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1
29

30 With design teams becoming more distributed, the sharing and interpreting of complex
data about design concepts/prototypes and environments have become increasingly chal-
lenging. The size and quality of data that can be captured and shared directly affects the
ability of receivers of that data to collaborate and provide meaningful feedback. To miti-
gate these challenges, the authors of this work propose the real-time translation of physi-
cal objects into an immersive virtual reality environment using readily available red,
green, blue, and depth (RGB-D) sensing systems and standard networking connections.
The emergence of commercial, off-the-shelf RGB-D sensing systems, such as the Micro-
soft Kinect, has enabled the rapid 3D reconstruction of physical environments. The
authors present a method that employs 3D mesh reconstruction algorithms and real-time
rendering techniques to capture physical objects in the real world and represent their 3D
reconstruction in an immersive virtual reality environment with which the user can then
interact. Providing these features allows distributed design teams to share and interpret
complex 3D data in a natural manner. The method reduces the processing requirements
of the data capture system while enabling it to be portable. The method also provides an
immersive environment in which designers can view and interpret the data remotely. A
case study involving a commodity RGB-D sensor and multiple computers connected
through standard TCP internet connections is presented to demonstrate the viability of
the proposed method. [DOI: 10.1115/1.4035001]

31 1 Introduction

32 The availability of low-cost computing and networking infra-
33 structure is enabling design teams to collaborate in a distributed
34 manner. The value of interpreting complex data about design con-
35 cepts/prototypes and environments is highly dependent on the size
36 and quality of the data being shared. The emergence of affordable
37 immersive virtual reality hardware, such as the Oculus Rift [1],
38 HTC Vive [2], and the Playstation VR [3], is transforming the
39 manner in which distributed teams are able to interact with virtual
40 concepts/prototypes and environments. For example, a truly real-
41 istic virtual environment may be used to expedite training proc-
42 esses [4,5], allow immersive remote observation of job sites or
43 educational events [6], or reduce travel costs for design reviews.
44 Using a system that provides the above features allows design
45 teams to work more efficiently and productively while remaining
46 distributed [7].
47 The availability of off-the-shelf color and depth, RGB-D, sens-
48 ing systems has opened many opportunities for technological
49 advancement into 3D rendering and reconstruction [8]. The
50 democratization of these technologies is enabling everyday indi-
51 viduals to process large amounts of data into usable 3D models
52 and virtual representations. RGB-D sensor systems are commonly
53 used to scan real-world objects and output a 3D model that can
54 then be imported and viewed or edited in traditional CAD software
55 [9–11]. RGB-D sensing systems have also been used to scan large
56 environments and generate virtual representations in interactive

573D environments. These large scans required the original software
58for the sensor systems to be expanded with new algorithms that
59allow the sensors to move around the environment being scanned
60[12,13]. One of the major limitations of this kind of algorithm is
61the lack of interaction and visibility in real time. Whelan et al.
62[13] captured data sets using a Kinect sensor attached to a laptop
63computer. These recorded data sets were later processed by their
64algorithm on a separate machine. This prevents the user from
65interacting with, moving around in, or fully visualizing the recon-
66struction as it is being created.
67Incorporating color data into the virtual reconstruction allows
68the receivers of the information to gain a deeper understanding of
69the environment of interest. This is due to the receivers of the
70information having access to a more natural representation of the
71space. Research has shown that having this natural representation
72allows the user to gather information similarly to viewing the
73physical environment [14]. The Kinect Fusion Explorer-WPF C#
74Sample, which is heavily based on the work of Newcombe et al.
75[15], is able to incorporate color data into a real-time reconstruc-
76tion [15]. However, their method lacks the ability to share the
77reconstruction with distributed design teams or interact with the
78reconstruction. Turner et al. also incorporated color data into their
79algorithm. However, the resulting reconstruction did not occur at
80the same time the data were being captured, and also had limited
81detail for small objects in the environment [16].
82This paper presents a method that enables the real-time creation
83of the virtual representation of physical environments with which
84the user can subsequently interact. In order to achieve this, both
85the depth and color information from an RGB-D sensor are
86dynamically rendered in a virtual environment that is remotely
87connected to the sensor. The proposed method enables the sensing
88system to be independent of the computer that is rendering the vir-
89tual environment. The proposed method provides the ability to
90generate realistic virtual representations of real-world objects and
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91 locations and allows users to view this process in real time in a
92 virtual reality environment.
93 The remaining sections of this paper are organized as follows:
94 Section 2 presents literature closely related to this work. The
95 method for dynamically creating interactive, virtual representa-
96 tions of physical environments is presented in Sec. 3, while Sec. 4
97 presents a case study that demonstrates the feasibility of the pro-
98 posed method. Section 5 presents the results of the case study, and
99 Sec. 6 concludes the paper and outlines areas for future
100 expansion.

101 2 Literature Review

102 2.1 Digital Representation of Physical Artifacts Through
103 3D Scanning. Advancements in commercial, off-the-shelf tech-
104 nologies have enabled the digital representation of physical arti-
105 facts in a timely and efficient manner [17]. For example,
106 Newcombe et al. [18] developed the KinectFusion library to allow
107 commodity RGB-D sensors to construct accurate virtual represen-
108 tations of the real world. The group focused on scanning a fixed
109 area, with either a static sensor or a moving sensor. The resulting
110 system is able to produce high-fidelity virtual representations of
111 the scanned area and incorporate color data into the representa-
112 tion. However, the system only integrates data into a predefined
113 area around the position where the sensor started scanning. This
114 means that the area to scan is predefined and limited in size to the
115 range of the sensor. This can be seen in the Kinect Fusion
116 Explorer-WPF C# Sample [15] that was used as a basis for a por-
117 tion of the method proposed in this paper. The Kinect Fusion
118 Explorer application has a maximum scanning limit of �8m
119 cube. Anything outside of the cube will not be included in the
120 reconstruction. This was due to how the application handles mem-
121 ory and the incorporation of new data. If the reconstruction vol-
122 ume is made any bigger, there are problems storing and
123 processing all of the data in the reconstruction.
124 Roth and Vona [12] and Whelan et al. [13] sought to expand
125 the range of the KinectFusion library [18] by altering the manage-
126 ment of data and incorporation of new frames. These teams cre-
127 ated algorithms in which the volume of space being reconstructed
128 is moved as the RGB-D sensor is moved in the real world. This
129 allows for space that was outside of the reconstruction volume
130 when it was initialized to be considered for reconstruction as the
131 sensor moves. In essence, this allows for the scanning of much
132 larger environments, while maintaining a small working set of the
133 reconstruction for data integration. The limitation for these sys-
134 tems is that prerecorded data sets are being used as the input to
135 the developed algorithms. This prevents the real-time representa-
136 tion of the reconstruction to be shown in the VR environment.
137 These systems also only incorporate the depth image data, and not
138 the RGB images. The result is a mesh representation of the envi-
139 ronment without any color data incorporated.
140 Hamzeh and Elnagar [19] used a commodity RGB-D sensor to
141 create an algorithm that generates floor maps of the area being
142 scanned to use with robot navigation and planning operations in
143 environments where it is dangerous or difficult to send people in
144 to produce a map. Hamzeh et al. did not incorporate color, or
145 build a complete 3D representation of the environment being
146 scanned. Turner et al. [16] built an algorithm to model and texture
147 large scanned environments. However, their method lacks the
148 real-time rendering and interaction component that has been
149 shown to result in a deeper conceptual understanding of an envi-
150 ronment [14]. The algorithm proposed by Turner et al. runs on a
151 data set that was prerecorded and then processed by the developed
152 algorithm. The goal was to represent architectural features by gen-
153 erating a floor plan from the scanned data and extruding a 3D
154 building model from them. The result is a more structured 3D
155 model, but lacks the features and detail of the proposed method.
156 Also, the algorithm used the RGB images captured by the sensor
157 to texture the resulting model, but did not incorporate the RGB

158data into the point cloud generated from the depth data. Incorpo-
159rating the RGB data directly into the point cloud, as is proposed in
160this paper, gives each vertex that is being rendered a color. This
161allows the resulting colored mesh from the proposed method to
162appear accurate under various lighting schemes and from differing
163perspectives in the VR environment. AQ5
164Some groups, like Roth and Vona [12], Whelan et al. [13], and
165Turner et al. [16], sought to overcome the limitation of the size of
166the volume being scanned by building an algorithm that allowed
167the volume being scanned to move while the RGB-D sensor
168moves. This allows an increase in size of the volume being
169scanned, but requires that the data capture system is portable, lim-
170iting the amount of processing power that is available to the algo-
171rithm in real time. Recorded data sets are captured using a sensor
172attached to a computer and later processed by the developed algo-
173rithm to produce mesh results. Using this method, the same qual-
174ity of scans is achieved, but the real-time reconstruction of
175Newcombe et al. [18] and the Kinect Fusion Explorer example
176[15] is lost. Turner et al. [16] developed an algorithm that integra-
177tes the color data that are being captured by the RGB-D sensor
178into their textured 3D reconstruction, which was something lack-
179ing in Roth and Vona [12] algorithm and the algorithm of Whelan
180et al. [13]. Others, like Hamzeh and Elnagar [19], were only
181focused on building a floor plan rather than a full 3D reconstruc-
182tion of the space. This greatly lowered the processing power
183requirement, but resulted in a much simpler and less accurate rep-
184resentation of the space. Hamzeh and Elnagar [19] did incorporate
185a networking component into their algorithm that allowed the con-
186structed maps and the video feed to be sent back to a remote user
187who was tele-operating the robot to which their sensor was
188attached. While this improved the usability of the system, the
189developed algorithm did not send the complete RGB-D data set,
190and only sent a simplified reconstruction after processing.
191The proposed method improves upon existing systems by pro-
192viding a system that allows the receiver of information to view
193and interact with the reconstruction as it is being built. The color
194data from the sensor system are also incorporated into the recon-
195struction to provide a level of realism to the resulting virtual envi-
196ronment that is missing from existing systems [12,13,16]. The
197process also allows for the separation of the sensor system from
198the machine that processes the data, meaning that the RGB and
199depth data can be streamed from a remote location to the process-
200ing machine in real time, unlike the data recording process used in
201existing systems [12,13,16]. The proposed method also incorpo-
202rates a mesh subdivision algorithm to limit the size of the virtual
203objects that will be rendered in the immersive environment. This
204subdivision keeps individual virtual objects under a specified
205number of vertices to meet memory and rendering requirements.
206The proposed method is divided into three components that are
207networked together to allow data to pass between them across
208standard TCP connections. This allows the processing to be dis-
209tributed across as many as three computers, increasing efficiency
210and improving the flexibility of the system. The three components
211are separated to focus on the capturing and formatting of data, the
212processing and integration of data into the virtual reconstruction,
213and the rendering of the result of the virtual reconstruction. Hav-
214ing the three components share data over a network allows the
215RGB-D sensor and computer running the capturing component to
216be in a remote location, sending data back to a machine running
217the processing and integration component, which can then send
218the reconstruction result to a remote user running the rendering
219component to view the result.
220Table 1 shows related systems and the features they support.
221The green entries show features that the corresponding system
222supports. Table 1 reveals that, while others have implemented a
223subset of the features we are providing, to the best of our knowl-
224edge, none has achieved them in a combined manner. The authors
225of this paper present a method that allows for the reconstruction
226of an accurate colored 3D representation of a physical space. A
227remote user can view and interact with this reconstruction in real
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228 time, due to the distribution of data capture, data processing, and
229 rendering into separate network-enabled components. The result-
230 ing reconstruction is also rendered in a modern VR environment
231 that allows for a more complex representation, including physics,
232 VR hardware integration, and the ability of the user to interact
233 with the virtual reconstruction.

234 2.2 Virtual Reality Environments. Two of the major Virtual
235 Reality environments are the Unreal Engine [5] and Unity [4].
236 These are both video game engines that aim to allow users to
237 design and build 3D applications. Both of these systems have
238 been adding support for VR hardware to allow for more immer-
239 sive experiences. The companies backing both engines have
240 recently announced support for using the entirety of their editor in
241 a VR system similar to what is shown in Fig. 1.
242 A VR environment is necessary to handle the rendering and
243 interaction components of the proposed system. Once data
244 describing the environment of interest have been captured and
245 processed, they need to be rendered in a form that users can then
246 view and interpret. The VR environment is also responsible for
247 accepting inputs from the user and responding to them. These
248 inputs can include signals from a keyboard and/or mouse, move-
249 ment of a tracked device, like a controller or VR system, or even
250 speech input. These inputs are then translated into a form of inter-
251 action with the virtual world. The combination of rendering and

252interaction allows the VR environment to provide a high-quality
253immersive experience for the user.
254While both of the VR environments mentioned above have
255these capabilities, Unity [4] provides direct support for VR sys-
256tems and also supports programming in the same language as the
257processing library the authors are using. Having direct support for
258VR systems allows the results to be easily displayed on a number
259of VR systems and standard 2D display system. Direct support

Table 1 Literature review of supported features, compared to what is being proposed in this work (Lesniak et al. 2016)AQ6

Fig. 1 Head mounted virtual reality display
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260 also improves the performance of the VR environment by
261 optimizing the rendering process for the VR system that is being
262 used. Unity [4] also has the capability to create applications for a
263 variety of target platforms, including Windows, OS X, and gam-
264 ing consoles. This allows the method to accommodate more
265 design teams and target platforms. This makes Unity [4] a strong
266 choice for the VR environment used to display the resulting vir-
267 tual representation. Due to the distributed nature of the proposed
268 method, the VR environment is interchangeable to suit the needs
269 of the user. As long as the chosen VR environment can read and
270 process data from a TCP connection, it can be used to display the
271 results of the authors’ algorithm.

272 3 Method

273 The method presented in this paper allows for the distribution
274 of the process to construct a 3D mesh of a physical location
275 and visualize it in a VR system with multiple computers in
276 different locations. This method allows for distributed teams and
277 remote experts to collaborate in a more natural manner,
278 increasing efficiency and the ability to share information. Figure 2
279 shows the three components of the method. The component to
280 capture and format the data from the sensor is shown in the
281 box labeled component 1. The RGB-D sensor and Algorithm 1 are
282 connected to this component. The component to process and
283 integrate the data is shown in the box labeled component 2. Algo-
284 rithm 2 is connected to this component. The component to render
285 the result is shown in the box labeled component 3. This is the
286 component to which the VR system is connected. The individual
287 steps in the method are discussed in detail in the following
288 sections.AQ7

289 Algorithm 1: Capturing and Formatting Sensor Data
290 Input: C-> RGB image as byte[]
291 D-> Depth image as ushort[]
292 Params-> Internal camera parameters

293 Output: jA-> Downsampled RGB image as JPG
294 jB-> Formatted Depth image as JPG

295 1. Initialize sensor;
296 2. Initialize output network connection, O;
297 THREAD 1
298 3. Receive C and D from sensor;
299 THREAD 2
300 4. For rowD e D do
301 a. For pixel e rowD do
302 i. Map pixel to color space using Params
303 ii. If pixel is in color space
304 1. Add color pixel to A;
305 iii. End
306 iv. Convert pixel to byte, pB;
307 v. Add pB to B
308 b. End
309 5. End
310 6. Encode A into JPG, jA;
311 7. Encode B into JPG, jB;
312 8. Send jA and jB over O;

3133.1 Acquisition of 3D Mesh Data. Using RGB-D sensing
314systems, 3D mesh data representing a physical object can be cap-
315tured and stored in digital form. RGB-D sensors are needed
316because both color (i.e., RGB) and depth (D) data are needed for
317the real-time reconstruction of 3D objects in an immersive, VR
318environment. The depth data are required to construct the 3D
319mesh of the environment being scanned and the RGB data are
320required to associate color values with each vertex of the 3D
321mesh.
322The depth data are formatted as a grayscale image, D, where
323each pixel value, D(i, j), is equal to the distance from the sensor
324into the environment being scanned at an angle relative to the
325pixel location in the image. This means that the top right pixel in
326the image is at the largest horizontal and vertical angle of the
327depth sensor’s field of view.
328The color data are formatted as a color image, C, and are cap-
329tured by the sensor at the same time that the corresponding depth
330image, D, is captured. Each pixel in the color image, C(i, j), repre-
331sents the color of the world at an angle from the direction the sen-
332sor is facing, relative to the pixel location in the image. The top
333right pixel represents the color captured at the largest horizontal
334and vertical angle of the RGB sensor’s field of view.

3353.2 Formatting of RGB-D Image Data. The two main uses
336of the color image in the proposed method are (i) to enhance the
337camera tracking algorithm and (ii) to map color data into the vir-
338tual reconstruction. For the camera tracking, both the depth and
339color image need to have the same pixel dimensions. To achieve
340this, the larger of the two images needs to be down-sampled to
341match the dimensions of the smaller image. To map the color data
342into the virtual reconstruction, the pixels in the color image that
343match to vertices calculated from the depth image need to be
344extracted from the full resolution color image. To do this, the rela-
345tionship between the color and depth cameras are used to deter-
346mine which color pixel matches each depth pixel. This allows one
347pixel value to be mapped to each vertex calculated from the depth
348image.
349Due to limitations in RGB-D sensor technology, the depth
350image is, in most cases, a factor smaller than the RGB image [20].
351Because of this, the RGB image can be down-sampled to match
352the dimensions of the depth image. The algorithm for capturing
353and formatting the depth and RGB images can be seen in Algo-
354rithm 1. The internal parameters of the depth and color camera are
355used to calculate the pixels in the color image that map to pixels
356in the depth image. The depth data contained in D are then format-
357ted so that each pixel of data fits into a single byte. This is done
358by limiting the range of accepted values for depth data.
359The result will be a down-sampled color image, A, and a for-
360matted depth image, B, that have the same pixel dimensions. This
361is necessary for the proper integration of these two data sets into
362the virtual reconstruction. These down-sampled images are then
363encoded as JPG [21] images into memory. Storing the images as
364JPGs [21] in memory minimizes the size of the data being sent
365over the network. The JPG encoding algorithm [21] is a common
366image format, and the EMGU wrapper for OpenCV in C# [22]
367allows the JPG encoding [21] to be integrated directly into the
368components of the method.

Fig. 2 Flow diagram of proposed method
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369 Depending on the capture rate of the RGB-D sensor, there is a
370 possibility that the sensor is capturing data faster than the avail-
371 able network bandwidth can send it, or the processing component
372 can integrate it into the virtual reconstruction. To prevent
373 unnecessary transmission of data, the data capture component
374 waits until the processing component signals for a depth image,
375 color image, or both. Once it receives this signal, it sends the next
376 available frame of data, whether that is currently in memory or
377 once it is done being formatted. Waiting for this signal means that
378 any frames that cannot be handled by the network or the process-
379 ing component are dropped before transmission. This dropping of
380 frames prevents wasting resources on data that would otherwise
381 not be integrated into the reconstruction. This dropping of data is
382 discussed further in Sec. 3.4.

383 3.3 Integration of RGB and Depth Data. The processing
384 component takes the formatted RGB and depth images, described
385 above in Sec. 3.2, and integrates the images into the current vir-
386 tual reconstruction. The process for this can be seen in Algorithm
387 2. In the processing component, one thread is responsible for read-
388 ing the data received from the network and storing them in local
389 memory. This thread reads the encoded JPG [21] images from the
390 network and decodes the images into their raw pixel formats.
391 Once the images are decoded, the pixel data are available to be
392 integrated into the virtual reconstruction by another thread.

393 Algorithm 2: Integration of RGB and Depth Data
394 Input: jA-> RGB image as JPG
395 jB-> Depth image as JPG

396 Output: cV-> Vertex[] as compressed byte[]
397 cN-> Vertex Normal[] as compressed byte[]
398 cC -> Vertex Color[] as compressed byte[]

399 1. Initialize virtual reconstruction;
400 2. Initialize input network connection, I;
401 3. Initialize output network connection, O;
402 THREAD 1
403 4. Receive jA and jB from sensor;
404 5. Decode jA-> A, RGB image as byte[], and jB-> B,
405 Depth image as byte[];
406 6. Convert A to int[], B to ushort[];
407 THREAD 2
408 7. Track sensor position using B, and Aif necessary;
409 8. Integrate A and B into virtual reconstruction;
410 9. Calculate pointcloud P from virtual reconstruction;
411 THREAD 3
412 10. Construct Colored MeshM from P;
413 11. Extract V, Vector3[] of Vertices, N, Vector3[] of
414 Vertex Normals, and C, int[] of Vertex Colors, from
415 M;
416 12. Convert V-> bV, Vertex[] as byte[], N-> bN, Ver-
417 tex Normal[] as byte[], and C-> bC, Vertex Color[]
418 as byte[];
419 13. Compress bV -> cV, Vertex[] as compressed
420 byte[], bN-> cN, Vertex Normal[] as compressed
421 byte[], and bC-> cC, Vertex Color[] as compressed
422 byte[];
423 14. Send cV, cN, and cCover O;

424 A second thread is responsible for integrating the new local
425 data into the virtual reconstruction in a stepwise fashion and cal-
426 culating the sensor’s movement between frames of data. First, the
427 depth image is converted into a point cloud of vertices in 3D
428 space. By taking the position of the sensor, the angle of each
429 pixel, and the distance value stored in the pixel, each pixel in the
430 depth image can be converted into a Vector3 representing a posi-
431 tion in the virtual reconstruction. This depth image is also used to
432 calculate the sensor’s movement by aligning the 3D points the
433 pixels in the depth image represent to the point cloud from the vir-
434 tual reconstruction that already exists. This alignment provides

435the movement that the sensor underwent between frames relative
436to the reconstruction volume. This approach to tracking the move-
437ment of the sensor is beneficial because of its speed and reliance
438on only the depth image. If tracking with only the depth image
439fails, a color image is requested from the capturing component
440and a separate algorithm is used that combines both the depth and
441color image to determine the movement of the camera. While the
442algorithm using both depth and color data is more accurate, it is
443considerably slower. The benefits of faster tracking and higher
444frame rate are discussed further in Sec. 3.5. Once the movement
445of the sensor is known, the 3D points from the current depth
446image can be properly integrated into the point cloud of the virtual
447reconstruction based on the new position of the sensor. Being able
448to move the sensor allows for more complete scans of environ-
449ments by capturing multiple angles and facets of the objects in the
450environment. The next step is to map the color image into the
451point cloud. Since the down-sampled color image contains pixels
452that match to pixels in the depth image, the pixel values of the
453color image can be assigned as the color values for the corre-
454sponding vertices that are added into the virtual reconstruction
455from the depth image.
456A third thread is responsible for constructing the 3D colored
457mesh and sending the resulting data to be rendered. This mesh is
458constructed using a Truncated Signed Distance Function algo-
459rithm [23]. From this mesh, we can extract the vertices, normals,
460and vertex colors necessary for rendering. The mesh does not
461need to be rebuilt after each new frame of data. Since the con-
462struction of the mesh and the transmission of the extracted mesh
463data take time, this thread will wait until the mesh has been fully
464constructed and transmitted before reconstructing an updated
465mesh. During the time it takes for a mesh to be constructed and
466transmitted, the other threads in the processing application are
467busy receiving and integrating more data. This multithreaded
468approach allows the mesh to stay up to date while allowing data to
469be constantly integrated.
470The components of the mesh that is required for rendering are
471the vertex array, the normal array, the vertex color array, and the
472triangle indices array. The vertex array is simply an array of Vec-
473tor3’s in which each element is a vertex in 3D space. The normal
474array is the normal of the surface from each vertex. The first nor-
475mal in the array matches to the first vertex, the second normal to
476the second vertex, etc. The vertex color is an array of four-byte
477integers, where each byte in the integer represents an RGBA
478value. The first vertex color in the array is the color of the first
479vertex in the vertex array, the second vertex color matches the
480second vertex, etc. A triangle indices array is also needed to cor-
481rectly render the resulting vertices in the VR environment. The tri-
482angle indices array is an array of integers that lists which sets of
483three vertices create a triangle in the mesh. Each integer repre-
484sents an index into the vertex array. Each set of three values in the
485triangles array creates a triangle in the mesh. The vertex, normal,
486and vertex color arrays can be arranged so that the triangle indices
487are in sequential ascending order. This eliminates the need to send
488the triangle indices array over the network, reducing the band-
489width required by the algorithm.
490This information is used to render the mesh in the VR environ-
491ment by using these data to build objects that the VR environment
492knows how to render. The triangle array is used to assign vertices,
493normals, and vertex colors to objects in the VR environment to
494represent the physical artifacts that were scanned. Any limit
495imposed by the virtual environment on the size or format of the
496objects being rendered is taken into consideration in this step to
497ensure a complete render of the scanning data.
498Figure 3 shows a sample result of the mesh reconstruction. The
499sensor is on the left, with each green line representing a depth
500point that was captured by the sensor, converted into a point in the
501point cloud, and output as a vertex of the mesh. The blue triangles
502represent triangles in the output mesh. Since RGB-D sensors can
503capture large amounts of data, the resulting meshes contain a large
504number of vertices. Due to rendering requirements in VR
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505 environments, these large meshes need to be subdivided into a
506 series of smaller meshes that can be rendered. The vertices, nor-
507 mal, vertex colors, and triangles are subdivided into smaller
508 groups representing a series of meshes that, when rendered
509 together, show the entirety of the colored mesh that was recon-
510 structed. Figure 4 presents an example of how the constructed
511 mesh is subdivided for rendering in the VR environment. Data are
512 the same as that from Fig. 3, but the single mesh from Fig. 3 has
513 been divided into three separate meshes to accommodate render-
514 ing in the VR environment. The mesh separation allows the large
515 output mesh to be broken down so that the VR environment can
516 handle rendering each subdivided mesh without running into any

517kind of constraint. If the mesh is left as one large series of trian-
518gles, the VR environment cannot handle the rendering calcula-
519tions necessary to properly display the mesh. This is a limitation
520derived from both memory capacity and performance require-
521ments of the rendering software. The threshold for subdividing the
522mesh into smaller pieces can be changed to match the limitation
523of the VR environment that is being used. The subdivided meshes
524are then transmitted individually over the network to the rendering
525component. This minimizes the size of each object being sent
526over the network.

5273.4 Real-Time Rendering of Scanned Data in the VR
528Environment. In order for 3D mesh data to be rendered in a VR
529environment in real time, a multithreaded approach is needed.
530Since each set of subdivided meshes is approximately 2.2 MB in
531size, trying to read that data within the same thread that is per-
532forming the rendering of the VR environment would cause the
533rendering to slow down and/or freeze until all of the data have
534been received. The first thread is responsible for receiving subdi-
535vided meshes from the network. Once a subdivided mesh has been
536received, it is placed into the virtual space to align with the other
537subdivided meshes from the virtual reconstruction. A second
538thread is responsible for rendering the results for the user to visu-
539alize. This allows the user to have a fluid, uninterrupted experi-
540ence in the VR environment while new data are being added.
541Using this multithreaded, multicomputer approach, the rending
542of the virtual environment happens in real time with the data cap-
543ture. This allows the user to be in the VR environment while the
544data are being captured, processed, and rendered. The user will be
545able to see new data as they are being processed and rendered in
546the VR environment, and be able to move around and interact
547with the reconstruction. Figure 5 shows an example of how the
548proposed method could be used distributed across the globe. AQ8The
549sensor could be in one location, illustrated by the photo in the top
550left of the figure, while a powerful processing machine, like the
551one shown in the lower left of the figure, could be in a separate
552location, and send the results to a third location where a user could
553see the visualization shown in the top right of the figure, but
554through virtual reality hardware AQ9. This system promotes collabora-
555tion and globalization while maintaining a high level of quality
556for information and feedback.

5573.5 Quantify Frame Rate Importance in Data Processing.
558Two key factors in the proposed method are the frame rate at
559which the data images for depth and color are received and the

Fig. 5 Distributed components of method

Fig. 3 Mesh constructed from sensor data

Fig. 4 Subdivided meshes from reconstructed mesh
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560 frame rate at which they are integrated into the virtual reconstruc-
561 tion. These frame rates are important to be able to maintain track-
562 ing of the sensor while it is moving to capture as much of the real-
563 world environment as possible. The main method for tracking the
564 sensor’s movements uses the depth image independently. Maxi-
565 mizing the frame rate at which the depth images are received and
566 integrated minimizes the movement of the sensor between frames
567 of data. This, in turn, allows the sensor to be moved faster by the
568 user while still being able to accurately calculate the position of
569 the sensor relative to the reconstruction and correctly integrate the
570 data that are received.
571 If the amount of data being captured by the sensor is greater
572 than what the bandwidth of the network connection can transmit,
573 there will be a delay between when the data are captured and
574 when they are processed. This kind of delay prevents the recon-
575 structed meshes from containing the most recent data, and there-
576 fore prevents the VR environment from displaying the most
577 recent data to the remote user. If the hardware where the process-
578 ing component is running cannot keep up with the amount of data
579 it is receiving from the network, frames of data will be discarded
580 while the application waits for the reconstruction to be ready for
581 the next frame of data to be integrated.
582 Two of the obstacles to maintaining a high frame rate are the
583 amount of data being sent over the network and the speed of inte-
584 grating the data into the reconstruction. The size of the images
585 being sent is minimized by using a JPG encoding algorithm [21]
586 to encode them before transmission and decode them afterward.
587 This encoding algorithm minimizes the space that is used in mem-
588 ory and on the network by the images without sacrificing quality
589 or data integrity. To help reduce transmitting unused data, the pro-
590 posed method contains two-way communication between the cap-
591 turing component and the processing component. The processing
592 component will signal the capturing component when it is ready
593 for a depth image, a color image, or both. Based on the signal that
594 is received in the capturing component, it will transmit the appro-
595 priate images. If there are frames that are captured by the sensor
596 in the capturing component before the next signal is received
597 from the processing component, these frames are discarded before
598 they are transmitted over the network. This prevents data that will
599 not be integrated into the reconstruction from taking up valuable
600 network resources. By using a faster camera tracking algorithm
601 whenever possible, the proposed method aims to maximize the
602 speed at which new data are integrated into the reconstruction.
603 The overall structure of the proposed method also helps to maxi-
604 mize the speed of data integration by allowing each of the three
605 components to focus on a single step in the process. Each compo-
606 nent can then take full advantage of the resources available on
607 their respective computers to maximize the efficiency of each
608 step.

609 4 Application of Proposed Method

610 This section describes our process for capturing the RGB and
611 depth data, processing the data into a reconstruction, and output-
612 ting the resulting mesh into a 3D environment. The case study uti-
613 lizes the Kinect hardware [20], coupled with the
614 KinectFusionExplorer-WPF C# sample provided by Microsoft
615 [15]. This sample is based in part on the KinectFusion algorithm
616 developed by Newcombe et al. [18]. The hardware our process
617 uses consists of an unmodified Kinect for Windows v2 sensor
618 [20], a tablet computer running Windows 10 as the Capture
619 Machine, a desktop computer running Windows 10 as the Process-
620 ing Machine, and a desktop computer running Windows 10 as the
621 Rendering Machine.

622 4.1 Acquisition of 3D Mesh Data. The first component is the
623 RGB-D sensor. An unmodified Kinect for Windows v2 sensor
624 [20] is used for capturing RGB and depth data. The authors split
625 the KinectFusion algorithm [18] into two components. The first
626 component runs on the Capture Machine that is hardwired to the

627Kinect v2 [20] sensor that captures RGB and depth images. This
628component captures the RGB and depth images from the sensor,
629formats them to be transmitted, and waits for a signal from the
630Processing Machine specifying which images are needed.

6314.2 Formatting of RGB-D Image Data. Both images are
632formatted to the required size, 512� 424 pixels, by down-
633sampling them if they are too large. For the Kinect for Windows
634v2 sensor [20], the color image is down-sampled from
6351920� 1080 to 512� 424 pixels. This is done by mapping each
636point of the depth image into the color image and placing the cor-
637responding pixel into a down-sampled color image. The depth
638data contained in the depth image have possible values of 0–4096
639and are stored in 12-bits of an ushort. These data are formatted to
640values between 1024 and 3064. They are then reduced by 1024, to
641use a zero base, and then divided by 8 to store the data in a single
642byte. This reduces the size of the depth data by one half while
643maintaining an accuracy of 8mm in the depth data. The resulting
644images are then converted into arrays of bytes. These byte arrays
645are then encoded into JPG [21] images using the Emgu C# wrap-
646per of OpenCV [22]. These JPG [21] images are then ready to be
647transmitted over the TCP connection established between the Cap-
648ture Machine and the Processing Machine. Once the signal has
649been received from the processing component requesting certain
650frames, the requested compressed arrays are sent over the net-
651work. If a frame has already been compressed and is prepped to
652send but another frame of data arrives from the sensor before the
653signal from the processing component, the prepped frame is dis-
654carded so that it does not unnecessarily use up network resources.
655This ensures that the most current data are always transmitted
656over the network when they are requested by the processing
657component.

6584.3 Integration of RGB and Depth Data. The second piece
659of the KinectFusion algorithm runs on the Processing Machine.
660This program acts as the hub for the data and handles the process-
661ing of the RGB and depth data. This program receives the data,
662integrates them into the existing reconstruction, constructs a col-
663ored mesh from the reconstruction, and then transmits the colored
664mesh.
665The RGB and depth data are received on the Processing
666Machine from the network over a TCP connection. The resulting
667JPG images are then decompressed using the Emgu library in C#
668[22]. Byte arrays can then be read from the JPG images and parsed
669back into the raw RGB and depth images. These images are then
670used to determine the movement of the sensor since the last frame
671of data. Once the sensor’s position is known, the position is used
672to integrate the new data into the reconstruction using the Kine-
673ctFusion [18] library. After a series of new frames of data have
674been integrated, a colored mesh is built from the reconstruction
675using the KinectFusion library. Instead of trying to construct a
676mesh after every new frame of data, the mesh is constructed and
677output in a separate thread. As soon as the mesh data are done
678being sent, the thread starts building a new mesh with all the new
679data that have been integrated while it was creating the previous
680mesh. This ensures that each new mesh contains as much new
681data as possible, while updating the resulting mesh as often as
682possible. This allows for each new mesh construction to incorpo-
683rate a noticeable amount of new data. This mesh reconstruction
684process reduces the processing that is done on the Processing
685Machine, while allowing the user in the VR environment to see
686the data appear in sections as it is processed.
687From the colored mesh, three arrays are extracted. These arrays
688represent the vertices, normal, and vertex colors for the colored
689mesh. Since the colored mesh created from the reconstruction can
690be very large, these arrays are subdivided to create a series of
691meshes that the rendering application can handle. Since Unity has
692a limit of 65,534 vertices per mesh object, the parsed arrays are
693divided into multiple meshes, each containing fewer vertices than
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694 the limit. The vertices (Vector3 array), normals (Vector3 array),
695 and vertex colors (integer array) for each subdivided mesh are
696 converted into byte arrays. The byte arrays are sent to a Unity
697 [24] application on the Rendering Machine using a TCP connec-
698 tion. Having a machine solely for rendering allows all available
699 resources on the machine to focus on achieving the desired frame
700 rate for the VR environment. This will help reduce any negative
701 side effects from using the VR environment.
702 While the authors use the KinectFusion [18] library to handle
703 some of the data integration and processing, the networking and
704 real-time mesh reconstruction are novel processes. The ability to
705 integrate new data from a remote source and construct mesh
706 objects containing data as they are scanned extends the capabil-
707 ities of existing systems. The separation of the resource-intensive
708 processing from the data capturing and rendering allows for sys-
709 tems to be specialized for each portion of the proposed algorithm.

710 4.4 Real-Time Rendering of Scanned Data in the VR
711 Environment. The final component in the proposed method is the
712 Unity application that runs on the Processing Machine. This appli-
713 cation is used to parse the mesh data from the KinectFusion algo-
714 rithm and display them in an immersive, interactive 3D
715 environment. The Unity application receives the vertices, nor-
716 mals, and vertex colors from a TCP connection as byte arrays.
717 Each set of vertices, normal, and vertex colors represents a subdi-
718 vided piece of the entire color mesh from the reconstruction.
719 The Unity game engine then handles the rendering of the mesh
720 objects. Unity provides interfaces for some of the more common
721 VR systems that are available, namely the Oculus Rift [1]. This
722 allows for the rendered data to be easily viewed and interacted
723 with from within a VR system. The user is also able to move
724 around in the Unity application to better immerse themselves in
725 the virtual representation created by the proposed method. This
726 provides another level of immersion for remote viewing over a
727 simple video conference or static prerendered environment.

728 5 Results and Discussion

729 Figure 6 shows a rendering of the resulting 3D mesh from the
730 proposed method in the VR environment. This shows the quality
731 of the mesh and the information that can be gathered from view-
732 ing the resulting mesh. Using a VR system to view the results in
733 an immersive manner, provides the user with a more natural
734 method for collecting information. This allows the user to gain a
735 better understanding of the physical world without having to be
736 physically present in it.
737 The proposed method was only run for 1min for the scan that
738 was used to collect the data for Table 2. Table 2 shows statistics

739of network and resource usage from the proposed method. The
740metrics that the authors tracked are the total number of frames of
741data that were processed, the average frames per second (FPS)
742being processed, the size of each frame of data in megabytes, and
743the total amount of data in megabytes. FPS was not used as a met-
744ric for the mesh column because the colored mesh is not being
745reconstructed after every frame of data. Also, the rendering com-
746ponent receives a single subdivided mesh at a time and adds it
747into the VR environment to be rendered. This allows the subdi-
748vided meshes to be received over a period of time without affect-
749ing the frame rate of any of the components. These metrics
750provide valuable information about the amount of network band-
751width and processing resources required to run the proposed
752method and achieve similar results.
753Table 2 shows that the network bandwidth required for running
754the proposed method is approximately 2 MB/s. This means that it
755is entirely feasible to run the algorithm on commodity networking
756hardware, without the need for specialized connection to facilitate
757data transmission. Table 2 also shows that processing require-
758ments for constructing the mesh are not a limiting factor for the
759algorithm being run. The data for Table 2 were collected from the
760proposed method running on an AMD Radeon R9 270� graphics
761card [25]. This card is considered to be a midlevel graphics card
762for individuals looking for affordable performance in gaming and
763other 3D applications. Between the network bandwidth that is
764used and the ability to run the algorithm on commodity hardware,
765the proposed method does not limit itself to being run in special-
766ized environments [26,27]. AQ10

7676 Conclusion

768The proposed method has been shown to provide a believable
769virtual representation of a physical space in real time. The system
770shown in Sec. 4 uses a commodity RGB-D sensor to provide the
771required data to construct this virtual representation. This system
772intends to improve the immersive experience of remote viewing
773and interacting to reduce costs and increase the awareness and
774familiarity of the user with the space.
775By expanding upon existing systems, namely Newcombe et al.
776[18] and the Kinect Fusion Explorer [15], the authors are able to
777provide a new method for the incorporation of real-time RGB-D
778scanning data into a VR environment. Section 4 presented a use
779case in which the method was shown to provide convincing results
780while using readily available commodity sensors and
781environments.
782The method proposed by the authors leaves room for expansion
783and extension:

� Optimizations in the (un)packing of data for transmission
784could further decrease the bandwidth requirements and
785increase the amount of data incorporated by the method.

� Improvements could be made to the down-sampling algo-
786rithms to make them faster, allowing for a higher frame rate
787for capturing and sending the RGB and depth images.

� Algorithms similar to Roth and Vona [12] and Whelan et al.
788[13] could be incorporated into the method presented in this
789paper. This would allow for larger areas to be scanned to pro-
790vide a more complete virtual representation in the VR
791environment.

Fig. 6 Real time mesh reconstruction in the Unity VR
environment

Table 2 Network and resource usage statistics for 60 s run of
proposed method

Depth Color Mesh

Total frames 1320 300 5
Frames/second 22 5 N/A
Data/frame (MB) 0.05 0.15 2.2
Total data (MB) 66 45 11
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� The mesh subdivision algorithm could be extended by
792 attempting to identify and separate objects that are being
793 scanned into individual meshes.

� The resulting scan could be physics-enabled in the VR envi-
794 ronment to allow the user more possibilities for interaction.

� A more powerful Graphics Processing Unit could be used to
795 process the RGB-D data being captured, allowing for more
796 frequent updates to the reconstructed mesh.

797 Inspections are common in many production and maintenance
798 environments. This kind of inspection normally consists of an
799 expert reviewing a product or location to determine if there are
800 any issues that need to be addressed or to determine the best
801 course of action to fix a problem. This can become exceptionally
802 difficult if there are only a limited number of experts for a particu-
803 lar task or if the expert is located far away from the product or
804 location of interest. The proposed method provides a solution for
805 this kind of situation by allowing the expert to view the product or
806 location of interest remotely. An individual can scan the object or
807 location of interest, stream the data to a dedicated processing
808 machine, and the results can be viewed by the expert remotely, in
809 real time. This allows the expert to communicate with the individ-
810 ual performing the scan or others involved with the inspection
811 process in real time, promoting collaboration and the sharing of
812 information during the inspection process.
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