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1. INTRODUCTION 

Online learning platforms are widely used in engineering education because of their scalability 

(i.e., fewer physical limitations) and accessibility (i.e., improvements in internet connectivity) [1,2]. For 

example, cyberinfrastructure tools and technologies are currently applied to engineering education and 
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ABSTRACT 

Due to the increasing global availability of the internet, online learning platforms such as Massive 

Open Online Courses (MOOCs), have become a new paradigm for distance learning in engineering 

education. While interactions between instructors and students are readily observable in a physical 

classroom environment, monitoring student engagement is challenging in MOOCs. Monitoring student 

engagement and measuring its impact on student performance are important for MOOC instructors, 

who are focused on improving the quality of their courses. The authors of this work present a semantic 

network model for measuring the different word associations between instructors and students in 

order to measure student engagement in MOOCs. Correlation analysis is then performed for 

identifying how student engagement in MOOCs affect student performance. Real-world MOOC 

transcripts and MOOC discussion forum data are used to evaluate the effectiveness of this research. 
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student learning. Recently, web-based platforms for communicating between educators and students [3] 

and IT-enabled remote laboratories [4] are used for online learning. Massive Open Online Courses 

(MOOCs) expand on the scope and scale of traditional online learning systems by enabling tens or at times, 

hundreds of thousands of individuals across the world, to connect to a common course or platform [5]. 

As the scale and scope of MOOCs expand, so do the challenges of maintaining the quality of learning and 

understanding that takes place within these MOOC platforms.  

A MOOC instructor’s objective is to maximize student performance (i.e., learning outcomes). Even 

though students enrolled in MOOCs can communicate with instructors or other students through MOOC 

discussion forums or email messages, less face-to-face interactions between instructors and students 

make it hard to ensure that students stay on track through an entire course. Despite the increasing 

popularity of MOOCs, it is challenging to keep students motivated to learn and stay engaged in the course, 

especially when they lose interest in the course content. An instructor may assume that his/her students 

are interested and engaged in the course content in the manner intended, but if that instructor does not 

receive direct feedback from students, it will be difficult to confirm his/her assumption [6]. A lack of direct 

feedback from students affects the instructor’s ability to improve his/her lecture content structure and 

motivate students to learn. It is essential for instructors to measure and interpret student-course content 

interactions, because students learn better when they discuss course content with instructors or other 

enrolled students. It has been shown that low student-course content interactions, negatively affects 

student performance [7].  

This research introduces a semantic network model in order to investigate the different word 

associations between (1) course content and (2) student discussions, which indicate student engagement 

in MOOCs. Correlation analysis is then performed in order to identify how the different word associations 

between course content and student-discussed content (i.e., student disengagement) affect student 

performance, such as (1) students’ average assignment scores and (2) the number of submitted 
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assignments. A real-world case study involving MOOC transcripts and MOOC discussion forum data (i.e., 

posts and comments written in MOOC forums) validates the proposed research. In this research, a post 

and a comment are defined as a new discussion thread and a response related to a given post written in 

MOOC discussion forums, respectively. 

This research will help instructors classify (1) the content that interest and engage students in the 

course and (2) the content that result in lower course retention (i.e., disengagement), while the course is 

going on. It is also expected that this work will support MOOC instructors as well as MOOC providers in 

developing intervention mechanisms that improve student performance in MOOC platforms. 

The remainder of this paper is organized as follows. Section 2 describes the background and work 

related to the research, while Section 3 outlines the proposed research. Section 4 presents a case study 

that demonstrates the feasibility of this research. The results of the case study are discussed in Section 5. 

Finally, Section 6 provides conclusions and directions for future research. 

 

2. BACKGROUND AND RELATED WORK 

2.1. MOOC Content Structure 

Although the structure of MOOCs may differ across course offerings, they can be categorized 

based on their design intent and course content structure [8,9]. One of the earliest MOOCs, 

Connectivism and Connective Knowledge by Siemens and Downes [10], was intentionally designed to be 

a very social experience, allowing learners to leverage a wide variety of technologies to connect with 

each other and drive their own learning through discovery and discussion. This category of MOOCs is 

often called a connectivist MOOC or cMOOC. These cMOOCs focus on knowledge co-creation by 

harnessing the power of social media and interaction with peers, adopting a connectivist learning 

approach in which students’ creativity, autonomy, and networking are encouraged [11]. In cMOOCs, 

students are expected to add to and enrich the course content.  
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In contrast, some MOOCs are organized similarly to Stanford University’s Introduction to 

Artificial Intelligence MOOC. This course focuses more on one-way dissemination of content or an 

instructivist approach to learning. As more universities began to offer MOOCs, many followed Stanford’s 

approach, which was categorized later as an xMOOC [12]. These xMOOCs focus on more traditional 

interaction with fixed content, centralized discussion forums, and automated or peer-graded evaluation, 

adopting a behaviorist learning approach. Students are expected to master what they are taught 

without adding substantially to the course content. In the end, defining a dichotomy of “cMOOCs” and 

“xMOOCs” may be overly simplistic, since many MOOCs offered today include elements of both – 

including the MOOC that serves as a case study for this article. 

 

2.2. Mining Educational Textual Data 

Mining educational textual data is an active research area that employs data mining methods with 

educational data to understand student learning and performance [13]. Mostow et al. present an 

intelligent tutoring system to browse the interactions between a tutor and students with MySQL 

databases [14]. Sacin et al. develop a student decision support system that helps students plan their 

academic itinerary (e.g., courses, classrooms, and instructors) using data mining methods [15]. Natek and 

Zwilling present data mining techniques for small student datasets to predict the success rate of students 

enrolled in their courses, since relatively small data sets are normal in educational environment [16].  

Recently, text mining methods, including both unsupervised and supervised machine learning 

techniques, have been widely employed in the education system [17]. The objective of unsupervised 

machine learning algorithms, such as clustering, is to discover natural patterns with unlabeled data (e.g., 

the discovery of the clusters of students that share similarity in their learning styles). On the other hand, 

the objective of supervised machine learning techniques is to predict class variables with a set of attributes 

[18]. For example, Kelly and Tangney present a system to predict the learning styles of students using a 
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Naïve Bayesian machine learning algorithm [19]. Hsia et al. analyze the course preferences and course 

completion rates of enrolled students using decision trees, link analysis, and decision forest [20]. Perera 

et al. develop a better understanding of group behavior by mining educational data in online virtual 

environments [21]. Şen et al. predict education placement test results to understand the internal structure 

of placement tests and develop more effective assessment tools using artificial neural networks, support 

vector machines, decision trees, and logistic regression [22].  

 

2.3. Understanding Student Behavior and Feedback in MOOCs  

MOOCs are a relatively new development that has gained significant interest in the educational 

research community. MOOCs provide free access to knowledge for everyone with a reliable internet 

connection, regardless of geographic, demographic, or economic constraints [23,24]. One limitation in 

MOOCs is a limited use of integrating meaningful, frequent, and synchronous face-to-face interactions 

between instructors and students. MOOC instructors more likely rely on textual information, such as 

students’ reviews written in MOOC discussion forums, which is unlike synchronous interactions between 

instructors and students in a traditional classroom, where facial and body expressions can convey 

student feedback on course content. Measuring student textual feedback has the potential to help 

MOOC instructors, who more likely rely on student textual feedback rather than face-to-face 

interactions, to learn about student learning and performance [6].  

Student behavior and performance in solving problems in MOOCs may differ from those in on-

campus education settings, since MOOCs have course formats that differ from traditional education 

systems [25]. Margaryan et al. propose a systematic analysis of MOOCs’ instructional design quality 

using a course survey instrument [26]. Recently, the relationships among the social, teaching, and 

cognitive elements, online satisfaction, and academic achievement in online learning environments are 
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investigated [27]. Research models and case studies are presented to identify the factors that enhance 

the effectiveness and sustainability of MOOCs [28,29].  

Recently, new metrics have been proposed for measuring the impact of MOOCs, such as the 

Distributed Intelligence Framework [30]. The Distributed Intelligence Framework considers students’ 

intentions, because some students can complete the course without their intentions in a MOOC 

environment. Investigating MOOC forums and course-based social networks is a useful option for 

analyzing students’ intentions, since the forums and social networks provide a venue for numerous 

students to share opinions on a common subject [31,32]. Most analyses on MOOC discussion forums 

and course-based social networks are related to the frequency of use and student responses to surveys 

about their experiences in the forums and social networks. Mackness et al. discover that the openness 

of the forums can cause negative experiences for students and discourage them from participating in 

the forums, since they can be overcome by the number of posts, comments, and trolls [33]. Breslow et 

al. discover that the surveys are more frequently used than homework assignments and lecture videos 

as resources for measuring the impact of MOOCs [34]. 

Reich et al. explore student-generated text in MOOCs that uncovers variations in patterns across 

covariates [35]. This type of analysis, if it can be achieved in real-time, can provide important feedback 

for instructors and the MOOC design team to make important pedagogical decisions and to take course 

corrections. Joksimović et al. also examine social media interactions associated with MOOCs, in order to 

better understand topics of discussion by learners [36]. One of the research questions directly examines 

the extent by which the readings suggested by the course instructors were similar to the topics of 

discussion by students on social media. They discover that conversations about content early in MOOCs 

often continue throughout the duration of the course; learner discussion on social media does not 

necessarily follow new themes introduced by the instructor later in the course.  
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While understanding student behavior and feedback in MOOCs is an active research area, 

considerations on understanding how student engagement affects course performance are still limited. 

Comprehending how student engagement affects student performance is important for transforming 

the learning experience from being a passive consumption-based system to a dynamic system based on 

instructor-student interactions and improving the quality of MOOCs.  

 

3. MATERIAL AND METHODS 

Figure 1 presents an overview of the method. First, textual data are retrieved from (1) MOOC 

transcriptions, which are comprised of lecture notes, lecture manuscripts, and video lecture 

transcriptions in MOOCs, and (2) student textual feedback written in MOOC discussion forums. Semantic 

graphs are then provided to visualize word associations in MOOC transcriptions and student textual 

feedback, respectively. A semantic network analysis model is then presented to measure the different 

word associations between MOOC transcriptions and student textual feedback. Finally, correlation 

analysis is performed to understand how the different word associations (i.e., student disengagement in 

MOOCs) affect student performance (e.g., students’ average scores, the number of assignment 

submissions, etc.). 

 

[Insert Figure 1] 

 

3.1. Data Extraction and Data Preprocessing 

(1) MOOC transcriptions and (2) student textual feedback data from MOOC discussion forums 

are used in this research. MOOC transcriptions include lecture notes created by the instructors, 

manuscripts, and transcriptions extracted from video lectures. Student textual feedback data include 
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students’ dialogue about the lectures and course activities (e.g., posts and comments written in MOOC 

discussion forums).  

Raw textual data, such as video lecture transcriptions, posts, and comments in MOOC discussion 

forums, are full of noise that causes unexpected results. In this work, data preprocessing is therefore 

employed to remove noise within the data. User ID, punctuation, and URLs, which are unnecessary for 

semantic network analysis, are disregarded. Stop words (e.g., “are”, “to”, “in”), which would be 

superfluous for semantic network analysis, are also removed [37]. Out-of-vocabulary (OOV) words, such 

as typos (e.g., “bisiness” instead of “business”), single-word abbreviations (e.g., “luv” instead of “love”), 

and phonetic substitutions (e.g., “2morrow” instead of “tomorrow”) are transformed to in-vocabulary 

(IV) words using existing OOV word databases (e.g., Apache Lucene [38] and Spell Checker Oriented 

Word Lists [39]). Stemming is implemented using the Porter stemming algorithm [40] in order to 

improve result accuracy. 

 

3.2. Term Frequency and Semantic Networks 

In this research, (1) a term frequency and (2) semantic network model are employed for 

comparing semantic structures between MOOC transcriptions and student textual feedback. Term 

frequency is defined as the number of times that a term (i.e., one word in this method) occurs in a 

document [41]. Term frequencies are counted based on the bag of words model (i.e., a text model that 

only considers word multiplicity, while disregarding word order and grammar) [42].  

A co-occurrence is a word interconnection based on their paired existence within a document  

[43]. For example, the terms “trouble” and “assignment” co-occur in the sentence “I'm having trouble 

uploading the file that contains my assignment.” Let w1i and w2i be the ith frequently used term, which is 

not a stop word, in MOOC transcriptions and student textual feedback data, respectively. W1 and W2 are 

a set of top t1 frequent terms in MOOC transcriptions and a set of top t2 frequent terms in student 
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feedback data in descending order, respectively, as seen in Eq. (1). Equation (2) shows the weighted 

adjacency matrix A1 that expresses co-occurrence between top t1 frequent terms in MOOC 

transcriptions [44].  

 

𝑊1 = [𝑤11, 𝑤12, ⋯ , 𝑤1𝑘1−1, 𝑤1𝑘1
],𝑊2 = [𝑤21, 𝑤22, ⋯ , 𝑤2𝑘2−1, 𝑤2𝑘2

]           (1)  

𝐴1 =

[
 
 
 
 

− 𝑜112 𝑜113 ⋯ 𝑜11𝑡1

𝑜121 − 𝑜123 ⋯ 𝑜12𝑡1

𝑜131 𝑜132 − ⋯ 𝑜13𝑡1

⋯ ⋯ ⋯ − ⋯
𝑜1𝑡11 𝑜1𝑡12 𝑜1𝑡13 ⋯ − ]

 
 
 
 

                                                                (2) 

 

where o1ij represents the frequency in which both term w1i and w1j co-occur in the same document. The 

weighted adjacency matrix A1 is a triangular symmetric matrix, since o1ij = o1ji. The weighted adjacency 

matrix for student textual feedback data (i.e., A2) can be generated in the same manner.  

Semantic graphs are defined as a visual representation of knowledge patterns in terms of 

semantic relationships between concepts [45]. (Undirected) semantic graphs can be generated based on 

the results of term frequency analysis and the weighted adjacency matrix. A semantic graph for MOOC 

transcriptions can be represented as G1: (T1, E1), where T1 and E1 are a set of nodes and a set of edges 

that represent the relationship between two different nodes, respectively. The number of nodes and the 

number of edges of the semantic network for MOOC transcriptions can be expressed as |𝑇1| = 𝑡1 and 

|𝐸1| =
∑ ∑ 1𝑂1𝑚𝑛

𝑡1
𝑚=1,𝑚≠𝑛

𝑡1
𝑛=1

2
, respectively. G2 (i.e., a semantic graph for student textual feedback data), 

|𝑇2|, and |𝐸2| can be defined in the same manner.  

 

3.3. Semantic Network Metrics 

In order to characterize the semantic structures of MOOC transcriptions and student textual 

feedback data, four different semantic network metrics are used in this work as described below. 
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Average Degree  

The average degree of a network represents the average number of edges incident on the nodes 

in the network [46]. The average degree of G1 (i.e., <k1>) can be defined as Eq. (3), where the number of 

edges of the term w1m is k1m. The average degree of G2 (i.e., <k2>) can be defined in the same manner. 

< 𝑘1 >=
∑ 𝑘1𝑚

|𝑇1|
𝑚=1

|𝑇1|
                       (3) 

 

Average Clustering Coefficient 

The clustering coefficient of the term w1m (i.e., C1m) represents the proportion of existing edges 

between neighbors of the term w1m (i.e., E1m) out of the maximum possible number of edges of the term 

w1m (Eq. (4)). The average clustering coefficient of MOOC transcripts (i.e., C1) is defined as Eq. (5). The 

average clustering coefficient of student feedback data (i.e., C2) is defined in the same manner [46]. 

𝐶1𝑚 =
2 ∙ 𝐸1𝑚

𝑘1𝑚 ∙ (𝑘1𝑚 − 1)
                 (4) 

𝐶1 =
∑ 𝐶1𝑚

|𝑇1|
𝑚=1

|𝑇1|
                                (5) 

 

Average Geodesic Distance 

The geodesic distance (i.e., d1mn) means the shortest path between two different nodes (i.e., the 

minimum number of edges connecting w1m and w1n) in the semantic graph [46]. The average geodesic 

distance of MOOC transcriptions (i.e., L1) is defined as Eq. (6). The average geodesic distance of student 

feedback data (i.e., L2) is defined in the same manner. The geodesic distance evaluates the cohesion of 

the semantic network (i.e., how close the ideas of MOOC transcripts or student feedback are developed) 

[44]. 
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𝐿1 =
∑ ∑ 𝑑1𝑚𝑛

|𝑇1|
𝑚=1,𝑚≠𝑛

|𝑇1|
𝑛=1

|𝑇1| ∙ (|𝑇1| − 1)
            (6) 

 

Density 

 The density of a network means the proportion of existing edges out of possible edges in the 

network. The density of G1 (i.e., ∆1) can be defined as Eq. (7) [46]. The density of G2 (i.e., ∆2) can be 

defined in the same manner. The density quantifies how connected the terms of MOOC transcriptions 

(or student textual feedback data) are in the semantic network.  

△1=
2 ∙ |𝐸1|

|𝑇1| ∙ (|𝑇1| − 1)
                        (7) 

 

3.4. Correlation Analysis 

Finally, correlation analysis investigates the effects of the semantic network metrics on student 

performance (e.g., students’ average assignment scores, the number of submitted assignments, etc.) in 

order to monitor how student engagement affects student performance and improve the quality of 

MOOCs. In this research, the correlation coefficient is used for correlation analysis (Eq. (8)). A 

correlation coefficient of 1 indicates that there is a perfectly positive relationship between a semantic 

network metric and student performance. A correlation coefficient of -1 represents that there is a 

perfectly negative relationship between a semantic network metric and student performance. A 

correlation coefficient of 0 represents no relationship between a semantic network metric and student 

performance [47].  

 

𝑟𝑝𝑞 =
∑ (𝑝𝑛 − �̅�)(𝑞𝑛 − �̅�)𝑁

𝑛=1

√∑ (𝑝𝑛 − �̅�)2𝑁
𝑛=1 ∑ (𝑞𝑛 − �̅�)2𝑁

𝑛=1

              (8)                         
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where: 

N: Sample size 

pn: Value of nth observation from sample p (n:1 to N). In this research, pn represents the values of the 

semantic network metrics (e.g., average degree, average clustering coefficient, average geodesic 

distance, or density). 

�̅�: Average value of all observations from sample p 

qn: Value of nth observation from sample q (n:1 to N). In this research, qn represents course performance 

(e.g., students’ average assignment scores, the number of submitted assignments, or the numbers of 

posts and comments written in MOOC discussion forums). 

�̅�: Average value of all observations from sample q. 

 

4. APPLICATION 

In this case study, a Penn State's Coursera MOOC (“Creativity, Innovation, and Change (CIC)”) 

[48,49] is used to validate the proposed research. The course goal is to provide concepts and tools to 

help students realize their creative potential and encourage their innovative behavior. This process-

oriented course also builds a global creativity community and connects students around the world with 

a passion for change. Each lesson is structured around the following online components; video lectures, 

exercises, and MOOC discussion forums. Due to the general nature of the course content, there is no 

recommended prerequisite for the course. Full details about the original course structure and content 

are provided in [48]. 

The participant population for the MOOC under study is very diverse. Figure 2 illustrates the 

census data for the participants in the MOOC. Overall, 39,069 individuals participate in the MOOC (i.e., 

visited the course at least once). Of the overall 39,069 individuals who visit the course, 9,377 are from 

China, 7,423 are from the United States, 2,735 are from India, and the remaining 19,534 represent 184 
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other countries. Of these, 3,803 completed the optional Coursera survey that gathered gender 

information, of which 48% are female (N=1825) and 52% are male (N=1978). The course is listed across 

all possible disciplinary categories within Coursera, so students of all disciplinary backgrounds are 

welcome.  

 

[Insert Figure 2] 

 

4.1. MOOC Transcriptions 

MOOC transcriptions extracted from the Coursera video lectures and exercises for 6 weeks 

(from July 5th, 2014 to September 17th, 2014), with new material related to creativity, innovation, and/or 

change processes and techniques related each week, are used for the case study. MOOC transcriptions 

are categorized into 6 documents based on 6 weeks. Table 1 shows the weekly lesson titles, the exercise 

titles, the number of transcripts (i.e., video lectures and exercises), and the number of terms in 

transcripts after preprocessing.  

 

[Insert Table 1] 

 

4.2. Student Textual Feedback Data and Student Performance Data 

MOOC discussion forum posts and comments in the Coursera MOOC platform are used for this 

case study. All posts and all comments are also categorized into 6 documents (i.e., 6 weeks) 

corresponding to each MOOC lecture and exercise. Table 2 illustrates student performance data. I.e., 

the average assignment scores on a five-point scale (where 5 is excellent and 1 is poor), and the number 

of submitted assignments by students for each week. In addition, data pertaining to the number of 
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terms in the MOOC discussion forum posts and comments, provided by students for each week after 

preprocessing, are also acquired.  

 

[Insert Table 2] 

 

5. EXPERIMENTS AND RESULTS 

5.1. Term Frequency and Semantic Network Analysis 

Figures 3 and 4 illustrate semantic networks created based on MOOC transcriptions and student 

textual feedback data, respectively. In this case study, semantic networks only consider the terms that 

are the top 10% (i.e., a commonly used cutoff value in network analysis) of the frequent terms in MOOC 

transcriptions and student feedback data, respectively [50,51]. Each size of a vertex and each width of 

an edge indicate the term frequency and the co-occurrence frequency, respectively. In both networks, 

each vertex color indicates which week (i.e., document) each term is used in (red: Week 1, blue: Week 2, 

green: Week 3, purple: Week 4, gray: Week 5, and orange: Week 6). A black vertex means that the term 

is used in multiple weeks.   

 

[Insert Figure 3] 

 

[Insert Figure 4] 

 

Based on the results of Figures 3 and 4, Table 3 provides the average degrees (i.e., <k1>, <k2>), 

the average clustering coefficients (i.e., C1, C2), the average geodesic distances (i.e., L1, L2), and the 

densities (i.e., 1, 2) of MOOC transcriptions and student textual feedback data, respectively. Table 3 

also shows the differences between the values of the average degrees, the average clustering 
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coefficients, the average geodesic distances, and the densities of MOOC transcriptions and student 

textual feedback data, respectively, which indicate the different word associations between instructors 

and students. For example, Figure 3 illustrates that the number of the frequent terms in Week 1 of 

MOOC transcriptions (i.e., “creativity”, “innovation”, “journal”, “learn”, “people”, “problem”, “state”, 

“talk”, “value”, “welcome”) is 10 (i.e. |𝑇1|) and the summation of the number of their edges are 154 

(=28+9+9+9+36+17+9+19+9+9). <k1> in Week 1 is therefore 15.400 (=154/10) by its definition (see 

Section 3.3).  

 

[Insert Table 3] 

 

Figures 3 and 4 present (1) the terms that are frequently used only in MOOC transcriptions for 

each week; (2) the terms that are frequently used only in student textual feedback data for each week; 

and (3) the terms that are frequently used in MOOC transcriptions and student feedback data 

simultaneously. On the one hand, the terms “creativity”, “think”, and “idea”, which are considered key 

terms of the overall MOOC content, frequently co-occur in MOOC transcriptions and student textual 

feedback in MOOC discussion forums, simultaneously. On the other hand, in Week 6, while the terms 

“eureka”, “fish”, “money”, and “wing” (i.e., key terms on the course in Week 6) are frequently used in 

MOOC transcriptions, the terms “feedback”, “time”, “assignment”, and “certificate,” (i.e., the terms 

relating to the MOOC certificate or final homework assignments) are frequently used in student textual 

feedback data. Based on the results of semantic network analysis, it is postulated that students might be 

more interested in their final assignment, MOOC certificate, or overall course feedback, instead of 

lecture content in Week 6. Table 3 shows that the semantic network of student textual feedback data, 

which has higher average clustering coefficient, higher density, and lower average geodesic distance, is 

denser than the semantic network of MOOC transcriptions, but further investigation is necessary. It also 
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indicates that both the average degrees of nodes (i.e., terms) in the semantic networks of MOOC 

transcriptions and student textual feedback data are around 15 (i.e., 15.470 and 15.234, respectively). 

 

5.2. Correlation Analysis 

Table 4 provides the results of correlation coefficients (r) between (1) the differences between 

the semantic network metrics of MOOC transcriptions and student textual feedback data (i.e., <k1> – 

<k2>, C1 – C2, L1 – L2, 1 – 2) and (2) student performance (i.e., students’ average assignment scores, 

the number of submitted assignments in this case study), respectively.  

 

[Insert Table 4] 

 

Overall, Table 4 shows that the difference between (1) the semantic network metrics of MOOC 

transcriptions and student textual feedback data (i.e., the different word associations between 

instructors and students) and (2) student performance have a negative correlation. In particular, it 

indicates that students’ average assignment scores more strongly negatively correlate to the semantic 

network metrics than the number of submitted assignments, since the average correlation coefficient of 

the average assignment scores (i.e., -0.391) is less than the average correlation coefficient of the 

number of submitted assignments (i.e., -0.142) (p-value ≈ 0). Table 4 also shows that the difference of 

the average geodesic distances (i.e., L1 – L2) has stronger correlation with student performance (r < -0.5) 

than other semantic network metrics (i.e., <k1> – <k2>, C1 – C2, 1 – 2) (r > -0.5). It is postulated that the 

average geodesic distance may be useful as an indication of student engagement, but further research is 

necessary.  

The negative correlation between student disengagement (i.e., different word associations 

between MOOC transcriptions and student textual feedback data) and students’ average assignment 
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scores emphasizes the significance of maximizing student engagement in the course content, since 

students perform better when student disengagement is lower. It is also concluded that homework 

assignments would be helpful for student engagement in the course content. When students are not 

aligned with the course content or do not know how to complete the assignment, they may not be 

motivated to submit the assignments, which may reduce the number of submitted assignments [6].  

 

6. CONCLUSIONS 

This research measures different word associations in the semantic networks of MOOC 

transcriptions and student textual feedback data in MOOC discussion forums (i.e., student 

disengagement in the course content). Correlation analysis is then provided to investigate correlations 

between the values of the semantic network metrics and student performance in order to identify the 

effects of student disengagement in the course content on student performance.  

The proposed research is comprised of three main steps. First, textual data are retrieved from 

MOOC transcriptions and student feedback in MOOC discussion forums. Semantic network analysis, 

along with the semantic network metrics, is provided to reveal the different word associations between 

students and instructors for enabling researchers to understand why student disengagement exists. 

Finally, correlation analysis is implemented in order to understand how student engagement affects 

learning outcomes in MOOCs. 

Penn State’s MOOC data are used to validate this research. The semantic network graphs 

visualize which frequently co-occurred terms cause the different word associations between MOOC 

transcriptions and student textual feedback data in MOOC discussion forums. The differences of the 

semantic network metrics between MOOC transcriptions and student textual feedback data negatively 

correlate to students’ average assignment scores as well as the number of submitted homework 

assignments. It is postulated that the average geodesic distance, which provides stronger (negative) 
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correlation with student performance than other metrics in this work, can be used as an indication of 

student engagement. 

The authors will identify student performance that correlates with student engagement in the 

course content other than students’ average assignment scores as well as the number of submitted 

assignments. The semantic network metrics, other than the average degree, the average clustering 

coefficient, the average geodesic distance, and the density, will be investigated. Future work will also 

provide regression analysis in order to identify which semantic network metric combinations enable to 

indicate student engagement in the course content and predict student performance.  
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