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3

4 The Preference Trend Mining (PTM) algorithm that is proposed in this work aims to
address some fundamental challenges of current demand modeling techniques being
employed in the product design community. The first contribution is a multistage predic-
tive modeling approach that captures changes in consumer preferences (as they relate to
product design) over time, hereby enabling design engineers to anticipate next genera-
tion product features before they become mainstream=unimportant. Because consumer
preferences may exhibit monotonically increasing or decreasing, seasonal, or unobserv-
able trends, we proposed employing a statistical trend detection technique to help detect
time series attribute patterns. A time series exponential smoothing technique is then used
to forecast future attribute trend patterns and generates a demand model that reflects
emerging product preferences over time. The second contribution of this work is a novel
classification scheme for attributes that have low predictive power and hence may be
omitted from a predictive model. We propose classifying such attributes as either stand-

5 ard, nonstandard, or obsolete by assigning the appropriate classification based on the
time series entropy values that an attribute exhibits. By modeling attribute irrelevance,
design engineers can determine when to retire certain product features (deemed obsolete)
or incorporate others into the actual product architecture (standard) while developing
modules for those attributes exhibiting inconsistent patterns throughout time (nonstan-
dard). Several time series data sets using publicly available data are used to validate the
proposed preference trend mining model and compared it to traditional demand modeling
techniques for predictive accuracy and ease of model generation.
[DOI: 10.1115/1.4004987]
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6 1 Introduction

7 Identifying and understanding changes in complex systems are
8 vital to developing efficient models that help to predict future
9 behavior. As data storage capabilities become more efficient and

10 affordable, so do the challenges of extracting meaningful knowl-
11 edge that may exist within these storage resources. Dynamic sys-
12 tems such as consumer electronics markets, cybersecurity
13 systems, and military network systems, all require reliable and ef-
14 ficient analysis tools for sound decision making objectives.
15 The ability to model emerging trends has broad applicability in
16 product development, ranging from researching and developing
17 new product technologies to quantifying changes in consumer
18 preferences in highly volatile markets. Traditional demand model-
19 ing techniques frequently employed in the product design commu-
20 nity typically generate predictive models using data from a single
21 snapshot in time (usually the most currently available data set)
22 and hence may not reflect the evolving nature of product trends.
23 The absence of a temporal demand model for product design
24 presents a challenge to design engineers trying to determine the
25 relevant product attributes to include=exclude in the next genera-
26 tion of products.
27 To overcome these challenges, we propose a time series model
28 that addresses specific product design problems relating to product
29 preference trend modeling. We introduce a subcategory of data

30change mining called Preference Trend Mining (PTM) that char-
31acterizes attribute relevance over time. Once an attribute has been
32deemed irrelevant, we propose three classification groups based
33on its historical pattern; Obsolete attribute, Nonstandard attribute,
34and Standard attribute. This novel classification helps to guide the
35product architecture by indicating when certain product features
36should be included or excluded in next generation product
37designs. A cell phone example is used to demonstrate what each
38classification option means to design engineers and to the overall
39success of new product development efforts.
40This paper is organized as follows. This section provides a brief
41motivation and background; Sec. 2 describes previous works
42closely related to the current research; Sec. 3 describes the meth-
43odology; A cell phone case study is presented in Sec. 4 with the
44results and discussion presented in Sec. 5; Sec. 6 concludes the
45paper.

462 Related Work

472.1 DemandModeling Techniques in Product Design. There
48are several well established demand modeling=customer prefer-
49ence acquisition techniques that have been employed in the prod-
50uct design community such as conjoint analysis, quality function
51development, discrete choice analysis, supervised machine learn-
52ing models, to name but a few [1–4]. In this selective literature
53review, we will limit our discussion to the discrete choice analysis
54model and the decision tree classification model, in part due to
55their popularity in the product design community and also due to
56the research findings in a recent comparative study performed in
57the product design community [5].

582.1.1 Discrete Choice Analysis. The discrete choice analysis
59(DCA) approach has been employed extensively in the product
60design community as an attribute quantification and demand
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61 modeling technique [6–8]. The model measures variations in con-
62 sumer preferences by employing a random utility function Uni
63 that is comprised of a deterministic part Wni and an unobservable
64 random part eni. Although there are many variations of the DCA
65 model, a popular technique employed in the product design com-
66 munity is the multinomial logit (MNL) model. The MNL model
67 assumes that the error terms (eni) are independent and identically
68 distributed (i.i.d) and follows a Gumbel distribution [9]. Given a
69 set of choice alternatives i¼ 1,…,m, the probability that a cus-
70 tomer n would choose alternative i is represented as

Pnði 2 CmÞ ¼ eWni=u

Xm
j¼1

eWnj=u

(1)

71 Here Pnði 2 CmÞ is the probability that customer n would choose
72 alternative i within the choice set Cm,Wni¼ f (Ai, di, Sn: bn) repre-
73 sents the deterministic part of the utility function Uni, Ai repre-
74 sents the quantifiable attribute set for choice alternative i, di
75 represents the price for a given product (choice alternative i), Sn is
76 the sociodemographic attributes of customer n, bn is the unknown
77 coefficients representing a consumer’s taste preference, and u is
78 the scaling parameter set to 1, assuming all choice alternatives are
79 equally considered by customer n.
80 While several variations of the DCA model (e.g., multinomial
81 probit, nested logit, mixed logit, etc.) have been employed in the
82 product design community, they are primarily distinguished from
83 each other by the degree of sophistication with which the unob-
84 served error and heterogeneity in customer preferences are mod-
85 eled [10–12].

86 2.1.2 Data Mining Decision Tree Classification. Techniques,
87 such as the C4.5 algorithm, have been employed in the product
88 design domain to solve product concept generation problems
89 involving large scale consumer data [3,5]. This machine learning
90 algorithm gets its foundation from Shannon’s classical Informa-
91 tion Entropy [13]. For the rest of the paper, we will refer to infor-
92 mation entropy simply as Entropy. An example of entropy in
93 product design terms could represent the uncertainty that exists in
94 distinguishing one choice alternative from another in a choice set
95 within a data set T. The entropy of the set of k choice alternatives
96 can therefore be mathematically represented as [14]

EntropyðTÞ ¼ �
Xk
i¼1

pðciÞ � log2pðciÞ½bits� (2)

97 Here, p(ci) represents the probability (relative frequency) of a
98 class variable ci in the data set T and k represents the number of
99 mutually exclusive class values within the data set (discrete case).
100 To determine the attribute (test attribute X) with the greatest
101 ability to reduce the uncertainty of the choice set, each attribute is
102 partitioned into all of its n mutually exclusive outcomes (discrete
103 case). The entropy, given a specific attribute test, is the summation
104 of entropies for each unique value of that attribute [14]

EntropyxðTÞ ¼
Xn
j¼1

jTjj
jTj �EntropyðTjÞ (3)

105 Here, Tj represents a subset of the training data T that contains one of
106 the mutually exclusive outcomes of an attribute. For example, if the
107 attribute energy consumption has three mutually exclusive outcomes
108 (e.g., low, medium, and high), then the training set T, would be parti-
109 tioned into three data subsets (T1 would contain all data instances
110 where attribute energy consumption is low and so on). n represents
111 the number of mutually exclusive outcomes for a given attribute.
112 The C4.5 decision tree classification algorithm defines the gain
113 metric which in essence, is the amount of uncertainty reduction
114 that an attribute provides in relation to the class variable. That is,

115the lower the Entropyx(T) for a particular attribute test, the higher
116the overall gain(X) metric

gainðXÞ ¼ EntropyðTÞ � EntropyxðTÞ (4)

117The gain metric was later updated in the C4.5 decision tree algo-
118rithm to reduce the bias toward attributes that may contain a greater
119number of mutually exclusive outcomes and was redefined as [14]

Gain RatioðXÞ ¼ gainðXÞ
�
Xn
j¼1

jTjj
jTj � log2

jTjj
jTj

(5)

120One of the assumptions of this model is that the data set can fit
121into main memory as all data instances are required at least for the
122first iteration. The definitions of entropy and entropy reduction
123(gain) are important concepts that serve as the foundation for the
124attribute irrelevance characterization presented later in this work.

1252.1.3 Limitations of Current Demand Modeling Techniques. A
126recent comparative study in the product design community
127between the discrete choice analysis and decision tree (DT) classi-
128fication models reveals that both techniques are quite comparable
129in terms of model generation and predictive accuracy. However,
130the decision tree classification model was found to be better suited
131for large scale data analysis due to multicollinearity issues
132reported while employing DCA for high dimensional data [5].
133The DT model was capable of narrowing down the attribute space
134to the relevant attributes influencing product choice share. To mit-
135igate the multicollinearity issues of the DCA model, the DT model
136could serve as a preprocessor, identifying the relevant attributes
137for the DCA model [5]. Nevertheless, both demand modeling
138techniques are limited in their ability to characterize evolving
139product preference trends in the market space due to the static na-
140ture of the models. Because the input of each model typically rep-
141resents an instant in time, design engineers are faced with the
142challenge of anticipating shifts in product preferences based on
143personal experience, rather than quantitative customer feedback.

1442.2 Time Series Modeling Techniques. In an effort to over-
145come some of the challenges of static demand models, research
146into time series modeling techniques have emerged, both in tradi-
147tional utility theory based research and data mining and machine
148learning research.

1492.2.1 Time Series Utility Function Models. There have been
150several time series, utility based models proposed in the literature
151aimed at quantifying the evolution of customer preferences. Mela
152et al. investigate the short term, medium term, and long term
153effects of marketing actions on consumer choice behavior [15].
154Mela et al. use first derivative information of the choice share in
155the multinomial logit model to quantify the time sensitive nature
156of customer preferences. Jedidi et al. propose a heteroscedastic,
157varying-parameter joint probit choice and regression quantity
158model that investigates the tradeoff between promotion and adver-
159tising in the marketing domain [16]. Seetharaman proposes a
160utility-theoretical brand choice model that accounts for four dif-
161ferent sources of state dependence, incorporating lagged effects of
162both consumer choices and marketing variables [17]. Lachaab et
163al. build upon the temporal discrete choice research by proposing
164a Bayesian state space framework that incorporates parameter-
165driven preference dynamics in choice models [18].
166While the aforementioned discrete choice analysis models
167attempt to model evolving consumer preferences, the models are
168primarily focused on variations in model parameters, rather than
169the underlying evolution of attribute-class relationships (i.e., how
170the evolution of a specific attribute influences the dependent=class
171variable). Furthermore, these time series discrete choice models
172do not provide engineers with quantifiable measures of attribute
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173 relevance=irrelevance to next generation product designs. Since
174 the proposed time series utility based techniques are developed in
175 the marketing domain, they are focused more on the economic
176 impact of customer preferences (evolution of brand preferences,
177 advertising implications, etc.). Consequently, engineers are left
178 with the challenge of determining the optimal attribute combina-
179 tions for evolving customer preferences without any direct rela-
180 tion to product architecture design.
181 PTM algorithm that is proposed in this work differs from time
182 series utility based choice models by having the ability to antici-
183 pate emerging attribute behavior whether the attribute exhibits a
184 monotonically increasing or decreasing trend, cyclical trend or no
185 trend at all. In addition to this, the PTM algorithm includes a tech-
186 nique to characterize attribute irrelevance by classifying attributes
187 based on their time series predictive power. This enables the PTM
188 model helps to guide the product design process by indicating
189 when certain product features should be included or excluded in
190 next generation product designs.

191 2.2.2 Time Series Data Mining Models. The area of data min-
192 ing dealing with dynamic information processing is relatively new
193 and has great potential to address many challenging areas of
194 research. Change Mining is the umbrella term used to describe
195 research involving data evolution in dynamic data bases [19].
196 Data Stream Mining is a subcategory of change mining that deals
197 more with the continuous flow of data that needs to be analyzed
198 with limited memory complications.
199 There have been several data mining algorithms proposed to
200 address continuously changing data streams. For example, the
201 very fast decision tree (VFDT) learner employs the Hoeffding sta-
202 tistic to build a decision tree classifier that has similar predictive
203 characteristics as a conventional decision tree learner (for exam-
204 ple, the C4.5 or gini based decision tree learners) but with a frac-
205 tion of the memory requirements [20]. Another example is the
206 concept-adapting very fast decision tree which extends the capa-
207 bilities of the VFDT by enabling it to accommodate time-sensitive
208 streaming data that may tend to exhibit concept drift, a phenom-
209 enon in dynamic information processing where the target variable
210 shifts over time and causes the data mining model to diminish in
211 its predictive accuracy [21]. While these models have the ability
212 to handle incoming data streams, they are more focused on gener-
213 ating=adapting a model based on incoming data, rather than
214 understanding how the data patterns evolve altogether.
215 Research domains more interested in data trends, rather than
216 the speed of the data streams also present another interesting area
217 of study. For example, the RePro classifier is a data streaming
218 algorithm that applies both proactive and reactive predictions dur-
219 ing model generation [22]. The algorithm attempts to alleviate the
220 problems of concept drift by anticipating concept changes and
221 making predictions that if incorrect, causes the model to readjust
222 and revert back to a previous model. Another example is the Pre-
223 Det algorithm that fits a polynomial regression model to the
224 monotonically increasing or decreasing time series attribute rele-
225 vance statistics. The resulting time series model anticipates future
226 attribute patterns that are inherent in the evolving data [19].
227 Although the aforementioned change mining algorithms gener-
228 ate models using time series data, they suffer from a limitation
229 similar to the DCA models described above. That is, their inability
230 to quantify the irrelevant attributes in the resulting model. Further-
231 more, the change mining algorithms fail to model seasonality
232 which can have dramatic effects on the model predictive accuracy.
233 The PTM algorithm that we propose in this work differs from the
234 PreDet and other change mining algorithms by having the ability
235 to anticipate emerging attribute behavior whether the attribute
236 exhibits a monotonically increasing or decreasing trend, cyclical
237 trend or no trend at all. In addition to this, the aforementioned
238 change mining algorithms do not suggest approaches to character-
239 ize attributes that may exhibit weaker predictive power over time.
240 We propose an approach to handle the notion of attribute irrele-
241 vance by classifying attributes based on their time series predic-

242tive power. This enables the PTM model to quantify attributes
243that may be experiencing changes in the distribution of the attrib-
244ute values themselves or novel=emerging attributes. The goal of
245the proposed PTM algorithm is to enable design engineers to
246understand changing customer preferences and anticipate emerg-
247ing product designs trends in a timely and efficient manner.

2483 Methodology

249Figure 1 presents the overall flow of the preference trend min-
250ing algorithm, starting with the acquisition of n time-stamped data
251sets. For each time stamped data set (t) and subsequent data subset
252(j), the interestingness measure (IM) is calculated for each attrib-
253ute (i) until the final attribute (k). There have been many proposed
254measures for evaluating attribute interestingness (relevance) such
255as the information gain metric, gini index, Cosine measure, sup-
256port measure, confidence measure, to name but a few [23,24]. In
257this work, we will limit our definition of attribute interestingness
258to an attribute’s ability to reduce the nonhomogeneity of the class
259variable. In Sec. 3.2, we will highlight the inconsistencies that
260exist among different definitions of relevance and propose an
261approach to mitigate these inconsistencies by evaluating attribute
262interestingness through time. That is, an attribute that is truly rele-
263vant, will have consistently high relevance scores throughout time
264and vice versa.
265For each time step in Fig. 1, we calculate the IM for each attrib-
266ute and then employ a seasonal time series predictive model to
267forecast the trend patterns (monotonically increasing, decreasing
268or seasonal trend patterns) for each attribute. The attribute with
269the highest predicted IM is selected as the split attribute for the
270future (unseen) time period and all time stamped data sets are par-
271titioned based on the unique values of this attribute. The process
272continues until a homogenous class value exists in the model. The
273flow diagram in Fig. 1 ends with the classification of attributes (as
274either obsolete, standard, or nonstandard) that are omitted from
275the resulting model.
276Sections 3.1–3.3.2 AQ1of the paper will expound on the steps of the
277flow diagram in Fig. 1.

2783.1 Discovering Emerging Trends for Product
279Design. Trends within a data set can be characterized as monot-
280onically increasing or decreasing, seasonal (where data exhibit
281some type of cyclical behavior) or both. There may also be

Fig. 1 Overall flow of preference trend mining methodology
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282 instances where the time series data set does not exhibit a discern-
283 able pattern suitable for statistical modeling. In the context of
284 product design, we will consider each of these different preference
285 trend scenarios in our methodology. The time series data set repre-
286 sented in Fig. 2 will be used to illustrate the notion of attribute
287 trends within a raw data set. Figure 2 comprises of 5 time periods.
288 Attribute 1 comprises of two unique values fa1,1, a1,2g and simi-
289 larly for attribute 2 fa2,1, a2,2g. The last column in Fig. 2 repre-
290 sents the class (dependent) variable which has five mutually
291 exclusive outcomes fc1,c2,c3,c4,c5g. As we observe from time pe-
292 riod t1 to t5, the number of instances of attribute 1’s value a1,1
293 increases from 2 at time period t1 to 6 at time period t5. Looking
294 closer at the square graphs in Fig. 2, we observe that at time pe-
295 riod t1, although attribute 1’s a1,1 value only has a total count of 2,
296 it represents a homogenous distribution of class value c1 (lower
297 left quadrant in time period t1). Moving through time to time step
298 t5, we observe that the same attribute value a1,1 has a count of 6
299 but with a nonhomogeneous distribution of the class variable (the
300 lower left quadrant in time series t5 has a mixture of c1, c2, and
301 c3). The change in the predictive power of each attribute can be
302 quantified by calculating the attribute IM over time which in this
303 case is the gain ratio. Figure 3 presents a visual representation of
304 each attribute’s gain ratio over time. In Fig. 3, although attribute 1
305 starts out with a higher gain ratio (predictive power) than attribute
306 2, by time period 4, attribute 2 has over taken attribute 1 in rele-
307 vance to the class variable. If we had generated a predictive model
308 at time period 3, we would not have realized the emerging prefer-
309 ence trend of attribute 2. To overcome these challenges, we
310 employ the Holt-Winters exponential smoothing model that uses a
311 weighted averaging technique, taking into account the local level,
312 the trend, and the seasonal components of the time series data
313 [25,26].

3143.1.1 Holt-Winters Exponential Smoothing Model. Holt-Win-
315ters is a nonparametric, exponential smoothing model that can be
316used to forecast each attribute’s predictive power for the kth step
317ahead so that emerging preference trends can be anticipated in
318the market space. Nonparametric statistical tests may be pre-
319ferred in machine learning scenarios due to the relaxation of the
320normality assumption that many parametric statistical trend tests
321require [27]. Since we assume no prior knowledge of the distri-
322bution of the incoming data, a relaxation of the data normality
323constraint is preferred. The (k) step ahead forecasting model is
324defined as

bytðkÞ ¼ Lt þ kTt þ It�sþk (6)

325where
326Level Lt (the level component)

Lt ¼ aðyt � It�sÞ þ ð1� aÞðLt�1 þ Tt�1Þ (7)

327Trend Tt (the slope component)

Tt ¼ cðLt � Lt�1Þ þ ð1� cÞTt�1 (8)

328Season It (the seasonal component)

It ¼ dðyt � LtÞ þ ð1� dÞIt�s (9)

329Here, yt represents the data point at the most recent time period
330(t), bytðkÞ represents the kth time step ahead forecasted value
331beyond yt (i.e., bytðkÞ ¼ ytþk), s represents the frequency of the sea-
332sonality (monthly, quarterly, yearly, etc.)

Fig. 2 Attribute-class distributions over time (attribute a1,1 is highlighted although both attribute patterns change over time)

Fig. 3 Characterizing attribute preference trend over time
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333 The smoothing parameters a, c, and d are in the range f0,1g
334 and are estimated by minimizing the sum of squared errors for
335 one time step ahead [25,26].
336 Several well established statistical techniques (both parametric
337 and nonparametric) exist for modeling time series data including
338 the seasonal-trend decomposition procedure based on loess regres-
339 sion, variations of the Box-Jenkins models which include the
340 autoregressive moving average and autoregressive integrated
341 moving average, to name but a few [28,29]. Research studies on
342 the predictive accuracies of these models reveal no conclusive
343 evidence to suggest one model being superior for all data struc-
344 tures [29].
345 Based on the results in Fig. 3, we can observe that attribute 2
346 would be selected as the relevant attribute in time period 6 (since
347 at each iteration, we always select the attribute with the highest
348 gain ratio). Under the gain ratio definition of attribute relevance,
349 attribute 1 would now be considered irrelevant at iteration 1 of
350 the decision tree induction algorithm. Based on the irrelevance
351 characterizations presented in Sec. 3.2, attribute 1 could either be
352 an obsolete attribute, a nonstandard attribute, or a standard at-
353 tribute. In order to determine the assignment of attribute 1, the
354 temporal behavior of each mutually exclusive value of attribute 1
355 (a1,1 and a1,2) needs to be determined. Section 3.2AQ2 details the pro-
356 posed attribute quantification methodology.

357 3.2 Quantifying Attribute Relevance. One of the major
358 challenges in predictive model generation is understanding the
359 design implications of the resulting model in terms of attribute
360 relevance or irrelevance. To understand some of the challenges
361 that arise in demand models, the following example is presented.
362 Let us define a set of attributes fA1,…, A5g each with a set of
363 mutually exclusive outcomes ai,j, where i corresponds to the specific
364 attribute Ai, and j corresponds to the attribute value. For simplicity,
365 let us assume that j¼ 2 for all attributes. We also define a class vari-
366 able that is conditionally dependent on one or several of the defined
367 attributes. The class variable is also binary with values fc1, c2g.

368Figure 4 is a visual representation of a resulting data mining de-
369cision tree structure employing the gain ratio metric described in
370Sec. 2.1.2. The following decision rules can be obtained by tra-
371versing down each unique path of the tree in Fig. 4.

1. 372If A2¼ a2,1 and A5¼ a5,1 then Class¼ c1
2. 373If A2¼ a2,1 and A5¼ a5,2 and A3¼ a3,1 then Class¼ c1
3. 374If A2¼ a2,1 and A5¼ a5,2 and A3¼ a3,2 then Class¼ c2
4. 375If A2¼ a2,2 then Class¼ c2

376Looking at the four decision rules above, we observe that attrib-
377utes A1 and A4 are not part of the model. Some immediate ques-
378tions arise based on these findings:

1. 379What does the absence of attributes A1 and A4 tell design
380engineers about their relevance to future product designs?

2. 381How long into the future will the current decision rules be
382valid? (i.e., maintain high predictive capability)

3. 383Are there any emerging attribute trends that are not repre-
384sented by the decision tree that may be useful to design
385engineers?

386To address these research questions concerning attribute rele-
387vance=irrelevance, let us first introduce several well established
388definitions of attribute relevance that exist in the literature
389[30,31].

390Definition 1. An attribute Ai is said to be relevant to a concept
391(decision rule) C if Ai appears in every Boolean formula that
392represents C and irrelevant otherwise.
393Definition 2. Ai is relevant iff there exists some attribute value
394aij and class value ci for which p(Ai¼ aij)> 0 such that
395p(Class¼ ci j Ai¼ aij)= p(Class¼ ci)
396Definition 3. Ai is relevant if each unique value varies system-
397atically with category (class) membership
398Definition 4. Ai is relevant iff there exists some aij, ci, and si for
399which p(Ai¼ aij)> 0 such that p(Class¼ ci, Si¼ si
400jAi¼ aij)= p(Class¼ ci, Si¼ si), where Si represents the set
401of all attributes not including Ai

Fig. 4 Example decision tree result for product design
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402 Definition 5. Ai is strongly relevant iff there exists some aij, ci
403 and si for which p(Ai¼ aij, Si¼ si)> 0 such that p(Class¼ ci
404 j Ai¼ aij, Si¼ si)= p(Class¼ ci j Si¼ si)

405 Based on the results from Table 1, there exists the possibility
406 that an attribute evaluation metric may omit relevant attributes in
407 the model due to inconsistencies in how attribute relevance is
408 defined [30]. For design engineers, omitting a key attribute due to
409 an irrelevance characterization could mean the subsequent failure
410 of a product as customer needs may not be fully captured. We aim
411 to minimize the inconsistencies in attribute characterization by
412 looking at the problem from a time series perspective. That is,
413 attributes that are truly relevant to a product design should consis-
414 tently show up in the predictive models through many time steps
415 and attributes that are indeed irrelevant to a product design would
416 remain absent in the predictive model over time.
417 Section 3.3AQ3 relates the concepts of attribute relevance to product
418 design where we expand on the definition of attribute relevance-
419 irrelevance to aid design engineers determine when to include or
420 exclude certain attributes for next generation product design.

421 3.3 Characterizing Attribute Irrelevance in Product
422 Design. For design engineers, determining how attributes within
423 a given data set influence future consumer purchasing decisions is
424 paramount and could mean the market success or failure of a new
425 product. The definitions of attribute relevance presented in
426 Sec. 3.2 may not capture all of the concepts relating to product
427 design. For example, in the decision tree in Fig. 4, we have deter-
428 mined that attributes A1 and A4 are not part of the decision tree
429 and are therefore considered irrelevant based on the pertaining
430 definitions of attribute relevance presented in Sec. 3.2. That is,
431 their inclusion=exclusion does not significantly influence the val-
432 ues of the class variable. Should attributes A1 and A4 therefore be
433 omitted from future product designs and if so, what consequences
434 would this have in the consumer market space?
435 To address these issues in product design, we propose several
436 subcategories of attribute irrelevance with the goal of ensuring
437 that vital attributes are not omitted from a product design simply
438 based on an irrelevance characterization.

1.439 Obsolete attribute (OA): An attribute Ai is defined as obso-
440 lete if it has been deemed irrelevant at iteration j (given time
441 periods t1,…,tn) and its inclusion=exclusion over time does
442 not systematically influence the values of a class variable.
443 The measure of systematic influence is determined by the
444 time series entropy trend of Ai. If Ai exhibits a monotonically
445 increasing entropy trend (determined by the Mann-Kendall
446 trend detection test introduced in Sec. 3.3.1), then this indi-
447 cates that attribute Ai is consistently losing predictive power
448 over time. If an attribute falls under this classification at the
449 end of a given time series, it can be omitted from the next
450 generation product designs as seen in Fig. 5.

2.451 Standard attribute (SA): An attribute Ai is defined as stand-
452 ard if it has been deemed irrelevant at iteration j (given time
453 periods t1,…,tn) and its inclusion=exclusion over time sys-
454 tematically influences the values of a class variable. As with
455 the previous definition, the measure of systematic influence
456 will be quantified based on the time series entropy trend
457 of Ai. If Ai exhibits a monotonically decreasing entropy
458 trend (determined by the Mann-Kendall trend detection test

459introduced in Sec. 3.3.1), then this indicates that attribute Ai

460is consistently gaining predictive power over time (despite
461its initial irrelevant characterization). If an attribute falls
462under this classification at the end of a given time series, it
463should be considered vital to a product design, despite its
464seemingly irrelevant characterization as seen in Fig. 5. An
465example of such an attribute would be an airbag in an auto-
466mobile. Since almost every vehicle is now equipped with an
467airbag, customers may not consider this attribute while mak-
468ing a vehicle purchase because it is assumed to be a standard
469to the vehicle. If, however, the airbag were removed from
470the vehicle design, this may significantly alter a customer’s
471purchasing decision.

3. 472Nonstandard attribute (NA): An attribute Ai is defined as
473nonstandard if it has been deemed irrelevant at iteration j
474(given time periods t1,…,tn), and its inclusion=exclusion
475does not reveal a discernible relation to the class variable.
476This is determined by the absence of a monotonically
477increasing or decreasing entropy trend as determined by the

Mann-Kendall trend detection test introduced in Sec. 3.3.1.
478Attributes that may exhibit this type of behavior in product
479design may be novel attributes that consumers may not yet
480fully be aware of or existing attributes that have variations
481within the market space. Such attributes should not be over-
482looked and may either turn out to be a short term consumer
483hype or may eventually become standard expectations. Con-
484sequently, we propose that modular components be designed
485for attributes exhibiting this type of pattern (as seen in
486Fig. 5) as these modules can be upgraded or eliminated all
487together based on future market demands.

4883.3.1 Mann-Kendall Trend Detection. To detect trends for
489each Attribute Ai that has been deemed irrelevant at iteration j, we
490employ the nonparametric Mann-Kendall statistic [32,33]. The
491Mann Kendall trend test does not provide us with the magnitude
492of the trend, if one is detected. Rather, it simply quantifies the pre-
493sence=absence of a trend which is all we need to classify each at-
494tribute within the data set. The Mann-Kendall test is based on the
495statistic S defined as [27]

S ¼
Xn�1

i¼1

Xn
j¼iþ1

sgnðxj � xiÞ (10)

496Here, n represents the total number of time series data points, xj
497represents the data point one time step ahead and xi represents the
498current data point

sgn ¼
1 if ðxj � xiÞ > 0

0 if ðxj � xiÞ ¼ 0

�1 if ðxj � xiÞ < 0

8<
: (11)

Table 1 Attribute characterization based on attribute definition

Attribute D 1 D 2 D 3 D 4 D 5

Attribute 1 — x — x —
Attribute 2 x x — x —
Attribute 3 — x — x x
Attribute 4 — x — x —
Attribute 5 x x — x x

Fig. 5 Product design implications of attribute irrelevance
classification
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499 The corresponding Kendall’s Tau is related to the S statistic as
500 follows:

s ¼ S
1

2
nðn� 1Þ

(12)

501 The null hypothesis is that there is no trend within the data. There-
502 fore, if the resulting p-value is less than the significance level (a
503 ¼ 0.05), we reject the null hypothesis and assume a positive (posi-
504 tive s) or negative (negative s) trend. For more complex trend pat-
505 terns that may also exhibit seasonality, the seasonal Kendall test
506 can be employed [34].
507 The characterization of attribute irrelevance (as either obsolete,
508 nonstandard, or standard) is determined by looking beyond a sin-
509 gle data set and generating models based on multiple time steps
510 that quantify attribute relevance=irrelevance over time. Given a
511 time series data set t1 to tn as illustrated in Fig. 6, we analyze each
512 data set from t1 to tn and based on the gain ratio relevance defini-
513 tion, characterize the test attribute Ai as either relevant or irrele-
514 vant at iteration j. If an attribute is deemed irrelevant, we then
515 employ the Mann-Kendall test to analyze the histories of each at-
516 tribute entropy value from t1 to tn. An attribute value exhibiting
517 increasing predictive power (lower entropy) over time would be
518 deemed potentially useful in future iterations. The resulting char-
519 acterization of the predictive model generated in time period tnþ1

520 will therefore assign an attribute irrelevance characterization
521 based on the trends of the historical entropy data.
522 Each of the attribute irrelevance definitions will be represented
523 as a binary variable; 1 implies that an attribute is characterized as
524 either Obsolete, Nonstandard, or Standard at a given iteration j
525 and 0, otherwise. At each iteration, an attribute deemed irrelevant
526 can only assume one of the three possible irrelevant characteriza-
527 tions. The final classification of an irrelevant attribute is assigned
528 after the final iteration m. The final iteration m is reached after a
529 homogeneous class distribution is attained for one of the subsets
530 of the data (a leaf node in the decision tree structure). A variable
531 is defined for each irrelevant characterization (OAt¼1,…,n,
532 NSt¼1,…,n, and SAt¼1,…,n) and its value, determined by summing
533 across all iterations (j¼ 1,…,m) as described below

OAt¼1;:::;n ¼
Xm
j¼1

OAj � Tj
T

(13)

NSt¼1;:::;n ¼
Xm
j¼1

NSj � Tj
T

(14)

SAt¼1;:::;n ¼
Xm
j¼1

SAj � Tj
T

(15)

534Here, Tj represents the number of data instances used to calculate
535the gain ratio statistics at iteration j and T represents the total
536number of data instances in the entire data set.
537At iteration j, each attribute characterization is weighted based
538on the proportion (Tj=T) of instances. Therefore, the initial charac-
539terization at iteration 1 (containing the entire data set) carries the
540most weight due to the presence of all instances of the data. The
541classification of an attribute at time step tnþ1 is determined by
542selecting the irrelevant characterization with the highest variable
543value ((OAt¼1,…,n, NSt¼1,…,n, and SAt¼1,…,n)). Given time steps
544t1,…tn, the pseudo code for the irrelevant attribute characteriza-
545tion for attribute Ai is as follows:

1. 546Start: iteration j¼ 1
2. 547If predicted Gain Ratio of Attribute Ai is not the highest,

548Attribute Ai is considered irrelevant
3. 549Employ Mann Kendall (MK) trend test for Attribute Ai

4. 550If MK s is negative (with p-value< alpha), irrelevant
551classification¼ Standard

5. 552Else If MK s is positive (with p-value< alpha), irrelevant
553classification¼Obsolete

6. 554Else If MK s is positive=negative (with p-value< alpha),
555irrelevant classification¼Nonstandard

7. 556While data set/subset does not contain a homogeneous
557class

8. 558Split the data set into subsets based on the number of mutu-
559ally exclusive values of the attribute with the highest Gain
560Ratio from Step 2

9. 561j¼ jþ1 and revert to Step 2 for each data subset
10. 562End Tree, Classify Irrelevant Attribute Ai based on highest

563variable value ((OAt¼1,…,n, NSt¼1,…,n, SAt¼1,…,n))

5643.3.2 Product Concept Demand Modeling. Once the time se-
565ries decision tree model has been generated and irrelevant attrib-
566utes characterized, a fundamental question that still remains is
567how to estimate the demand for the resulting product concepts
568(unique attribute combinations). If we take for example the result-
569ing product concept fHard Drive¼ 16 GB, Interface¼ Slider,
570Price¼$179g in the left branch of Fig. 9, enterprise decision mak-
571ers would want to know the overall market demand for this partic-
572ular product so that potential product launch decisions can be
573made. With a traditional decision tree model (using a static data
574set for model generation), the demand for this particular product
575concept will be a subset of the original training data set used to
576generate the model (Tm=T, where Tm denotes the number of sup-
577porting data instances after m iterations=data partitions) [3]. This
578is analogous to a product’s choice share (discrete choice analysis
579case) which has been used extensively by researchers in the design
580community to estimate product demand [5,6,8]. Since the pro-
581posed trend mining algorithm is making predictions about future
582product designs, the demand for a resulting product concept is
583estimated based on the time series trend of the supporting instan-
584ces Tm using the Holt-Winters forecasting approach presented in
585Sec. 3.1.1. This will enable to design engineers to anticipate future
586product demand for the predicted trend mining model.

5874 Product Design Example

5884.1 Cell Phone Design Study. To validate the proposed
589trend mining methodology, we test several well known data sets
590and compare the results of the proposed preference trend mining
591algorithm with traditional demand modeling techniques. For con-
592ciseness, we will present a detailed explanation of the cell phone
593case study, while only providing the results for the remaining data
594sets used in our evaluation. The original cell phone case study was
595based on a University of Illinois online survey of cell phone attrib-
596ute preferences originally created using the UIUC webtools

Fig. 6 Attribute (Ai) characterization (relevant and irrelevant
categorization) from iteration 1 to iteration m (each iteration
contains a total of n time series data sets).
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597 interface [3,4]. To accommodate the time series nature of the pro-
598 posed methodology, the product design scenario is presented as
599 follows:
600 Enterprise decision makers within a cell phone company are
601 looking to launch their next generation cell phone early in the first
602 quarter of 2010. To guide their product design decisions, 12 data
603 sets (representing monthly customer preference data for fiscal
604 year 2009) are available through online customer feedback. Based
605 on the time series data, design engineers want to integrate cus-
606 tomer preferences directly into the next generation product design.
607 The goal of the new cell phone project is for the functionality of
608 the next generation cell phone design to anticipate the preferences
609 of the customers at the time of product launch; preferences that
610 are constantly evolving within the market space.
611 For each monthly data set, there are six product attributes and
612 one dependent variable. There are a total of 12,000 instances (cus-
613 tomer response) for the entire 12 month time period, partitioned
614 into 1000 instances of customer feedback per month. The attrib-
615 utes, along with their corresponding values are as follows:

616 Hard Drive: f8 GB, 16 GB, 32 GBg
617 Talk Time: f3 h, 5 h, 7 hg
618 Camera: f2.0 MP, 3.1 MP, 5.0 MPg
619 Interface: fFlip Phone, Slider Phone, Touch Screen Phoneg
620 Connectivity: fBluetooth, Wifig
621 2G Processor: fLimited, Capableg
622 The class variable is the price category of the given cell phone
623 design within the time series data: Price: f$99, $149, $179, $199,
624 $249g. The class variable for product design problems can be set
625 by enterprise decision makers regarding the overall enterprise
626 objective. For next generation product design, enterprise decision
627 makers may be interested in quantifying the price customers will
628 be willing to pay, given a combination of product attributes. Other
629 class variables in product design could be product brands, binary
630 purchasing decisions, and environmental impact metrics, to name
631 but a few.
632 The structure of the data is similar to that presented in Fig. 2
633 with the attribute names indicated by the first row of each column
634 (except for the last column which represents the class variable,
635 price). In the time series data, the distribution of the attributes as
636 well as the class values associated with each attribute value
637 changes over time.
638 Up until now, demand modeling in product design had focused
639 on utilizing the most recent data set to generate predictive models
640 about future customer behavior. Our research findings presented

641in Sec. 5 reveal that such techniques may not fully capture emerg-
642ing consumer preference trends and may ultimately mislead future
643product design decisions.

6445 Results and Discussion

645The results of the cell phone case study introduced in Sec. 4
646provide valuable insight into the challenges of designing products
647for volatile consumer markets. We begin by presenting the time
648series gain ratio statistics for each attribute (at iteration 1) shown
649in Fig. 7. In the proposed trend mining methodology, we want to
650take into consideration all possible scenarios for the attribute gain
651ratio statistics over time; that is, we want to capture attributes that
652display a monotonically increasing or decreasing trend, a seasonal
653trend or no trend at all which we model using the Holt-Winters
654technique presented in Sec. 3.1. Based on the level of seasonality
655or trend within the data, the one time step ahead predictions (pe-
656riod 13) are modeled. At period 12 in Fig. 7, we observe that the
657Interface attribute has a higher gain ratio than the Hard Drive.
658However, based on the emerging trends of these two attributes, it
659can be observed that the Hard Drive attribute will have a higher
660gain ratio in future time periods, which the Holt-Winters model
661predicts in time period 13.
662New design insights obtained by preference trend mining. In
663order to understand the product design implications of these find-
664ings, let us take a look at the predictive model results that are gen-
665erated using the most recent data set (period 12). In Fig. 8, the
666only relevant attributes to the price variable are: Interface, Con-
667nectivity and Camera, with the associated decision rules acquired
668by traversing down the appropriate paths of the decision tree. In
669contrast, when the proposed time series preference trend mining
670algorithm is employed using the data from periods 1 to 12, there

Fig. 7 Time series gain rRatio at iteration 1 (Period 1–12 with Period 13 predicted by employing
the Holt-Winters predictive model)

Fig. 8 Decision tree model using Period 12, 2009 data set only
for model generation (results attained using Weka 3.6.1 [35])
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671 are noticeable differences in the resulting attributes that are con-
672 sidered relevant (Fig. 9). From the resulting decision trees in Figs.
673 8 and 9, we observe that the common attributes between the two
674 models are the interface and connectivity attributes. However,
675 even with the interface attribute being common between the two
676 models, we observe that the Flip Phone interface design found in
677 Fig. 8 is not included in Fig. 9, providing engineers with the
678 knowledge that this particular attribute value is not desired in
679 future time periods. Given the differences between these two deci-
680 sion tree structures, entirely different product design decisions
681 may result to address the needs of the market.
682 Furthermore, for those attributes that are considered irrelevant
683 to the classification of price (and are therefore omitted from the
684 decision tree model in Figs. 8 and 9), design engineers have no
685 direct way of deciding whether these attributes should be omitted
686 from all future cell phone designs. As a reminder, an irrelevant at-
687 tribute simply means that at iteration j, an attribute does not have
688 the highest gain ratio, not necessarily that it does not have any
689 predictive power whatsoever, as illustrated in Fig. 7. At iteration
690 1, since the PTM algorithm predicts that the Hard Drive attribute
691 will have the highest gain ratio at time period 13 (see Fig. 7), we
692 characterize the remaining attributes as either obsolete, nonstan-
693 dard, or standard. The entropy histories along with the results
694 from the Mann Kendall trend test in Fig. 10 indicate that the 2G
695 Processor is characterized as obsolete (positive s values and p
696 value within tolerance limit), while the remaining attributes are
697 characterized as Nonstandard (due to p values exceeding the toler-
698 ance limit). After subsequent iterations of the PTM algorithm, the

699attributes that do not show up in the tree are therefore classified as
700shown in Fig. 9, with the accompanying demand (# supporting
701predicted instances) accompanying each branch of the tree.

7025.1 Model Validation. In addition to the structural differen-
703ces of the resulting decision tree models, there are also noticeable
704differences in the predictive accuracies. Figure 11 presents the
705predictive accuracy results between the proposed PTM model and
706the traditional DT classification model. The predictive accuracies
707are calculated using 12 monthly data sets from 2010. For each
708instance in a given monthly data set, the attribute combinations
709resulting in a class value are tested against the decision tree pre-
710dictions by traversing down the path of the decision trees in
711Figs. 8 and 9. If the class value predicted by the decision tree
712model matches the actual class value in the monthly data set, a
713value is incremented in the correct predictions category; other-
714wise, a value is incremented in the incorrect predictions category.
715The summary predictive accuracies in Fig. 11 reveal that the PTM
716model attains a higher predictive accuracy for many of the time
717periods, compared to the DT model.
718To obtain a statistically valid conclusion on the predictive accu-
719racies of the two models, we employ the Wilcoxon signed rank
720test which has been proposed in the data mining=machine learning
721literature as a suitable approach for comparing two models against
722multiple data sets [36]. The null hypothesis of the test is that the
723median difference between the two model accuracies is zero. The
724alternate hypothesis is that the accuracy of the DT model is less
725than that of the PTM model. Using a significance level of
726a¼ 0.05, the null hypothesis (data in Fig. 11) is rejected with a p
727value of 0.0224, providing statistical evidence that the accuracy of
728the PTM algorithm exceeds that of the DT for the Cell Phone data
729set. We see that the predictive accuracy of both models diminishes
730over time with slightly above 50% in period 12. The PTM accu-
731racy may be enhanced in future time periods by changing the k
732value of the k-ahead time predictions from 1 (in the cell phone
733model) to the specific future period of interest (1–12).

Fig. 10 Time Series Attribute Entropy values for irrelevance characterization

Fig. 9 Trend mining model using Periods 1–12, 2009 data for
model generation (results attained using ESOL developed Java
Based PTM code compatible with Weka) [35])

Fig. 11 Comparison of predictive accuracies between the PTM
and DT models using 12 unseen time stamped data from 2010)
[35])
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734 Additional data sets from the UC Irvine machine learning reposi-
735 tory were employed to further validate the two models. The UC
736 Irvine machine learning repository is a collection of databases that
737 have been used extensively in the machine learning community for
738 empirical analysis and validation of data mining=machine learning
739 algorithms [37]. To accommodate the time series nature of the pro-
740 posed methodology, additional time series data for each UC Irvine
741 data set were generated with varying data set conditions (attribute
742 space, number of instances, number of time periods, etc.). The time
743 series data sets were then tested against the two models for model
744 accuracy, with the results presented in Table 2. The results from
745 Table 2 emphasize the robustness of the proposed PTM algorithm
746 in handling different types of time series data while still maintain-
747 ing greater predictive accuracies, compared with the traditional de-
748 cision tree model. Due to the variation in data set structure, size,
749 etc., it is rare for an algorithm to outperform on every metric of
750 performance [38]. Therefore, the proposed PTM model is well
751 suited for data sets that exhibit monotonically increasing=decreas-
752 ing or seasonal trends similar to the test data sets presented. In sce-
753 narios where no discernable trends exist in the data set, the PTM
754 algorithm was found to perform comparable to traditional demand
755 modeling techniques which should not be surprising, given the
756 underlying formulation of the proposed PTM algorithm.

757 6 Conclusion and Path Forward

758 The major contribution of this research is to propose a machine
759 learning model that captures emerging customer preference trends
760 within the market space. Using time series customer preference
761 data, we employ a time series exponential smoothing technique
762 that is then used to forecast future attribute trend patterns and gen-
763 erate a demand model that reflects emerging product preferences
764 over time. The Mann Kendall statistical trend detection technique
765 is then used to test for attribute trends over time. An attribute
766 irrelevance characterization technique is also introduced to serve
767 as a guide for design engineers trying to determine how the classi-
768 fied attributes are deemed irrelevant by the predictive model. The
769 insights gained from the preference trend mining model will ena-
770 ble engineers to anticipate future product designs by more
771 adequately satisfying customer needs. Future work in customer
772 preference trend mining will include expanding the current
773 approach to handle the continuous attribute and class domain.
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784 Nomenclature
785 PTM ¼ preference trend mining
786 DT ¼ decision tree

787OA ¼ obsolete attribute classification
788SA ¼ standard attribute classification
789NS ¼ nonstandard attribute classification
790Tj ¼ subset of the training data T that contains one of the mutu-
791ally exclusive outcomes of an attribute
792t ¼ A given instance in time
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