Investigating the Impact of Interactive Immersive Virtual Reality Environments in Enhancing Task Performance in Online Engineering Design Activities

Ajay Bharathi, Graduate Student, Penn State University
Conrad S. Tucker, Assistant Professor of Engineering Design and Industrial Engineering, Penn State University

{abg167, ctucker4}@psu.edu
Presentation Overview

- INTRODUCTION
- RESEARCH MOTIVATION
- LITERATURE
- RESEARCH OBJECTIVE
- METHODOLOGY
- CASE STUDY
- CONCLUSIONS
- FUTURE WORK
Engineers employ *virtual* and *tactile* approaches during learning activities.

Virtual Learning (e.g., CAD)

Tactile Learning (e.g., Product Dissection)

McKenna et al, 2008; Lewis and Simpson (2009); Grantham et al. 2010; Moore-Russo et al (2010); Kremer et al., 2013; Tucker et al., 2014; Toh et al. (2014)
Virtual Design in Industry
What is Virtual Reality?

“Real-time graphical simulation with which the user interacts via some form of analog control, within a spatial frame of reference and with user control of the viewpoint’s motion and view direction” (Moshell and Hughes, 2002)
Virtual Reality Literature

• 3D virtual worlds are more effective than text-based or 2D environments and can lead to better student engagement in learning activities (*Tashiro and Dunlap, 2007*)

• VR enables students to visit virtual environments and interact with objects and space in real time, which overcomes the traditional distance, time, or safety constraints (*Çaliskan, 2011; Ramasundaram et al., 2005*)
Types of Virtual Reality Paradigms

Two major types of Virtual Reality (VR) Paradigms

- **Immersive VR System**
- **Non-immersive VR System**
Research Objective

Hypothesis: There exists a statistically significant difference in task completion times between students using immersive VR and non-immersive VR system.
Methodology

Classify Students into Two Groups Randomly

Group 1: Immersive VR system
- Complete pre-experiment questionnaire
- Perform activity and record completion time
- Complete post-experiment questionnaire

Group 2: Non-Immersive VR system
- Complete pre-experiment questionnaire
- Perform activity and record completion time
- Complete post-experiment questionnaire
Study Sample

• 54 undergraduate students

• Immersive VR Group (29 students)
 – Head-mounted displays (Oculus Rift®) + game joystick

• Non-Immersive VR group (25 students)
 – Computer Screen + game joystick

• Activity Performed: Product Functional Assembly of Coffeemaker
Spatial Aspects of Immersive VR

Yaw, Pitch, Roll

Case Study
Immersive VR Demo
Click to Play
Experimental Setup

Random Classification of Students

Non-Immersive VR Group

Immersive VR Group

Product Functional Assembly in the Virtual Environment

Record Task Completion Time and Perform Statistical Analysis

Case Study

http://www.engr.psu.edu/datalab/
Measure Task Completion Time

• Task completion time has been used as a performance metric to evaluate the effectiveness of VR technology in research (Hwang et al., 2006); (Newmark et al., 2007); (Jennett et al., 2008); (Lendvay et al., 2013)
Test for Normality

Samples do not follow normal distribution and sample sizes are not significantly large enough to assume normality – Select a Non-Parametric test (Mann-Whitney U Test)
Difference in Task Completion Times

<table>
<thead>
<tr>
<th>Group</th>
<th>N (Sample Size)</th>
<th>Median Completion Time (in Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: Immersive VR</td>
<td>29</td>
<td>23.21</td>
</tr>
<tr>
<td>Group 2: Non-Immersive VR</td>
<td>25</td>
<td>49.04</td>
</tr>
</tbody>
</table>

Mann-Whitney U Test.
(p-value = 0.0001)

Immersive VR group students’ task completion time significantly less than non-immersive VR group students
Investigate Why Differences Exist

• Three other hypotheses were tested to explore the reasons for the observed difference in performance outcomes between the two groups of students:
 – Gender
 – Prior level of joystick experience
 – Class Standing
Hypothesis: Gender Differences

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Levels</th>
<th>Statistical Test</th>
<th>P value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Mann-Whitney U Test</td>
<td>0.0002</td>
<td>Immersive VR students performed better than non-immersive VR students</td>
</tr>
</tbody>
</table>

![Boxplot of Male - Immersive VR Group, Male - Non-Immersive VR Group](http://www.engr.psu.edu/datalab/)
Hypothesis: Joystick Experience Level

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Levels</th>
<th>Statistical Test</th>
<th>P value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Level of Joystick Experience</td>
<td>>5 Years</td>
<td>Mann-Whitney U Test</td>
<td>0.0066</td>
<td>Immersive VR students performed better than non-immersive VR students</td>
</tr>
</tbody>
</table>

Boxplot of >5 years - Immersive VR, >5 years - Non-Immersive VR

Task Completion Time (in seconds)

Case Study

http://www.engr.psu.edu/datalab/
Hypothesis: Class Standing

<table>
<thead>
<tr>
<th>Class Standing</th>
<th>Levels</th>
<th>Statistical test</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td>Mann-Whitney U test</td>
<td>Immersive VR students performed better than non-immersive VR students*</td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td>Mann-Whitney U test</td>
<td>Immersive VR students performed identical to non-immersive VR students*</td>
</tr>
<tr>
<td>Junior</td>
<td></td>
<td>Mann-Whitney U test</td>
<td>Immersive VR students performed better than non-immersive VR students*</td>
</tr>
<tr>
<td>Senior</td>
<td></td>
<td>Mann-Whitney U test</td>
<td>Immersive VR students performed identical to non-immersive VR students*</td>
</tr>
</tbody>
</table>

* - Tests performed using small sample sizes – results need further validation
Summary of Students’ Feedback

S1: I find it useful to be able to virtually manipulate objects when I am doing engineering design

<table>
<thead>
<tr>
<th>Response</th>
<th>Immersive VR System</th>
<th>Non-Immersive VR System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>60%</td>
<td>34%</td>
</tr>
<tr>
<td>Agree</td>
<td>52%</td>
<td>24%</td>
</tr>
<tr>
<td>Neither Agree</td>
<td>14%</td>
<td>8%</td>
</tr>
<tr>
<td>Disagree</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

S2: I find it easier learning when I am virtually manipulating objects

<table>
<thead>
<tr>
<th>Response</th>
<th>Immersive VR System</th>
<th>Non-Immersive VR System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>52%</td>
<td>41%</td>
</tr>
<tr>
<td>Agree</td>
<td>41%</td>
<td>36%</td>
</tr>
<tr>
<td>Neither Agree</td>
<td>24%</td>
<td>28%</td>
</tr>
<tr>
<td>Disagree</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>4%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Summary of Students’ Feedback

- **Statement 3:** *Virtual reality technology such as Oculus Rift® can be useful as a classroom tool*
- **Statement 4:** *I will be interested in enrolling in a class that uses virtual reality technology such as Oculus Rift®*
Virtual Reality in Education

Product Design

Medicine

Flight Training

Chemistry

Physics

Astronomy
Data Mining Driven Design

Environment Data

Individual’s Data

http://www.engr.psu.edu/datalab/
Conclusion and Future Work

• Performance outcomes of the students using immersive VR systems are significantly better than students using non-immersive VR systems

• Future work
 – Integration of 3D interactive technology with immersive visual displays
 – Effectiveness of immersive VR systems among users of different gender and age group
 – Extension of immersive VR systems to MOOCs
Acknowledgement & References

Contributors:
-Ajay Karthic Gopinath Bharathi (The Pennsylvania State University)
-Conrad Tucker (The Pennsylvania State University)

Acknowledgement:
-Penn State Center for Online Innovation and Learning (COIL) Grant
-Bryan Dickens, Steven Sellers, Gabe Harms, Owen Shartle
(The Pennsylvania State University)

References
Questions

[Image of a person using a VR headset with labels for Yaw, Pitch, and Roll]

Research Extensions

http://www.engr.psu.edu/datalab/