithm is to cluster a set 

of n objects (e.g., patients, genes) based on an n x n similarity 

matrix. These clustering algorithms have grown in popularity due 

to their capability to simultaneously discover several layers of 

clustering structure, and visualize these layers via tree diagrams 

(i.e., dendrogram) [10]. Even though these algorithms allow for 

easy visualization, they still require preselecting a similarity 

height cut-off value in order to identify the final number of 

clusters. In other words, it still requires researchers to know a 

priori the number of cluster in the dataset.  

Agglomerative hierarchical clustering algorithms can be 

implemented with different linkage methods. For example, 

Ahmad et al. (2016) [17] implemented the Ward’s linkage 

method to compare patients’ prognostics performance; while 

Hamid et al. (2010) [19] implemented the Complete linkage 

method to identify unknown sub-group of patients. 

Unfortunately, depending on the underlying structure of the data, 

different clustering results can be obtained by implementing 

different linkage methods. Ultsch and Lötsch (2017) [24] 

demonstrated that neither the Single nor Ward’s linkage methods 

provided similar clustering results when tested with the 

Fundamental Clustering Problem Suite (FCPS) datasets [25]. 

Their results reveal that these linkage methods were able to 

correctly cluster all the objects in only a subset of the FCPS 

datasets. Similarly, Clifford et al. (2011) [26] discovered that 

while testing multiple simulated GWAS datasets, the linkage 

methods of Median and Centroid were the only ones to 

consistently be outperformed by the Single, Complete, Average, 

Ward’s, and McQuitty methods. In light of these, Ultsch and 

Lötsch (2017) [24] proposed the use of emergent self-organizing 

map to visualize clustering of high-dimensional biomedical data 

into two-dimensional space. Even though, their method allowed 

for better visualization, it still required preselecting the number 

of clusters as well as other parameters to perform correctly (e.g., 

toroid grid size) [24]. 

 

2.2. Parameter selection in clustering algorithms.  

 In order to avoid preselecting input parameters a priori (e.g., 

the number of clusters), researchers have implemented cluster 

validation metrics. For example, Clifford et al. (2011) [26] 

proposed a method that aimed to capture the clustering outcome 

of multiple combinations of linkage method and similarity metric 

based on the Silhouette index [27]. The Silhouette index was 

used to rank the results of the clustering combinations, and select 

the best cluster set (i.e., cluster set with largest average Silhouette 

index). Similarly, Pagnuco et al. (2017) [16] presented a method 

that implemented several linkage methods and implemented 

modified versions of the Silhouette and Dunn indices [28] to 

select the final clustering results. Both the Silhouette and Dunn 

indices served as internal cluster validation metrics (i.e., no 

external information needed) to guide the selection of the final 

cluster set. However, the Silhouette index has been shown to 

have a stronger correlation with external cluster validation 

metrics, such as the Rand Index, than the Dun index [28,30]. 

The methods of Clifford et al. (2011) and Pagnuco et al. 

(2017) did not require selecting the number of clusters a priori 

due to the internal cluster validation metrics implemented. These 

metrics allow for algorithmic selection of the number of clusters. 

Nonetheless, the computational complexity of testing all potential 

clusters increases linearly with the number of objects in the 

dataset. Other studies have implemented model-based clustering 

methods to overcome these limitations. For example, Sakellariou 

et al. (2012) [29]  implemented an Affinity Propagation [30] 

algorithm to identify relevant genes in microarray datasets. Shen 

et al. (2009) [31] implemented an Expectation-Maximization 

algorithm [32] to cluster genes based on an integration of 

multiple genomic profiling datasets. However, models based 

methods make underlying assumptions that might not be 

applicable in certain datasets [33].  

Recently, Khakabimamaghani and Ester (2016) [34] presented 

a Bayesian biclustering method to identify clusters of patients. 

They benchmarked their method against the multiplicative Non-

negative Matrix Factorization (NMF) algorithm proposed by Lee 



and Seung (2001) [35]. Their results revealed that their Bayesian 

biclustering method was more effective in patient stratification 

than the NMF. While this Bayesian biclustering method did not 

require selecting the number of clusters a priori, it did require 

selecting parameters for prior probability distributions. The 

capability of biclustering algorithms to discover related gene sets 

under different experimental conditions, have made them popular 

within the bioinformatics community [36]. One of the first works 

in this area was presented by Cheng and Church (2000) [37]. 

They proposed an iterative greedy search biclustering algorithm 

to cluster gene expression data. Even though their method did not 

require selecting the number of clusters a priori, it did require the 

selection of hyperparameters (e.g., maximum acceptable error).  

 

2.3. Statistical significance of clustering results. 

Even though the methods of Clifford et al. (2011)  and 

Pagnuco et al. (2017) aimed to find  the optimal clustering 

outcome from multiple algorithms, which resembled the 

consensus clustering approach (i.e., approach in which a solution 

is identified by validating multiple outcomes) [38], their methods 

did not account for possible clustering memberships arising due 

to random variation. Whether identified clusters memberships are 

due to underlying cluster structures in the data or are just a result 

of the natural sampling variation, is a critical and challenging 

question that needs to be addressed when clustering high-

dimensional data [10]. To address this question, Suzuki and 

Shimodaira (2013) [39] presented the pvclust R package, which 

calculates probability values for each cluster using nonparametric 

bootstrap resampling techniques. Even though pvclust allows for 

parallelized computing, it requires significant time (i.e., 480 

mins) when implemented in genomic datasets. This is due to the 

large number of resampling iterations (i.e., 10,000) required to 

reduce the error rate [39]. In contrast, Ahmad et al. (2016) [17] 

applied a non-parametric analysis of variance (ANOVA) 

Kruskal-Wallis test to compare the clusters within a hierarchical 

clustering method. Similarly, Bushel et al. (2002) [40] 

implemented a single gene parametric ANOVA test to assess the 

effects of genes on hierarchical clustering results. Recently, 

Kimes et al. (2017) [10] proposed a method based on a Monte 

Carlo approach to test the statistical significance of hierarchical 

clustering results while controlling for family-wise-error rate. 

However, family-wise-error rate can also be controlled while 

applying repetitive statistical tests by implementing a Bonferroni 

correction [41]. 

2.4. Integrating domain knowledge into clustering 

algorithms 

     Other frequently used clustering algorithms in the 

bioinformatics field are k-means and fuzzy c-means. However, 

these algorithms require initial random assignments of the 

clusters, which can produce inconsistent results [26]. Hence, they 

might fail to converge to the same results, even after multiple 

initiations using the same dataset [21]. In light of these 

limitations, Tari et al. (2009) [21] proposed the “GO Fuzzy c-

means” clustering algorithm. Their method resembles the fuzzy 

C-mean algorithms [42] and implements Gene Ontology 

annotation [43] as biological domain knowledge to guide the 

clustering procedure. Even though this method assigned genes to 

multiple clusters, which could have improved the biological 

relevance of the results, it was not capable of discriminating the 

cluster memberships that were assigned due to random chance. 

While the algorithm parameters selected in this study might have 

been reasonable for the dataset analyzed, the authors highlighted 

that future studies would need to experimentally determine these 

parameters. Similarly, Khakabimamaghani and Ester (2016) [34] 

integrated domain knowledge via the selection of parameters for 

prior probability distributions. However, their results reveal that 

the selection of these parameters had a direct impact on their 

clustering results. When analyzing the effects of priors, the 

authors indicate that “final selected priors favor better sample 

clustering over better gene clustering” [34]. These findings 

reveal that the parameters need to be carefully selected since they 

can bias their method towards better sample clustering rather than 

better gene clustering results.         

 Researchers can implicitly integrate domain knowledge to 

their methods by judiciously selecting the input data of their 

algorithms [2]. Genomic datasets may include relevant features 

as well as correlated and non-informative features. The presence 

of correlated and non-informative features might obscure relevant 

patterns and prevent an algorithm from discovering the 

underlying cluster structure of a dataset [19]. Genomic data is 

generally high-dimensional because the number of features is 

frequently greater than the number of samples. Additionally, 

genetic variants are commonly correlated with other variants in 

close proximity on DNA. Therefore, when clustering genomic 

data, it is important to prune non-informative and correlated 

features [2,9].  

 Highly correlated SNPs are said to be in Linkage 

Disequilibrium (LD). This characteristic makes it challenging for 



unsupervised ML algorithms to discover relevant cluster 

structures in the dataset. GWA studies present significant 

associations as tag SNPs, implying a true causal SNP can be 

found within the LD block of a tagged location [11]. LD pruning 

refers to removing highly correlated SNPs within LD blocks. For 

example, Yazdani et al. (2016) [44] identified a subset of 

informative SNPs based on a correlation coefficient. Similarly, 

Goldstein et al. (2010) [9], implemented several correlation 

coefficient cut-off values (e.g., 0.99, 0.9, 0.8, 0.5) to remove 

SNPs with high LD. They achieved this by using the toolsets for 

Whole-Genome Association and Population-Based Linkage 

Analyses (PLINK) [45], resulting in a reduction of up to 76% of 

the original dataset. This reduction decreased the computational 

complexity of their method [9]. However, researchers have not 

agreed yet on a standard correlation coefficient cut-off value that 

can be applied to every genomic dataset to reduce complexity 

without incurring in significant information loss. 
 

Table 1. Summary of current methods 
 
 

Papers 
LD 

Pruning 

 
Automatic 
selection  

of k *  

 
Statistical tests 

performed 
No selection of 

parameters 
required ǂ 

[9,11,19, 
21] 

X    

[40] X  X  
[16,26,29,

31,34, 
35,37] 

  
X 

  

[10, 17, 
39, 46],   

   
X 

 

This work X X X X 
*k is the parameter defining the number of cluster in the dataset. 
ǂ No parameters or hyperparameters are required to be known or selected a priori by 
researchers (e.g., prior probability, toroid grid size). 

 
     Table 1 shows a summary of the current clustering methods in 

the field of bioinformatics applied to genomics data. It can be 

shown that multiple methods prune the SNPs of their datasets 

based on the degree of LD between nearby SNPs. This is done in 

order to guide their clustering search and remove potentially non-

informative features. However, the vast majority of existing 

methods still require preselecting the number of clusters and 

other parameters a priori (e.g., prior probability distributions, 

toroid grid size). Moreover, the current methods do not 

commonly implement statistical analysis to test for the 

significance of their results, or to account for possible family-

wise-error rates.  

In light of the aforementioned limitations, an unsupervised 

machine learning method is presented in this work that seeks to 

identify sub-groups within cohorts of patients afflicted with the 

same disease. This is done by clustering patients based on their 

genomic similarity without the need of a priori input parameters. 

The method presented in this work takes advantage of LD 

between SNPs by pruning correlated SNPs. In addition, it 

automatically selects the number of clusters by implementing an 

internal validation metric. The method ensembles the clustering 

outcomes of multiple linkage methods via a majority vote 

approach. Subsequently, it tests for statistical significance among 

results while accounting for family-wise-error rate. Finally, a 

gene pathway analysis is performed to support the potential 

medical significance of the results. 

 

3. Method 

     An unsupervised machine learning method is presented that 

does not require selection of input parameters a priori. The 

method can help identify patient cluster structures within 

genomic data and potentially discover valuable differences 

between them. This knowledge can be used to advance 

personalized medicine of complex diseases with heritable 

components, especially autoimmune disorders which have many 

susceptibility loci. Fig. 1 shows an outline of the method 

presented in this work. 
 

 

Figure 1. Outline Method 
 

3.1 Linkage Disequilibrium Pruning 

     Pruning SNPs based on LD serves as a feature reduction step. 

Thus, in the proposed method, SNPs that are strongly correlated 

to other nearby SNPs are pruned, as previously done in the 

literature. The degree of LD between SNPs is assessed by 

calculating the correlation coefficients based on a sliding window 

method. In this method, cut-off values of (i) 0.999, (ii) 0.99, (iii) 

0.9, (iv) 0.8 and (v) 0.5 are employed. Previous studies have 

shown these cut-off values provide a balance between error 

reduction and information loss [9]. Hence, five subsets of 

patients’ genomic data containing different sets of SNPs (i.e., 



features) are generated. The subsets generated serve as input for 

the hierarchical clustering step.  

 

3.2 Hierarchical Clustering  

The objective of the unsupervised machine learning method 

presented in this work is to cluster patients based on their 

genomic similarity. Patients’ genomic similarity can be evaluated 

using a wide range of distance metrics [26]. The selection of the 

appropriate distance metric is driven by the type of data under 

analysis (e.g., ratio, interval, ordinal, nominal or binary scale). 

For example, the Euclidian distance is appropriated for ratio or 

interval scale data, while the Manhattan distance for ordinal scale 

data [47].  
Subsequently, the method presented in this work employs an 

agglomerative hierarchical clustering algorithm. Hierarchical 

clustering algorithms are frequently used with only one linkage 

method, which can limit their ability to identify underlying 

cluster structures in certain datasets [24]. Hence, in this work, 

multiple linkage methods are implemented. The linkage methods 

used in this work have been shown to consistently outperform 

other methods when tested with simulated GWAS datasets [26]. 

The cluster results obtained by implementing different linkage 

methods are ensemble in the subsequent steps. This ensemble 

takes advantage of the performance of multiple linkage methods. 

Moreover, it helps identify the underlying structure of the data, 

since the ensemble approach will favor cluster structures 

identified by the majority (i.e., via a majority vote approach) of 

the linkage methods. Specifically, the authors propose to 

implement: 

 

(i) Single Linkage (or Minimum Linkage). 

(ii) Complete Linkage (or Maximum Linkage). 

(iii) Average Linkage (or Unweighted Pair Group Method 

with Arithmetic Mean, UPGMA). 

(iv) Ward’s Linkage. 

(v) McQuitty Linkage (or Weighted Pair Group Method 

with Arithmetic Mean, WPGMA). 

 

3.3 Parameter Selection 

Once the agglomerative hierarchical algorithm is implemented, 

the Silhouette index is employed as an internal validity metric. 

This index has been used in previous studies to rank the results of 

multiple clustering algorithms outcomes and guide the selection 

of final clusters [16],[26]. Nonetheless, in this method, the index 

is used to select the number of clusters for all combinations of 

LD pruning data subsets (see section 3.1) and linkage methods 

(see section 3.2). The number of clusters that provides the largest 

average Silhouette index value in each of the combinations is 

selected.  

The computational complexity of testing all possible numbers 

of clusters increases linearly as the number of objects in a dataset 

increases. This can be a challenge in datasets that contain a large 

number of objects, even with parallelized computing. In this 

work, an optimization approach is presented to identify the 

number of clusters that maximizes the average Silhouette index. 

The mathematical formulation of this optimization problem is as 

follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒    𝑆𝐼                                           (1) 

𝑆𝐼 ൌ  
ଵ


 ∑ ቂ

ଵ

ఎ
 ∑ 𝑆ሺ𝑥ሻ௫∈𝑪

 ቃ
ୀଵ        ∀ 𝑖 ∈ 𝑲ሼ1, … , 𝑘ሽ           (2) 
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ሺ௫ሻିሺ௫ሻ
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1 ൏ 𝑘  𝑛                                            (6) 

Where,  

𝑆𝐼: is the average Silhouette index of the clusters set K  

K: is the set of clusters obtained with the hierarchical 

clustering algorithm for a given number of k disjoint clusters  

𝜂: is the number of objects that belongs to cluster 𝐂 , for 𝑖 ∈

𝑠et of clusters ሼ𝑲ሽ 

𝑆ሺ𝑥ሻ: is the Silhouette of object x, for x ∈ 𝐂 

𝑎ሺ𝑥ሻ: is the average similarity of object x with all other objects 

that belong to the same cluster of x (i.e., 𝐂୧) 

𝑏ሺ𝑥ሻ: is the average similarity of object x with the objects from 

the nearest clusters 𝐂௪,  for 𝑤 ∈ 𝑠et of cluster ሼ𝑲ሽ, 𝑖 ് 𝑤. 

 

Eq. (1) represents the objective function that needs to be 

maximized (i.e., the average Silhouette index). Eq. (2), shows the 

mathematical representation of the average Silhouette index, 

while Eq. (3) shows the silhouette of a given object x. Both Eq. 

(4) and (5) represent the elements that constitute the Silhouette 

index of a given object x [27]. Finally, Eq. (6) constrains the 

search for the number of clusters to be greater than 1 and less 

than the total number of objects n (i.e., the maximum number of 

clusters). Since the objective function is non-linear with respect 

to the parameter k (i.e., number of clusters), this optimization 



problem needs to be solved with a non-linear optimization 

algorithm. In the literature, there are several algorithms suitable 

to solve this type of optimization problem [48]. Nonetheless, the 

method is not constrained to any specific optimization algorithm. 

Once the number of clusters is identified in all datasets 

combination, the results are aggregated into a final cluster set via 

a majority vote approach. Table 2 shows an example of this 

consensus clustering approach in which patient i is assigned to 

the final cluster 1 since the majority of the cluster results 

assigned that patient to that given cluster. Similarly, patient n is 

assigned to the final cluster 2, since the majority of clusters 

assigned this patient to this cluster. 
 

Table 2. Example of consensus clustering 
No. LD 

Pruning 

Linkage 

Method 

Patient i 

cluster 

 

 

 

 

 

 

 

… 

Patient n 

cluster 

1 1 Single 1 2 

2 0.99 Single 1 2 

3 0.90 Single 1 1 

4 0.8 Single 1 2 

5 0.5 Single 2 1 

… … 

24 0.8 McQuitty 2 2 

25 0.5 McQuitty 1 2 

Final Cluster 1 2 

 

3.4 Statistical Significance 

After the final patient clusters are discovered, a single SNP 

ANOVA test is performed to reveal the SNPs that are statistically 

significantly different between the clusters of patients. This step 

helps validate that the clusters generated are different by at least 

one associated SNP. To account for family-wise-error-rate a 

Bonferroni correction is applied by dividing the alpha value by 

the number of tested SNPs. In the case that no SNPs are found to 

be statistically significantly different, it can be concluded that the 

resulting patients’ clusters might have arisen due to random 

chance. 

 

3.5 Gene Pathway Analysis 

     The set of SNPs significantly associated with differences 

between patient clusters can be explored via Gene Ontology (GO) 

enrichment and mutational burden on molecular pathways. By 

assigning each SNP to a gene and performing a gene network 

analysis, (e.g., via STRING-DB software [49]), visualizations of 

gene networks and estimations of significant enrichment along 

GO terms could provide evidence for potential biological 

significance. The significance is assessed by comparing the 

number of evidence-based relationships between selected genes 

to the number expected in a set of randomly selected genes. If an 

enrichment is established, the related genes are examined by their 

molecular function, biological relevance, and known associations 

to the disease from GWA studies. While pathway analysis does 

not provide the rigor of direct experiment or clinical trial, it 

remains valuable in determining whether selected genes are 

functionally relevant to the disease studied, as opposed to being a 

function of other factors such as ethnicity. 

 

4. Application 

     The performance of the proposed method is first tested on the 

datasets presented in the Fundamental Clustering Problem Suite 

(FCPS) [25]. The FCPS contains 10 different datasets designed to 

assess the performance of unsupervised machine learning 

algorithms on particular clustering challenges (e.g., outliers, 

undefined cluster boundaries). The ground truth data of cluster 

membership are used to test the performance of the method in 

identifying clusters resulting from the underlying structures in the 

data and not just from random variation. To measure this 

performance, the Rand index [50] validation metric is employed. 

Moreover, the performances of other existing methods in the 

literature are benchmarked with the same datasets. All the 

benchmark analyses were performed on a 12 Core i7 3.4 GHz 

IntelTM computer with 62.8 GB of RAM and Ubuntu 16.04 LTS. 

The benchmark methods were implemented in  R v.3.4 [51] with 

the used of the packages mclust v.5.3 [52], apcluster v.1.4.4 [53], 

DatabionicSwarm v.0.9.8 [54,55], NNLM v.0.4.1 [35], and 

biclust v.1.2.0 [56]. 

Two genomic datasets are used to compare the performance of 

the proposed method against other state of the art methods in the 

literature. The benchmark methods include those that do not 

require providing the number of cluster a priori. I.e., Clifford et 

al. (2011) [26]: hierarchical clustering algorithm with silhouette 

index, Sakellariou et al. (2012)  [29]: Affinity Propagation 

clustering algorithm, Shen et al. (2009) [31]: Expectation 

Maximization clustering algorithm, and Cheng and Church 

(2000) [37]: Iterative Greedy Search Biclustering algorithm. 

Frist, the microarray gene expression data of patients with 

lymphoblastic and acute myeloid leukemia from Golub et al. 

(1999) [57] was implemented. The dataset is publically available 

at the Broad Institute and has been previously used to test the 



performance of clustering algorithms [23,58]. The dataset is 

composed of microarray gene expression data of 999 genes for 

27 patients with acute lymphoblastic leukemia and 11 patients 

with acute myeloid leukemia.  

Lastly, a dataset of patients diagnosed with Multiple Sclerosis 

(MS) is employed. DNA samples from 191 MS patients 

consented via the Pennsylvania State University PRIDE protocol 

at Hershey Medical Center were subjected to the Immunochip 

assay (Illumina). Allelic variations were measured at previously 

described susceptibility loci for multiple immune-mediated 

disorders [59,60]. The Y chromosome data were filtered out of 

the dataset to simplify comparisons in a predominantly female 

cohort. Mitochondrial markers were discarded for analysis as 

well. Genotype calling was done with Illumina GenomeStudio 

v.2011.1 (www.illumina.com), and genotype markers were 

excluded if their GenTrain score was less than 0.8, or if their call 

rate across the cohort was less than 0.99. Finally, the MS dataset 

was filtered such that only variants within coding regions (i.e., 

exons), were considered. Therefore, the MS dataset was 

composed of 191 patients and 25,482 SNPs. 

With the MS dataset, a 10-fold cross-validation analysis was 

performed with the objective to test the performance of the 

proposed and the benchmark methods, as well as to provide 

evidence regarding their propensity of overfitting genomic 

datasets. In this cross-validation approach, the MS dataset was 

randomly partitioned into 10 subsets. Subsequently, the methods 

were used to cluster the patients within these subsets. The 

clustering results obtained from the 10 subsets were compared to 

those from the complete dataset. The agreement between the 

clusters generated with the complete MS dataset and the 10-fold 

subsets is assessed with the Rand index metric. A match between 

the clustering results (e.g., average Rand index of 1) will indicate 

that the method was not overfitting the MS dataset, thus, 

providing arguments of its generalizability. Moreover, it will 

support that the method was identifying clusters due to 

underlying structures in the data and not just due to random 

variations. Finally, the groups of SNPs identified by the proposed 

method to achieve statistical significance between clusters 

generated were examined via gene pathway analysis.  

 

4.1 Linkage Disequilibrium Pruning 
 

For the MS dataset, the pruning of SNPs with a high LD was 

done based on the correlation-coefficient cut-off values found in 

the literature, as proposed in section 3.1. LD pruning was 

performed using the widely used genotype analysis toolset for 

Whole-Genome Association and Population-Based Linkage 

Analyses (i.e., PLINK) [45]. This pruning resulted in a reduction 

of the original dataset as presented in Table 3. These percentages 

of SNPs removed are consistent with the results found in 

previous studies.  
 

Table 3. LD Pruning summary 
R2 cut-

off value 
Number of 

SNPs retained 
Percentage of 
SNPs removed 

0.50 5,460 78.57% 

0.80 6,849 73.12% 

0.90 7,421 70.88% 

0.99 8,666 65.99% 

0.999 8,691 65.89% 
 

4.2 Hierarchical Clustering  

     The FCPS and Golub et al. (1999) [57] datasets contain 

features that are in ratio scale. Hence, to measure the similarity 

between the objects in the datasets, the Euclidian distance is 

implemented. Genotype data can be ordinal or additive scale, 

depending on whether heterozygous SNPs are treated as a label 

or as a half-dosage. While additive models are more often used 

for GWA studies, in this work, ordinal scale was used to 

demonstrate flexibility in the described clustering method. Hence, 

the genomic similarity of MS patients based on different subsets 

of pruned data is evaluated using the Manhattan distance metric. 

The similarity calculations and the agglomerative hierarchical 

algorithm with multiple linkage methods were performed in R 

v.3.4 [51].  

 

4.3 Parameter Selection 

The selection of the number of clusters k that maximized the 

average Silhouette index was performed with a generalized 

simulation annealing algorithm. This algorithm was selected due 

to its underlying theory and proven performance in problems 

with non-linear objective functions [61,62].  The algorithm was 

implemented via the R package GenSA v.1.1.6 [63].  

Nonetheless, other non-linear optimization algorithms or greedy 

heuristics can also be implemented. Once the number of clusters 

in every combination of LD pruned data and linkage method are 

selected, the clustering results are ensemble via a majority vote 

approach (see section 3.3). 

 

 

 



4.4. Statistical Significance 

     After the final clusters have been selected based on the 

average Silhouette metric and consensus clustering approach the 

statistical significance of the results is evaluated. Clusters’ 

median values for each of the p features in the MS dataset are 

evaluated via a single SNP non-parametric ANOVA Kruskal-

Wallis test [46]. To account for family-wise-error rate, a 

Bonferroni correction is applied to the significance alpha level of 

0.05 (i.e., Bonferroni correction= 0.05/p, for p= 25,482).  

 

4.5. Gene Pathway Analysis 

     Gene variants that show statistical significance are further 

analyzed via a gene pathway analysis to explore their potential 

medical significance. Pathway analysis starts with generating a 

list of genes determined from the set of SNPs with strong 

evidence of significance between patient clusters. Inputting the 

gene set via the STRING-DB software algorithms [49] allows for 

convenient calculation of pathway enrichment hypothesis tests 

and visualization of the gene network. STRING-DB determines 

gene relationships by aggregating several databases into an 

evidence score. Experimental evidence comes from the BIND 

[64], GRID [65], HPRD [66], IntAct [67], MINT [68], and PID 

[69] databases. In addition, STRING-DB pulls from the curated 

databases KEGG [70], Gene Ontology [43], BioCarta [71], and 

Reactome [72]. Interaction frequency is tested for enrichment 

compared to expectation from a random sampling of genes, with 

p-values and false discovery rates reported for enrichment in 

specific cellular processes, defined by Gene Ontology references.  

After statistical testing is done, the gene network is used as a 

threshold for high confidence interaction and a k-means 

clustering algorithm is performed for visualization purposes (see 

Fig. 6). 

 

5. Results 

5.1. FCPS Benchmark results 

The majority of existing methods in the literature require the 

selection of parameters a priori (e.g., number of clusters, see 

Table 1). Hence, to benchmark with multiple methods, the 

number of clusters provided by the FCPS was used as input when 

testing these methods. Figure 2 shows the average Rand index 

obtained in the FCPS datasets by the method proposed in this 

work (i.e., Proposed) and the methods benchmarked. This plot 

shows that on average the proposed method outperformed other 

methods, with an average Rand index of 0.852. The performance 

is statistically significantly greater than the results of the methods 

proposed by Cheng and Church (2000), Sakellariou et al. (2012), 

Lee and Seung (2001), Ultsch and Lötsch (2017), and Clifford et 

al. (2011). Even though these results indicate that, on average, 

the proposed method achieved the largest Rand index, there is 

not enough evidence to conclude that it was statically 

significantly greater than the Rand index achieved by the 

methods of Shen et al. (2009), Hamid et al. (2010), or Ahmad et 

al. (2016), at an alpha level of 0.05. This can be attributed to the 

relatively small group of validation datasets provided in the 

FCPS (i.e., 10 datasets). 

 

 
Note: p-value: <0.001***, <0.01**, <0.05* 

Figure 2. Average Rand index for FCPS datasets  
 

 
Note: p-value: <0.001***, <0.01**, <0.05* 

Figure 3. Proportion of results with Rand index of 1 for FCPS 
datasets (i.e., perfect clustering) 

 

Similarly, Figure 3 shows the proportion of the FCPS datasets 

that achieved a clustering result with a Rand index of 1 (i.e., 

perfect clustering) for each of the given methods. The results 

reveal that the proposed method was able to obtain a Rand index 

of 1 in 6 out of the 10 FCPS datasets. The results from the 



Wilcoxon tests indicate that these results are statistically 

significantly greater than the results of the methods proposed by 

Ultsch and Lötsch (2017), Cheng and Church (2000), Lee and 

Seung (2001), and Sakellariou et al. (2012). Even though the 

results indicate the proposed method correctly clusters the largest 

percentages of datasets (i.e., 6/10), there is not enough evidence 

to conclude that this proportion is statically significantly greater 

than the ones from the other methods benchmarked, at an alpha 

level of 0.05. Nevertheless, these results provide evidence that 

the method presented in this work is able to identify true clusters 

in a wider range of datasets with different underlying structures.   

 

5.2. Genomic dataset Benchmark results 
 

Figure 4 presents the Rand index obtained on the Golub et al. 

(1999) dataset [57]  by the method proposed in this work and the 

benchmark methods that do not require providing the number of 

clusters a priori. Fig. 4 indicates that the proposed method 

performed better than the methods presented by Clifford et al. 

(2011), Cheng and Church (2000), and Sakellariou et al. (2012).  
 

 
Figure 4. Rand index for Leukemia dataset 

 
Figure 5 shows the average Rand index obtained with the 

MS dataset and the 10-fold cross-validation approach by the 

proposed and benchmark methods. The iterative greedy search 

Biclustering algorithm proposed by Cheng and Church (2000) 

was not able to find any cluster structure in the MS dataset; hence 

it was not included in this plot. The plot shows that on average 

the proposed method outperformed the other methods, with an 

average Rand index of 0.969. This is statistically significantly 

greater than the values obtained with the other methods 

benchmarked. Moreover, the average Rand index obtained by the 

proposed method was not significantly different than an average 

Rand index of 1 (t-value: -1.963, p-value=0.0812), at an alpha 

level of 0.05. This reveals that on average the proposed method 

found a perfect match between the clusters of patients obtained 

with the complete MS dataset and the cross-validation subsets.  
 

\Note: p-value: <0.001***, <0.01**, <0.05* 
Figure 5. Average Rand index for MS dataset 

 

Table 4 shows the confusions matrix of the clusters obtained 

with the proposed method when implementing the 10-fold cross-

validation approach. The table indicates that the proposed method 

was able to group 96.33% of the patients’ in the same clusters 

when both the complete dataset and the different data subsets 

were used (i.e., accuracy of 0.96), which is in line with the 

average Rand index of 0.969 shown in Fig. 5. The Rand index 

and confusion matrix results indicate that the proposed method 

identified a similar cluster structure even with different subsets of 

the MS dataset. This indicates that the proposed method was not 

overfitting the dataset. Furthermore, it provides evidence that 

supports that the method was able to identify clusters due to the 

underlying structure of the data and not just due to random 

change.  
 

Table 4. MS dataset 10-fold cross-validation confusion 
matrix 

Complete Dataset 

Cluster 1 Cluster 2 

Data Subsets 
  

Cluster 1 172 0 

Cluster 2 7 12 
 

     The results from the pathway analysis on the set of 

statistically significant different SNPs between the MS patient 

clusters are shown in Fig. 6. The cluster-defining SNPs show 

significantly more interactions than expected among a random 

sampling of genes. Out of 515 genes, 1,463 interactions were 

found, with only 942 expected by chance (p-value: 1.04e-10), 

among a background set of 4,938 genes present on the 



Immunochip. The gene interactions in the set shown in Fig. 6 

demonstrate a high prevalence of cellular adhesion, cytokine 

response, and general immune process pathways.  
 

 

Figure 6. Gene Pathway Analysis results 
 
   Table 5 shows relationships between genes based on evidence 

from literature via STRING-DB [49]. The highly connected 

pathway depicted contains many genes known to be involved in 

cell adhesion and leukocyte physiology, both of which are 

processes dysregulated in MS [73]. Additionally, the genes 

selected show significant Gene Ontology term enrichment in 

these categories, with false discovery rates less than 0.01. Taken 

together, pathway analysis reveals that extracting significant 

features between clusters may be a valid feature reduction 

technique for downstream analysis. Genes known to be relevant 

in MS pathophysiology (e.g., interleukin receptors, STAT 

transcription factors, lymphocyte surface proteins from the CCR 

family) were highlighted despite not using a supervised method 

and label data, implying that the proposed unsupervised method’s 

value is not just discovering patient clusters, but reducing the 

dimensionality by nearly 20-fold with few samples (i.e., from 

over 25,482 features to around 1,500, using 191 samples). 

 
Table 5. Gene Pathway Analysis results 

 
Pathway ID 

 
Pathway Description 

Count in 
Gene Set 

False 
Discovery 

Rate 

GO.0051249 Regulation of 
lymphocyte activation 

32 0.00641 

GO.0002823 Negative regulation of 
adaptive response 

9 0.00749 

GO.0006952 Defense response 73 0.00749 

GO.0002694 Regulation of leukocyte 
activation 

33 0.00804 

GO.0050865 Regulation of cell 
activation 

35 0.00804 

GO.0002376 Immune system process 93 0.00898 
 

 

As a secondary observation, an analysis was done on the MS 

dataset after pruning samples which showed greater than 0.2 

similarity in PLINK’s Identity-By-Descent (IBD) algorithm [74]. 

This was done to remove potentially related patients from the 

analysis. IBD identified a total of 11 potentially related patients, 

from whom 10 were initially assigned to cluster number two. 

Consequently, after removing these potentially related patients 

from the MS dataset and applying the proposed method, the 

number of patients in the second cluster was reduced from 12 to 

2, and no pathway enrichment was detected. However, the 120 

genes detected still included T-cell relevant proteins such as 

STAT and JAK, as well as members of the tumor necrosis factor 

and interleukin families, supporting the claim that the method 

identified SNPs relevant to the disease process even if the sample 

size of the smaller cluster (n=2) constrains the power of the 

pathway analysis. Furthermore, the cross-validation results 

indicate that the average Rand index achieved after removing 

potentially related patients (i.e., 0.932) was not significantly 

different than the initial cross-validation results (i.e., 0.969, see 

Fig. 5) (t-value: 1.52, p-value: 0.147). This reveals that the 

proposed method was able to identify the same underlying cluster 

structure in the MS dataset, and identify patients with similar 

genomic makeup after the removal of potentially related 

individuals. These results provide evidence that supports that the 

method was able to identify clusters due to the underlying 

structure of the data and not just due to random change.  

 

6. Conclusion and future work  

Many chronic disorders have genomic etiology, disease 

progression, clinical presentation, and response to treatment that 

vary on a patient-to-patient basis. Such variability creates a need 

to identify characteristics within patient populations that have 

clinically relevant predictive value. Unsupervised machine 

learning methods are suitable to address this type of problem, in 

which no class label information is available to guide this search. 

However, it is challenging for existing methods to identify cluster 

memberships that are due to the underlying structures in the 

dataset and not just a result of natural sampling variation. 

Moreover, most current methods require researchers to know and 

provide input parameters a priori. As a result of these limitations 

and the need to advance personalized medicine, this work 

proposed an unsupervised machine learning method to identify 

genomically distinct patients’ cluster. The method presented in 

this work integrates statistical analysis to test for significance of 

clustering results and accounts for family-wise-error rate. 



Moreover, the method is capable of automatically identifying the 

number of clusters by implementing an internal validity metric. 

Similarly, the method takes advantage of the degree of linkage 

disequilibrium between SNPs by pruning correlated nearby SNPs, 

as well as implementing a post-clustering gene pathways analysis.  

The method is tested with clustering validation datasets 

previously used in the literature. The benchmark results reveal 

that proposed method provides, on average, the greatest 

performance (i.e., average Rand index 0.852). Moreover, results 

indicate that it was able to obtain cluster results with a Rand 

index of 1 (i.e., perfect clustering) in 6 out of the 10 Fundamental 

Clustering Problem Suite datasets. Similarly, the method is 

applied to a dataset of 38 patients with leukemia, and 

subsequently to a dataset of 191 Multiple Sclerosis (MS) patients. 

The results indicate that the method is able to identify genetically 

distinct patient clusters without the need to select the number of 

clusters or any input parameter a priori. Moreover, the cross-

validation results indicate that the method presented in this work 

outperformed the other methods found in the literature when it 

comes to data overfitting, since the average Rand index obtained 

was significantly greater than the benchmarked methods and not 

significantly different than 1. This performance was maintained 

even after the removal of potentially related patients from the 

dataset. This indicates that the method was identifying clusters 

due to the underlying structure of the data and avoided overfitting 

the dataset. The identification of distinct genetic subtypes of 

patients demonstrates the potential applicability of this process to 

advance personalized medicine of complex diseases with 

heritable components, especially autoimmune disorders. 

When applied to genomic data, the method also shows value 

as a feature reduction strategy.  Out of over 25,482 exonic SNPs 

and 191 patient samples, the clustering of patients yielded a set of 

SNPs which significantly vary between clusters. These variants 

represent 515 genes, several of which are known to be involved 

in MS (CD69, CCRX5, IL-13, STAT3) and cell adhesion 

(ICAM1, LAMB4). The fact that many highlighted genes are 

components of the immune system is not surprising due to the 

nature of the Immunochip assay, but the enrichment of 

leukocyte-specific genes is evidence that the method can result in 

functionally relevant feature sets, even without class labels. 

Notably, 57 genes representing over 10% of the network are 

involved in cytokine receptor processes. This is greater than 

expected from random chance, as cytokine receptors constitute a 

small percentage of all Immunochip genes. The evidence 

presented in this work alone is insufficient to define genetic 

subtypes of MS, but the specific SNP set reaching significance 

may be a valuable resource in experimental studies examining 

immune cell dynamics and genetics. For example, the hypothesis 

that these clusters represent different subtypes of MS, can be 

tested by evaluating clinical criteria such as image results and 

disease progression, as well as quantitative cytokine profiling and 

gene expression studies for each cluster, compared against 

random groupings of patients. 

This work demonstrates an iterative unsupervised machine 

learning method which identifies significant patient clusters 

within a genomic dataset. Future research should explore the 

medical significance of the findings shown in this work. 

Similarly, the method from this work should be implemented in 

studies collecting SNP array and gene expression microarray data 

from additional disease cohorts to explore its potential benefits. 

Further investigation can extend beyond pathway analysis to 

evaluate these clusters for clinical significance of genetically 

related characteristics such as age of onset, disease course, 

heritability, and response to treatment. Once links are drawn 

between clusters and clinically relevant outcomes, the 

Immunochip can be used to classify high-risk and newly 

diagnosed chronic disease patients into clusters with predictive 

value. 
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