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Abstract—Personalized adaptive gamification has the potential 

to improve individuals’ motivation and performance. Current 

methods aim to predict the perceived affective state (i.e., emotion) 

of an individual in order to improve their motivation and 

performance by tailoring an application. However, existing 

methods may struggle to predict the state of an individual that it 

has not been trained for. Moreover, the affective state that 

correlates to good performance may vary based on individuals 

and task characteristics. Given these limitations, this work 

presents a machine learning method that uses task information 

and an individual’s facial expression data to predict his/her 

performance on a gamified task. The training data used to 

generate the adaptive-individual-task model is updated every time 

new data from an individual is acquired. This approach helps to 

improve the model’s prediction accuracy and account for 

variations in facial expressions across individuals. A case study is 

presented that demonstrates the feasibility and performance of 

the model. The results indicate that the model is able to predict 

the performance of individuals, before completing a task, with an 

accuracy of 0.768. The findings support the use of adaptive 

models that dynamically update their training dataset and 

consider task information and individuals’ facial expression data.  

 
Index Terms—Performance; Facial expression; Gamification; 

Machine learning. 

I. INTRODUCTION 

amification has emerged as a growing area of interest 

across a wide range of sectors. In the past seven years, 

the research community has seen a significant growth of 

publications related to gamification [1], [2]. Deterding et al. 

define gamification as “the use (rather than the extension) of 

design (rather than game-based technology or other game 

related practices) elements (rather than full-fledged games) 

characteristic for games (rather than play or playfulness) in 

non-game contexts (regardless of specific usage intentions, 

context, or media of implementation)” [3, p. 14]. In other 

words, gamification aims to implement game features (e.g., 
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Points, Leaderboards) in non-game contexts to encourage 

individuals to perform a task or set of tasks (i.e., promote 

action or behavior) [4]. The tasks and objectives of a gamified 

application can vary based on the context of an application, 

and the designers’ intentions. For example, in the health and 

wellness context, physically-interactive gamified applications 

such as Active Games, require individuals to use full-body 

motion to perform a physical task with the objective of 

increasing their physical fitness or improving their health 

awareness [5].  

Due to the heterogeneity of individuals, researchers have 

started exploring methods to design personalized and adaptive 

gamified applications [6]. Current methods are often 

developed around studies that have explored the relationship 

between individuals’ attributes and their game feature 

preferences. However, these studies provide guidelines suited 

for a general demographic of end users and not for unique 

individuals. Additionally, most of the existing gamification 

methods are not capable of dynamically capturing data of an 

individual’s interaction with an application (i.e., real-time data 

capture). Instead, these methods focus on gathering data in 

discrete time intervals through the use of self-reported 

questionnaires [7]. This approach ignores the possibility that 

individuals’ attributes and preferences are dynamic in nature 

and could change over time [8], which could potentially 

impact the long-term effectiveness of an application [9].  

The Affective Computing (AC) community has shown how 

individuals’ facial expressions can be systematically captured 

and used to improve their interaction with an application. 

Systems capable of capturing individuals’ facial expressions 

have also shown to be suitable for personalization and 

adaptation [10]–[12]. In light of this, researchers have started 

to increasingly implement AC methods to improve the user 

experience in gaming applications [13]. These applications are 

known as Affective Games, and are defined as games in which 

the “emotional state and actions of a player can be recognized 

and used in order to alter the gameplot and offer an increased 

user experience” [14, p. 1]. Affective Games relate 

individuals’ facial keypoint data to their perceived affective 

states. This affective state information is used to alter the 

gameplot or difficulty of the application in order to improve 

the user experience. However, individual differences in facial 

expressions can deteriorate the accuracy of existing methods 

since they employ general models trained with datasets from a 

limited set of individuals. For these general models, it is 

challenging to accurately predict the affective state of an 

individual that it has not been trained for [15].  

Moreover, current Affective Games aim to recognize 

individuals’ affective states with the goal of improving their 
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experience and not necessarily their task performance, which 

is a key aspect of gamified applications [16]. Studies have 

shown that the relationship between performance and affective 

states is mediated by the task and individuals’ characteristics 

[17]. This relationship can limit the effectiveness of current 

methods in predicting an individual’s affective state and 

adapting an application to improve his/her performance. 

Therefore, designers should focus on developing models 

capable of predicting individuals’ performance, instead of 

their affective state. Furthermore, efforts should be taken to 

develop models capable of systematically updating their 

training dataset as new data of an individual is acquired and 

hence, adapting (i.e., learning) to an individual’s unique facial 

expression characteristics.  

Given the current limitations, this work presents a method 

to predict an individual’s performance on a gamified task (i.e., 

tasks of a gamified application). The method enables capturing 

individuals’ facial keypoint data in real-time without affecting 

their immersion in an application. Furthermore, the training 

data used to generate the machine learning model is 

continuously updated each time new data of an individual is 

acquired. This continuous updating helps improve the model’s 

accuracy and account for variations in facial expressions 

across individuals. The method has the potential to enable 

designers to systematically quantify the correlation between an 

individual’s facial keypoint data and his/her performance on a 

gamified task. This information could potentially be used to 

adapt the game features and task difficulty of gamified 

applications [18].  

II. RELATED WORK 

A. Personalized Adaptive Gamification 

Researchers agree that gamified applications should be 

designed from a highly personalized and adaptive point of 

view since studies have shown that individuals interact with 

gamified applications in different ways [19]. As stated by 

Buckley and Doyle  “individuals do respond differently to 

gamification, based upon individual attributes” [20, p. 44]. 

Even though researchers have begun to explore how different 

groups with common attributes (e.g., personalities, learning 

styles) perceive and interact with gamified applications [20]–

[23], several limitations still exist. First, these studies have 

focused on gathering individuals’ data through the use of self-

reported questionnaires, which can impact the validity of the 

responses due to individuals’ biases [24]. Furthermore, these 

studies ignore the possibility that individuals’ attributes and 

preferences are dynamic in nature and could change over time 

[8]. Not considering the dynamic nature of human behavior 

and preferences can have a negative impact on the 

effectiveness of gamified applications [9]. 

Besides individual differences, the characteristics of a task 

and the effort required to complete it can impact the effects 

that gamification has on motivating individuals to perform the 

task successfully. The Fogg’s Behavior Model (FBM) [25] 

suggests that there are some fundamental tasks and individual 

characteristics that can impact the effectiveness of 

gamification. For example, in the gamified application 

presented by Denny [26], in which students generated and 

answered multiple choice questions, their performance on the 

number of answers submitted and the number of active days 

was improved with the gamified application, compared to the 

control group (i.e., non-gamified). However, there was no 

significant improvement in the number of questions generated. 

These results are in line with FBM since the greater effort and 

time required to generate questions (i.e., greater task 

complexity) impacted their motivation and performance on 

that task. Furthermore, Lopez and Tucker’s [27] study 

supports the need to consider task characteristics while 

designing gamified applications. Their results reveal that there 

was a negative correlation between the complexity of a task 

and individuals’ performance.  

Similarly, the human-computer interaction community has 
recognized the connection between task properties and 

individuals’ performance, and developed several predictive 

models of human performance [28], [29]. These models allow 

designers to evaluate the expected performance of individuals 

while interacting with an interface, without having to test it. 

This is done by evaluating task information using models 

founded on experimental psychology and information theory 

research [29], [30], or in some cases, even machine learning 

models [31]. For example, Li et al. [31] used a deep learning 

algorithm to predict the time individuals spend in a vertical 

menu selection task. Their model achieved an R2 ranging from 
0.75 to 0.95 when tested with multiple datasets. However, 

while some of these predictive models do take into 

consideration individual characteristics (e.g., expert vs. 

novice) [30], [32], it is still challenging for them to customize 

their prediction on an individual level. 

Recently, a systematic literature review in the field of 

adaptive gamification was presented [6]. The challenges 

highlighted in this review illustrate the need for more 

empirical studies and methods to advance gamified 

applications. Moreover, the authors stated that machine 

learning would play a significant role in advancing the field of 

gamification. For example, Barata et al. [33] presented 

evidence that suggests that machine learning algorithms can 

be used to predict “student types”. In a previous study, the 

authors identified four distinctive “student types” according to 

their performance, engagement, and behavior on the 

application [34]. Their results revealed that after nine weeks of 

interacting with the applications, a participant’s performance 

data could be used to predict his/her “student type” with an 

accuracy of 0.79. A participant’s player type, along with 

his/her performance data from a five-week period, was only 

able to predict his/her “student type” with an accuracy of 0.47. 

In recent years, researchers have started working on 

developing methods for personalized adaptive gamified 

applications with the goal of maintaining individuals’ 

motivation for long periods of time [6]. These methods tend to 

implement guidelines developed based on a general 

demographic of end users [35]. Hence, the degree of 

personalization that they can provide to a unique individual is 

limited. Furthermore, some of this work only provides 

conceptual frameworks and little empirical evidence of their 
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implementation or feasibility [9], [36]. Finally, these methods 

are not capable of systematically capturing data of individuals’ 

interaction with a gamified application and predicting their 

task performance. Therefore, due to the limitations of current 

methods, this work presents a machine learning method to 

predict an individual’s performance on a gamified task. The 

method captures individuals’ facial keypoint data in real-time 

as they interact with a gamified application without affecting 

their immersion. Moreover, a benchmark analysis on the 

performance of the model, generated with multiple machine 

learning algorithms, is presented. This model has the potential 

to advance gamified applications by enabling designers to 

consider task characteristics and individuals’ facial 

expressions. 

B. Affective Computing, Affective Games, and Gamification 

In recent years, researchers have started implementing 

Affective Computing (AC) methods with the objective of 
improving user experience in gaming applications [13], [14], 

[37]. AC researchers have been able to infer individuals’ 

affective states by using a wide range of modalities, such as 

body movements, speech, and facial expressions [38]. 

Nonetheless, AC applications frequently use facial expressions 

to infer an individual’s affective state [39]. This is because 

individuals reveal a significant amount of affective state 

information through their facial expressions [40]. 

Additionally, facial expressions can be captured with sensors 

that do not affect an individual’s immersion or ability to 

interact with an application [41]. For example, the Affective 

Game developed by Grappiolo et al. [42], captured 
individuals’ affective state information via facial expressions 

and the use of self-reported questionnaires. The application 

used this information to adapt and change its content to 

improve user experience. Similarly, Shaker et al. [43] 

presented an Affective Game that was capable of adapting its 

game features and task complexity (i.e., level difficulty) based 

on individuals’ predicted affective states [44], [45]. In a 

different approach, Athanasiadis et al. [46] incorporated 

students’ scores to predict their “energy function” value (i.e., a 

function of self-reported engagement, boredom, and 

frustration levels) in an educational application, indicating that 
students’ performance was associated with their affective 

state. Similarly, others studies have shown a link between 

individuals’ affective state and their task performance, 

especially in cognitive tasks [47]–[49]. However, research 

indicates that the affective state that correlates to good 

performance may vary based on the characteristics  of the task 

and individual [17]. Hence, current applications might adapt 

based on an individual’s affective state, and not observe 

improvements in his/her performance.  

Table I shows a summary of existing methods that 

researchers have developed to personalize their gamified and 

non-gamified applications. Most of the methods developed for 

gamified applications tend to capture individuals’ data at 

discrete times via self-reported surveys. In contrast, Affective 

Games have shown how designers can dynamically capture 

individuals’ data (e.g., facial keypoint data) to predict their 

affective states. However, most of the current affect-sensitive 

systems employ general models [14]. The accuracy of these 

systems might be impacted by the heterogeneity of 

individuals’ facial expressions [50]. As shown by Asteriadis et 

al. [44], their “player dependent” model (i.e., individual 

model) outperformed their general model in terms of 

accurately predicting individuals’ engagement (i.e., accuracy: 

0.71 vs. 0.82). Moreover, existing methods do not update their 

model’s training set dynamically as new data of an individual 

of interest is acquired. The capability of models to 

dynamically adapt to individuals has great potential to 

advance personalized systems [15].  
 

TABLE I 

LITERATURE REVIEW SUMMARY 

 
Study 

Dynamic 
Data 

Capture a 

Gamified 
Application b 

Adaptive 
Individual  
Model c 

No Yes No Yes No Yes 
[43], [46] X  X  X  

[7], [12], [39], [42], 
[44], [45], [51]  

  
X 

 
X 

  
X 

 

[9], [21], [22], [24], 
[33], [35], [36], 

[52] 

 
X 

   
X 

 
X 

 

 

This work  X  X  X 
a Data captured dynamically as individuals interact with an application (i.e., 

facial expression, gestures, voice), not at discrete points in time (i.e., self-

reported questionnaires after or before interacting with the application). 
b Not a full-fledged game intended just for entertainment purposes, but a 

gamified application intended to promote action or behavior.   
c Implements a model that systematically updates its training set as new data 

of an individual of interest is acquired; hence, adapting to a unique 

individual’s characteristics (unlike general models).  

 

Furthermore, current affect-sensitive systems tend to group 

individuals’ affective states into discrete categories or a single 

function value of their affective states (e.g., engagement, fun, 

frustration, “energy function”) [24], [43], [46]. However, 

individuals’ affective state is far more complex and 

heterogeneous. The assumption of a “one-to-one 

correspondence” between the expression and the experienced 

affective state of an individual may limit the effectiveness of 

existing systems [40]. Thus, potentially affecting their 

adaptability to improve and maintain individuals’ motivation 

and performance over time. Recent studies reveal that 

individuals’ facial keypoint data and machine learning models 

can be used to bypass the need to group individuals’ affective 

states into discrete categories and predict their performance on 

a task [12]. For example, a machine learning model that uses 

students’ facial keypoint data captured while reading the 

instructions of an engineering task, was shown to accurately 

predict their task completion time [51]. Therefore, in this 

work, a machine learning method to predict individuals’ 

performance, instead of their affective state, is presented. 

Specifically, an adaptive-individual-task model to predict an 

individual’s performance on a gamified task by using his/her 

facial keypoint data and task information is presented. The 

method captures facial keypoint data in real-time as an 

individual interacts with an application. Furthermore, the 

method updates the model’s training set every time new data 

of an individual is acquired. The results of this work support 
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the implementation of facial keypoint data and adaptive-

individual-task models as a potential method to advance 

gamification.  

III. RESEARCH QUESTIONS  

As highlighted in [6] there are many open research 

questions and challenges in the field of personalized adaptive 

gamification. Previous studies have shown that machine 

learning models that implement individuals’ facial keypoint 

data, captured while reading the instructions of a task, can 

accurately predict individuals’ task completion time [51]. 

However, there is a need for more empirical evidence to 

support the benefits of implementing machine learning 

methods to advance the field of gamification. The objective of 

this work is to bridge the current knowledge gap by exploring 

fundamental research questions that will provide quantitative 

evidence in support of implementing facial keypoint data 

acquisition and machine learning models to predict an 

individual’s performance in a gamified application. In this 

work the following research questions are addressed:  

RQ1. Can a machine learning model predict the 

performance of an individual on a gamified task with accuracy 

greater than random chance by using his/her facial keypoint 

data and task information?  

Addressing this question will reveal that a machine learning 

model can predict an individual’s performance on a gamified 

task, with accuracy greater than random chance. Nonetheless, 

a machine learning model that is trained with data from a 

limited set of individuals (e.g., general model) will not be able 

to consider the unique characteristics of a new individual’s 

facial keypoint data. Therefore, the authors propose an 

adaptive-individual-task model capable of updating its 

training set as new data of an individual is acquired.  

Consequently, this motivates the following question: 

RQ2. How does an adaptive-individual-task model’s 

performance change as new data of an individual is acquired 

and the model is re-trained?    

To address RQ2, the adaptive-individual-task machine 

learning model is validated with an iterative cross-validation 

approach that simulates scenarios in which new data of an 

individual is acquired. This adaptive process helps account for 

variation in facial expressions of individuals; hence, enabling 

the model to adapt (i.e., learn) to an individual’s unique facial 

expression characteristics. 
 

IV. METHOD 

This section introduces a machine learning method to 

predict an individual’s performance on a gamified task (i.e., 

tasks of a gamified application). Figure 1 presents the outline 

of the method that includes the Data Acquisition (IV.A) of 

Task data (IV.A.1), individuals’ Facial Keypoint data 

(IV.A.2), as well as Performance data (IV.A.3). Moreover, the 

method has a Model Generation (IV.B) and a Model 

Validation (IV.C) steps. 
 

A. Data Acquisition 

The purpose of this step is to systematically capture an 

individual’s facial keypoint data before performing a gamified 

task, as well as task and performance data. This data is used to 

generate the adaptive-individual-task model and predict the 

performance of individuals in a gamified task.  
  

1) Task data: The efforts required to complete a task can 

impact the effectiveness of gamification in motivating 

individuals to perform the task successfully. Hence, the 

adaptive-individual-task model uses as input, data pertaining 

to the task, as well as data pertaining to individuals. 

Specifically, the model uses task complexity data as input. 

Task complexity is frequently modeled with three different 

approaches (i) subjective, which considers an individual’s 

psychological state, (ii) objective, which considers task 

characteristics and properties, and (iii) an integration of the 
two approaches [53]. However, subjective approaches are 

challenging to implement since their reliability is impacted by 

individual differences [54]. For example, a math student may 

perceive complex mathematics problems easy to solve but on 

the other hand, may perceive aerial work hard. However, 

individuals with different backgrounds (e.g., construction 

workers) may perceive the complexity of these tasks 

differently. Therefore, in this method, a task complexity 

metric that considers task characteristics and properties is 

implemented. 

 Depending on the gamified task (e.g., cognitive task, 
physical task), different methods that consider task 

characteristics and properties can be used to measure task 

complexity (see [27], [54], [55]). For example, Wood [55] 

proposed a complexity model that described tasks according to 

three elements: (i) information cues,  (ii) products, and (iii) 

acts. Information cues are stimuli that are used to make 

conscious discriminations. While, products are quantifiable 

outcomes of acts, and acts are the required steps for creating 

the product. Based on these elements, the model defines task 

complexity as a function of (i) dynamic complexity, (ii) 

component complexity, and (ii) coordinative complexity. 

Dynamic complexity relates to the variability between task 
inputs and products over time (e.g., game rules changing over 

time). Component complexity relates to the number of acts 

needed to complete a task (e.g., steps required to complete a 

task). Coordinate complexity relates to the strength between 

acts, products, information cues, and task inputs (e.g., tasks 

requiring greater dexterity to perform) [17]. Similarly,  in the 

IV.A.2. Facial 

Keypoint Data 

IV.A.3.  Performance  

Data

IV.B. Model 

Generation

IV.C. Model 

Validation

IV.A.1.  Task Data 

Performance Prediction

IV.A. Data AcquisitionIV.A. Data Acquisition

  
Fig. 1. Method Outline 
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context of gamification, Lopez and Tucker [27] proposed a 

task complexity metric to evaluate the physical effort required 
to perform a task in physically-interactive gamified 

applications based on the body movements required to 

perform it (see section V.A.1) .  
 

2)  Facial Keypoint data: Facial keypoint data is utilized since 

it can be captured without affecting an individual’s immersion 

or ability to interact with an application. In this work, a non-

wearable sensor is used to collect the facial keypoint data of 

an individual i before performing a task t (Fit). In this work, 

the facial keypoint data is measured as a relative weight from 
an Action Unit (AU), ranging from 0-1. This facial keypoint 

data resembles the Facial Action Coding System [56], in 

which expert raters code the facial displays of an individual, as 

illustrated in Fig. 2. The method presented can also be 

implemented with facial keypoint data measured as two-

dimensional coordinates from an image. Nonetheless, in such 

a case, the facial keypoints need to be regularized and 

normalized. This normalization can be done via a regularized 

mean shift algorithm and an ordinary Procrustes analysis, as in 

[51], [57].   

In this work, the facial keypoint data of an individual i 
consists of j independent facial keypoint time series (for j ϵ set 

of facial keypoints). These are collected while individual i 

interacts with a gamified application App, after being 

introduced to the task t and before completing the task (for t ϵ 

set of gamified tasks {T}, and App ϵ set of gamified 

applications). Therefore, the facial keypoint data of an 

individual i on a task t (Fit) is a matrix with n rows and j 

columns, where n denotes the length of the time series. The 

length of the time series depends on the duration of the 

individual’s interaction with the gamified application before 

performing the task and the frequency in which the data is 

collected. For example, Fig. 3 shows a representation of an 
individual’s facial keypoints q and k (i.e., AU q and k) 

captured before performing the tasks of an application (i.e., 

t={1,2,…T}). Assuming that the frequency of data captured 

was 10 frames/sec (i.e., 10Hz) and the tasks were performed 

every 6 sec, the data captured will generate T matrices (i.e., 

{Fi1, Fi2… FiT}) with 2 columns (i.e., q and k) and 60 rows 

(i.e., n=10 frames/sec x 6sec). 

3) Performance data: In gamified applications, the tasks are 

designed such that by successfully performing them, 

individuals will meet the objective of the application. Due to 

this relationship, researchers have used individuals’ 

performance on the gamified task as a proxy for measuring 
their performance in meeting the objective of an application. 

Therefore, in this work, the same approach is used. For the 

purpose of this work, the performance of an individual i on a 

task t is assumed to be a binary variable, where:  
 

          Yit= 1, if individual i successfully performed a task t 

    Yit=0, otherwise.  

For,  

 i ϵ set of individuals {I} 

 t ϵ set of tasks {T} 
 

B. Model Generation 

The objective of this step is to build an adaptive-individual-

task machine learning model to accurately predict the 

performance of an individual i on a task t (i.e., Yit ). The model 

uses as predictor variables, the mean and standard deviation 

value of an individual’s facial keypoint data captured before 

performing a gamified task (i.e., Fμit ,Fσit ), the complexity of 

the task (i.e., PCt), as well as individual and application 

identifier data (i.e., ID, App). In order to account for the 

dynamic nature of facial expressions, and based on previous 

studies which suggest that reactions are evident in individuals’ 

facial expressions just after one second of stimulus onset [58], 

the mean and standard deviation of individuals’ facial 

keypoint data is calculated every second (i.e., a 1 second time 

window). Moreover, the model is first trained with a dataset of 

a general population of individuals. Then, as new data of an 

individual of interest is acquired, the training set is updated, 

and the model is re-trained. This approach allows mitigation 

of the “cold start” problem [59] since before an individual 

interacts with an application, no prior information of that 

individual’s interaction with the application exists. 

In this work, multiple machine learning algorithms are 

implemented to test their capability to generate a model that 

can accurately predict an individual’s performance on a 

gamified task. Specifically, in this work, a Logistic 

Regression, Naïve Bayesian, Support Vector Machines, 

Random Forest, and a Neural Network classification algorithm 

are implemented. The performance and computational 

resources required to train the model using these machine 

learning algorithms are evaluated. These algorithms were 

selected since they are frequently used in the Affective 

Computing community, and have different underlying 

processes for generating classification models (e.g., model-

based, decision tree)  [40], [60]. 

C. Model Validation 

For the machine learning model to be viable, its accuracy 

and robustness need to be evaluated. In this work, a cross-

validation (CV) approach is implemented. A CV approach 

requires the partitioning of the dataset into two sets: (i) a 

training set, and (ii) a testing set. A model is trained using the 

 
Fig. 2. Actors illustrating a set of Actions Units, from Ref. [56] 

 
Fig.3. Illustration of facial keypoints data acquisition 
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training set, while the testing set is used to validate the 

model’s accuracy. First, to benchmark the different machine 

learning algorithms and to address RQ1, a 10-fold CV 

approach is implemented. In this approach, the dataset is 

randomly partitioned into 10-folds. In each of the 10 iterations 
of this CV approach, one fold is used as a testing set while the 

remaining are used as a training set. To address RQ2, the 

adaptive-individual-task model is evaluated using an iterative 

leave-one-out CV approach. This approach is implemented to 

simulate the scenario in which new data of an individual of 

interest is acquired, and the model is re-trained. Although the 

10-fold CV approach will not evaluate the changes in the 

model’s accuracy as more data of an individual is acquired 

and the model is retrained, it will help benchmark the 

performance of the different machine learning algorithms 

while requiring less computational resources than the iterative 

leave-one-out CV approach [61]. Moreover, the 10-fold CV 
approach will produce an accuracy estimator with less 

variance [61]. 

For the iterative leave-one-out CV approach, the same 

testing sets are used in each of the instances to maintain 

consistency between the iterations of the procedure. Therefore, 

in each of the leave-one-out instances, the data pertaining to 

an individual i performing the tasks of an application is 

randomly partitioned into two-thirds for training and one-third 

for testing. In the first iteration, the training set of the model is 

composed of a set that does not contain data of the individual 

of interest (e.g., individual i). Hence, in this first iteration, the 
training and testing sets are person independent, which 

produces a general model. In the subsequent iterations, an 

extra tuple containing information about individual i 

performing a given task t is randomly added to the training set. 

An extra tuple is added, and the adaptive-individual-task 

model is re-trained. This process is followed until all the 

tuples from the two-thirds training partition are used. This 

procedure is performed for all the individuals in the dataset. 

Figure 4 illustrates an example of this iterative leave-one-

out CV approach. In this example, a dataset of 68 individuals 

(i.e., ID), performing 12 different tasks of different complexity 

(i.e., PC), in two gamified applications (i.e., App) is used. 
Therefore, the dataset is composed of a total of 816 tuples 

(i.e., 68*12). In the first leave-one-out instance, the 12 tuples 

of individual ID=1 are randomly partitioned, 8 are used for 

training while the remaining 4 are used for testing. In the first 

iteration, the model is trained with a dataset that does not 

contain any tuple of the individual ID=1 (i.e., tuples 13-816). 

In the remaining iterations, an additional tuple is randomly 

added to the training set of the previous iteration, one at a 

time. That is, for iteration 2, the training set consists of the 
same set as in iteration one, plus the addition of one extra 

tuple (i.e., 12-816). Therefore, for iteration 9, the training set 

consists of tuples 5 to 816. This process is carried out for the 

remaining individuals. This approach helps simulate the 

scenarios where new data of an individual of interest is 

acquired, and the model’s training set updated. 

V. CASE STUDY 

The method is implemented in two physically-interactive 
applications. The goal of the gamified applications is to 

motivate participants to use full body motions (e.g., bend, 

extend arm, jump) in order to complete a series of tasks. The 

objective of each application is to improve individuals’ 

physical performance. Thus, these applications could fall 

within the umbrella of Active Games. In this work, the 

gamified tasks consisted of a series of obstacle avoidance 

tasks. In other words, participants were required to perform 

certain full body motions to pass through a series of obstacles 

without touching them, similar to the game show “Hole in the 

WallTM” [62]. In these gamified applications, the authors were 
able to control for the start and completion time of the tasks. 

This allowed them to systematically capture the facial 

keypoint data of participants at equal time points. The 

applications consisted of 12 different sections, each one with 

its unique gamified task (i.e., obstacle avoidance). Hence, for 

this case study, a total of t=12 tasks were analyzed.  

TABLE II 

DESCRIPTION OF GAME FEATURES IMPLEMENTED IN THE APPLICATIONS  

Application A  

Points- The score measurement of an individual was shown 
in the top left corner of his/her visual field.   

Avatar- The individuals were given the option to change the 

color of the avatar that will represent them in the virtual 

environment. 

Content Unlocking- Coins were placed throughout the 

games in different locations. If more than 21 were collected 

the individual was allowed to change the gaming 

environment background. 

Application B 

Win States- At the end of the application, the individuals 

were told if they had won or lost based on a threshold score 

level. 

Chance- The individuals were given the opportunity to 
assign a virtual environment background at random. 

Achievements- There were three possible achievements 

individuals could accomplish shown at the beginning of the 

application. They were:  (i) Lucky Strike: Get through 3 

obstacles in a row without touching, (ii) Hops: Jump while 

going through an obstacle, (iii) Contortionist: Pass every 

obstacle flawlessly. 
 

The two physically-interactive applications used in this case 

study only differed in the set of game features implemented. 

The set of game features implemented in each application (i.e., 

 
Fig. 4. Example of the iterative leave-one-out cross-validation 

approach 
 

Tuple ID Facial
keypoint  

1
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keypoint  

2

… Facial
keypoint  

10

App PC Y

1 1 0.355 0.574 … 0.355 A 0.34 0

2 1 0.674 0.234 … 0.632 A 0.23 1

3 1 0.365 0.642 … 0.192 A 0.56 0

4 1 0.674 0.234 … 0.632 A 1.23 1

… … … … … … … … …

12 1 0.244 0.193 … 0.885 A 0.23 1

13 2 0.674 0.234 … 0.632 B 0.34 1

… … … … … … … … …

816 68 0.674 0.234 … 0.632 A 0.23 1

Testing 
Set

Validation 
Iterations

1
2 …

9
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Application A and Application B) were selected based on their 

presence in successful and unsuccessful applications, 

respectively (see [63]). The applications consisted of A) 3 

features common in “successful” applications, and B) 3 

features common in “unsuccessful” applications. Table II 

shows a brief description of the game features implemented. 

The applications of this work resemble the ones used in [27]. 

 In this case study, a total of 71 students from the 

Pennsylvania State University, with ages ranging from 18 to 

23 years old (M= 20, and SD= 1.2) participated in the 

experiment. All of the participants were given an introduction 

to the applications and experimental setup. After the 

completion of the informed consent documents, the 

participants completed a pre-experiment questionnaire, and 

were then randomly assigned to one of the two applications. 

Due to technical difficulties in the data acquisition process, 

only data from 68 participants was analyzed in this work. 

A. Data Acquisition 

In this case study, the multimodal infrared Kinect sensor 

was used to capture individuals’ facial keypoint data. 

Moreover, this sensor allowed participants to interact with the 

physically-interactive applications. The Kinect sensor is used 

in this work because of its low cost and capability to capture 

data in real-time without affecting participants’ immersion and 

ability to interact with the applications, as in previous studies 

[39], [64]. Figure 5 shows the experimental setup used in this 

case study. Figure 5 shows a Kinect sensor setup in front of a 

participant and a projected display that allows participants to 
visualize the applications’ virtual environment. As the 

participant interacted with the application, the Kinect sensor 

was able to capture a participant’s joints location (i.e., yellow 

dots in Fig. 5) as well as his/her facial keypoint data. 

Moreover, on the right side of Fig. 5, an illustration of the 

virtual environment of Application A displayed to the 

participants is shown. 
 

1) Task data: Due to the physical task of the gamified 

applications used in this case study, the method for assessing 

task complexity presented in [27] is implemented. 

Nonetheless, the adaptive-individuals-task model is not 

constrained to any particular method that measures the 
complexity of a task based on its characteristics and properties 

(i.e., objective approach) (see section IV.A.1). This approach 

is capable of assessing the physical effort required to perform 

a task. The approach implements a task complexity metric 

(PC) that is a function of the sum of the Euclidean distances 

from an individual’s joint positions at rest (i.e., 𝑋𝑙
𝑟𝑒𝑠𝑡, 𝑌𝑙

𝑟𝑒𝑠𝑡, 

𝑍𝑙
𝑟𝑒𝑠𝑡) to the joint positions needed to successfully perform a 

task t ( i.e., 𝑋𝑙
𝑡, 𝑌𝑙

𝑡, 𝑍𝑙
𝑡), for l ϵ the set of joints {L} and t ϵ set 

of tasks {T}, as shown in Eq. (1).  

 

𝑃𝐶𝑡 = ∑ √(𝑋𝑙
𝑟𝑒𝑠𝑡 − 𝑋𝑙

𝑡)2 + (𝑌𝑙
𝑟𝑒𝑠𝑡 − 𝑌𝑙

𝑡)2 + (𝑍𝑙
𝑟𝑒𝑠𝑡 − 𝑍𝑙

𝑡)2 
2𝐿

𝑙=1  (1)  

 

In this work, an individual standing up with his/her arms 

close to the body (e.g., Fig. 6, part A), is considered to be in 

resting position. Figure 6 part A, shows an illustration of an 

individual skeletal system with the position coordinates of the 

right-hand joint. The values of these coordinates are measured 

as a relative distance from a reference point (e.g., dotted circle 

in Fig. 6). This joint position data is employed to evaluate the 

complexity of the task. For example, Fig. 6 part B and C 

illustrate an individual performing a task (i.e., collecting 

“lives”). It can be seen that the task in part B requires more 
physical effort to perform than the task in part C. In this 

example, the coordinates of the right hand joint (i.e., l=RH) 

while at rest, as shown in part A, are 𝑋𝑅𝐻
𝑟𝑒𝑠𝑡= Y𝑅𝐻

𝑟𝑒𝑠𝑡= Z𝑅𝐻
𝑟𝑒𝑠𝑡

 =1m 

(for this example, the joint coordinates are given as the 

distance from the reference point: [0,0,0] in meters [m]). 

Moreover, the coordinates of the right hand joint while 

performing the task in part B (i.e., t=B), are 𝑋𝑅𝐻
𝐵 =2m,  𝑌𝑅𝐻

𝐵 =1m, 

𝑍𝑅𝐻
𝐵 =2m, while for part C are 𝑋𝑅𝐻

𝐶 =4m,  𝑌𝑅𝐻
𝐶 =3m, 𝑍𝑅𝐻

𝐶 =3m. 

Using Eq. (1) it can be shown that PCC=4.1m is greater than 

PCB=1.4m. This suggests that less physical effort is needed to 

perform the task in part B, compared to the task in part C. This 

is because the location of the item in part B requires 

individuals to move a shorter distance.  
The results presented in [27] suggests that with a limited 

set of joint position data (i.e., L≥13), the physical effort of 

tasks that require full body motion (e.g., jump, walk) can be 

 
 Fig. 6. Example of task complexity assessment 
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accurately capture. However, this metric makes the 

assumption that the relative difference between the 

complexities of performing different physical tasks will not 

change significantly based on an individual’s anthropometry. 

That is, it is assumed that a physical task that entails more 
movement of limbs (e.g., bend) will require more effort to 

perform (i.e., more complex) than a task that entails less 

movement of limbs (e.g., extend arm), and that this will be 

independent of the anthropometry of the individual performing 

the tasks. Hence, the PC values of a task can be acquired from 

a pilot test of the application, as suggested by [27]. In this 

pilot test, the joints’ position at rest and the position needed to 

successfully perform a gamified task t can be acquired. 
 

TABLE III 

PARTICIPANTS’ JOINTS TRACKED BY THE MICROSOFT KINECT 

1 Right shoulder 7 Right hip 13 Head 

2 Right elbow 8 Right knee 14 Neck 

3 Right wrist 9 Right ankle 15 Pelvis 

4 Left wrist 10 Right toe 16 Left hip 

5 Left elbow 11 Left knee 17 Left toe 

6 Left shoulder 12 Left ankle   

 

In this work, the 17 joints tracked by the Kinect sensor (see 

Table III) were used to calculate the task complexity values of 

the gamified tasks. The joint locations consisted of X, Y, and 

Z position data relative to the location of the sensor. Even 

though both applications implemented the same gamified tasks 
(i.e., obstacles), the game feature of Content Unlocking 

impacted the task complexity of Application A. This was due 

to the locations of the coins used to implement the Content 

Unlocking feature (see Table II). The coins were positioned 

before each obstacle of Application A and their position varied 

by obstacles. To collect the coins individuals had to incur in 

greater physical effort compared to individuals of Application 

B, which had no coins. This was due to the location of the 

coins not being aligned with the obstacles. This additional task 

of collecting the coins to unlock the new content had a direct 

impact on the complexity of the tasks of Application A (see 
Table 6 Ref. [27]). Therefore, a total of 24 measurements of 

task complexity were calculated (i.e., 12 for Application A, 12 

for Application B). 
 

2) Facial Keypoint data: The Kinect sensor captured 

participants’ facial keypoint data as they interacted with the 

applications. The Kinect SDK is capable of automatically 

capturing the facial keypoints shown in Table IV by 

implementing the CANDIDE-3 model [65]. These facial 

keypoints are able to be captured if a participant had his/her 

eyebrows or jaw lowered, eyelids closed, and/or lips raised or 

stretched before completing a gamified task. The AUs 
presented in Fig. 2 relate to some of the facial keypoints that 

the Kinect sensor is capable of capturing. For example, if a 

participant has his/her eyes closed (e.g., similar to the actor 

shown on the right of Fig. 2), the Right Eyelid Closed and Left 

Eyelid Closed facial keypoint values will show as 1; while 0 if 

the eyes are completely open. 
 

 

 

TABLE IV 

FACIAL KEYPOINT DATA COLLECTED. 

1 Upper Lip Raised 6 Right Eyelid Closed 

2 Left Lip Stretched 7 Left Eyelid Closed 

3 Right Lip Stretched 8 Jaw Lowered 

4 Left Brow Lowered 9 Right Brow Lowered 

5 

Left Lip Corner 

Depressor 10 Right Lip Corner Depressor 

  
The equal time intervals of the gamified tasks allows for 

the systematic capture of facial keypoint data of participants at 

equal time points; thus, generating equal length time series.

 The facial keypoint data of each participant i on a given task t 

was captured continuously for 6 seconds at a rate of 10 

frames/second (i.e., 10Hz). This resulted in a facial keypoint 

data matrix for each participant i on a given task t (Fit) with 10 

columns (j=10) and 60 rows (n=60). The matrices of facial 

keypoint data values (Fit) were collected for each of the 68 

participants (i=68) on each of the 12 tasks (t=12). The 

adaptive-individuals-task model uses the average, and 

standard deviation values of participants’ facial keypoint data 
captured every second while interacting with a gamified 

application App, after been introduced to the task t and before 

completing the task t. That is, for each individual i on a task t, 

their respective n×j (i.e., 60x10) facial keypoint data matrix 

(Fit) is transformed to a 6x10 matrix of average values (Fμit ) 

(i.e., average over 10 data points) and a 6x10 matrix of 

standard deviation values (Fσit) which are used as input for the 

proposed model. 
 

3)   Performance data: In addition to capturing facial keypoint 

data, the Kinect sensor is capable of capturing individuals’ 
joint location data (see Table III), which enables participants 

to interact with the applications in the virtual environment. 

This data also enables the applications to assess in real-time, 

whether a participant i successfully performed a task t (Yit= 1) 

or not (Yit= 0).  For example, Fig.7 shows a representation of a 

participant performing a task in Application B, with the 17 

joints tracked by the sensor highlighted. In this figure, the 

joints highlighted in green indicate the ones within the 

predefined obstacle avoidance area for that specific task, while 

the red ones indicate the joints outside this area. For a 

participant i to successfully perform a task t, all of his/her 17 

 
Fig. 7. Illustration of a gamified task with joints highlighted for 

visualization. 
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joints have to be within the obstacle avoidance area of that 

task. Therefore, in this example, the participant did not 

successfully perform the task since not all of his/her joints 

were within the obstacle avoidance area.  
 

B. Model Generation 

The different machine learning algorithms used to generate 

the model were implemented in R (v.3.5.1) [66]. The Support 

Vector Machines and Random Forest algorithms were 

implemented with the R package e1071 (v. 1.6-7) [67] while 

the Logistic Regression was implemented with the package 
caTools (v.1.17.1) [68]. The Naïve Bayesian was implemented 

with klaR (v.0.3.3) [69], and the Neural Network algorithm 

with nnet (v.7.3-12) [70]. The hyper-parameters of the 

algorithms were tuned using a random search approach.  

C. Model Validation 

To benchmark the performance of the machine learning 
algorithms, first a 10-fold cross-validation approach is 

implemented. Subsequently, to address RQ2, an iterative 

leave-one-out cross-validation procedure, as proposed in 

section IV.C is used. In this case study, 816 instances are 

analyzed, one for each participant i on a gamified task t (i.e., 

68x12=816). Therefore, the leave-one-out cross-validation 

procedure might be understood as training and testing 68 

models. Moreover, since data of 12 different tasks was 

acquired, there are nine validation iterations. In each iteration, 

the testing set for the models consisted of 4 tuples pertaining 

to a participant i performing four randomly selected tasks. For 

the first iteration, the training set consisted of a dataset that did 
not contain data of the individual of interest (i.e., training and 

testing sets were person independent). Subsequently, the 

remaining eight tuples were randomly added, one at a time, to 

the training set during iterations 2 through 9. This approach 

was implemented to simulate the scenarios where new data of 

an individual of interest is acquired, and the model is re-

trained, similar to the example shown in Fig.4. 

From the 816 tuples of the dataset, 341 corresponded to 

participants who successfully performed the gamified tasks, 

while 475 corresponded to participants who did not. Similarly, 

444 of these instances corresponded to participants who 
interacted with Application A (e.g., 37 participants on 12 

tasks), while 372 corresponded to participants who interacted 

with Application B (e.g., 31 participants on 12 tasks). Each 

tuple of the dataset was composed of:  (i) the performance data 

of a participant i on a task t (Yit), (ii) the complexity of the 

gamified task t (PCt), (iii) vectors of participant’s average and 

standard deviation of facial keypoint data (Fμit, Fσit), and 

identification variable for the (iv) participant id and the (v) 

application he/she interacted with (Appi).  

VI. RESULTS AND DISCUSSIONS   

The benchmark results of the 10-fold cross-validation reveal 

that the Support Vector Machine (SVM) algorithm had the 

greatest average accuracy out of the methods tested (M=0.658, 

SD=0.018). Figure 8 shows a summary of these accuracy 

results. The independent t-tests indicate that the average 

accuracy of the SVM was statistically significantly greater 

than the average accuracy of the Logistic Regression (LR) 

(M=0.427, SD=0.060, t18=11.66, p-value<0.001) and Random 

Forrest (RF) (M=0.497, SD=0.044, t18=10.71, p-value<0.001) 

algorithms. However, the average accuracy of the SVM was 

not significantly different than the average accuracy of the 

Neural Network (NN) (M=0.657, SD=0.031, t18=0.09, p-
value=0.465), and Naïve Bayesian (NB) algorithms (M=0.656, 

SD=0.028, t18=0.19, p-value=0.426). Nonetheless, it is 

important to highlight that with the 10-fold cross-validation 

approach, the SVM algorithm took 107 seconds to train and 

test, while the NN and NB algorithms took 261 seconds and 

145 seconds, respectively. Hence, out of the top performing 

algorithms, the SVM reach the greatest accuracy and required 

the least computational resources.   

Moreover, the t-test results indicate that the accuracy of the 

models generated with the SVM (t19=27.76, p-value<0.0.01), 

NN (t19=16.02, p-value<0.0.01), and NB (t19=17.62, p-

value<0.0.01) machine learning algorithms were statistically 
significantly greater than random chance. These findings help 

address the RQ1, indicating that a machine learning model 

that uses individuals’ facial keypoint data and task information 

can accurately predict the performance of individuals prior to 

completing a gamified task.  

For completeness and to assess the value of considering task 

information and individuals’ facial keypoint data, the 

adaptive-individual-task model was benchmarked against a 

model that only considered task information (i.e., task model) 

and a model that only considered individuals’ facial keypoint 

data (i.e., individual model). This benchmark analysis was 
performed using a 10-fold cross-validation approach. The 

models were generated using an SVM algorithm. The 

independent t-tests results indicate that the average accuracy 

of the proposed model (M=0.658, SD=0.018) was statistically 

significantly greater than the average accuracy of the 

individual model (M=0.578, SD=0.025, t18=8.21, p-

value<0.001) and task model (M=0.594, SD=0.029, t18=5.93, 

p-value<0.001). In addition, the accuracy of both the 

individual model (t19=9.87, p-value<0.001) and task model 

(t19=10.25, p-value<0.001) were statistically significantly 

greater than random chance. The results also indicate that 

there was no significant difference between the average 
accuracy of the task model and the individual model (t18=1.32, 

p-value=0.102). However, the task model achieved an average 

 
Note: p-value<0.001*** 

Fig. 8. Benchmark results of the 10-fold cross-validation analysis. 

 



IEEE TRANSACTIONS ON GAMES VOL.? NO.? MONTH ? 
 

accuracy greater than random change by using only task 

information (i.e., task complexity). The results of the Kendall 

correlation test (τ= -0.53, p-value<0.001) reveal that task 

complexity was negatively correlated with participants’ 

performance.  

Moreover, Fig. 9 shows a plot of the weights of the SVM 

features used in the model. As the previous correlation results 
indicate, task complexity is an important feature for predicting 

individuals’ performance on a gamified task. The results of 

this work indicate that on average, participants successfully 

perform the less complex tasks than, the more complex ones.  

These findings are in line with previous studies and the Fogg 

Behavioral Model [25], [27], indicating that task complexity is 

significantly correlated to participants performance. 

Nonetheless, while the task model results reveal that task 

complexity is a good indicator of individuals’ performance, 

the benchmark results also indicate that individuals’ facial 

keypoint data provide additional and valuable discriminatory 
power for predicting the performance of individuals in 

gamified tasks.  

 

To address the RQ2, the adaptive-individual-task model 

was validated with an iterative cross-validation approach that 

simulates scenarios in which new data of an individual is 

acquired, as presented in section IV.C. Since the testing sets 

consisted of 4 randomly selected gamified tasks per 

individual, a total of 272 tuples are used for testing (i.e., 

68x4=272). Table V shows the confusion matrix for the 1st 

validation iteration. That is, the one in which the training and 

testing sets were person independent, which generated a 
general model. While, Table VI shows the confusion matrix 

for the 9th validation iteration, the one in which the training set 

contained 8 tuples from the individuals of interest. The results 

show that the general model (i.e., 1st validation iteration) was 

able to classify participants’ performance with an average 

accuracy of 0.654 (SD=0.24) and with an average F1-score of 

0.435. While in the 9th iteration, the average accuracy of the 

adaptive-individual-task model increased to 0.768 (SD=0.213) 

and an average F1-score of 0.909. The independent t-test 

indicated that this accuracy was significantly greater than the 

general model’s accuracy (t134=2.92, p-value=0.002). These 
results reveal that the performance of the proposed model 

improves as new data of an individual is acquired and the 

model is re-trained.  

 

TABLE V 

CONFUSION MATRIX 1ST ITERATION (GENERAL MODEL) 

 Ground truth 

 

Y=1 (Pass) Y=0 (Fail) 

Predicted    Y=1 (Pass) 30 9 

               Y=0 (Fail) 85 148 

Total 115 157 

 
TABLE VI 

CONFUSION MATRIX 9TH ITERATION (ADAPTIVE-INDIVIDUAL-TASK MODELS) 
 

 Ground truth 

 

Y=1 (Pass) Y=0 (Fail) 

Predicted    Y=1 (Pass) 79 27 
               Y=0 (Fail) 36 130 

Total 115 157 

 

Figure 10 shows a plot of the model’s accuracy vs. the 

validation iterations. The plot shows that in certain validation 

iterations (i.e., iteration 4, 7, and 8) the model accuracy does 

not improve or even worsens, in comparison to the previous 

iteration. These results can be attributed to the randomness of 

the validation procedure in which the data tuples are randomly 

partitioned and assigned to the training and testing sets. The 

plot indicates that, on average, the adaptive-individual-task 

model’s accuracy increases as more data of an individual of 

interest is acquired and used to re-train the model. A linear 

regression model was fitted to test the significance of this 
relationship. The model accuracy was used as the response 

variable and the validation iterations as predictor variables. 

The participant’s identification variable was used as a control 

variable to account for any possible variation between 

participants. Table VII shows a summary of the regression 

model fitted. The results indicate that the regression equation 

was significant (F68,543=28.34, p-value<0.001), with an R2 of 

0.78. The results reveal that the coefficient of the Intercept 

and the Validation Iteration variables were statistically 

significantly different than zero (p-value<0.001). These 

results support Fig.10 since they indicate that as the number 
of validation iterations increase (i.e., model is re-trained with 

more data from the individual of interest) the accuracy of the 

 
Note: µx and σx indicate the average and standard deviation of facial 

keypoint measured between (x-1)sec and (x)sec, respectively. 
 

Fig. 9. SVM features weight for the adaptive-individual-task model. 

 

 
Fig. 10. Model Accuracy vs. Validation Iterations. 
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adaptive-individual-task model increases. These findings 

address RQ2, and reveal that the performance of the proposed 

method improves as new data of an individual is acquired and 

the model is re-trained.  
 

TABLE VII 

SUMMARY OF LINEAR REGRESSION MODEL FOR ACCURACY 

 

Estimates t-value 

Intercept 0.83 4.85*** 

Validation Iteration 0.04 6.15*** 
Note: p-value<0.001*** 

 

In addition, Tables V and VI show that the model tended to 

correctly classify the instances where the participants did not 

successfully perform the gamified task more frequently than 

the instances where they did. In other words, if Y=1 (i.e., 

successfully performed the gamified task) is considered as the 

positive condition, the specificity or true negative rate of the 
models (general model: 0.943, adaptive-individual-task 

model: 0.828) was greater than their sensitivity or the true 

positive rate (general model: 0.261, adaptive-individual-task 

model: 0.687). In the context of gamification, where designers 

intend to motivate individuals to successfully perform a task, 

the results indicate that it is harder to predict if an individual 

will successfully perform a gamified task than to predict if 

he/she will not successfully perform it. This difference was 

more substantial in the general model, which training and 

testing sets were person independent. These results reveal that 

the adaptive-individual-task model can still be improved. 
Nonetheless, the model still provides good prediction accuracy 

with data collected prior the start of the task and not after a 

participant either fails or succeeds in performing the task, as in 

previous studies (see section II).  

The previous results support the benefits of systematically 

updating the training set of the adaptive-individual-task model 

as new data of an individual is acquired. This approach allows 

the model to adapt (i.e., learn) to an individual’s unique facial 

expression characteristics. Nonetheless, if the adaptive-

individual-task model is re-trained every time new data of an 

individual is acquired, the computational resources and the 

time needed to re-train the model need to be explored. Hence, 
the effects that parallelization and the clock speed of CPUs 

(cores) used has on the time needed to re-train the adaptive-

individual-task model is explored. While other machine 

learning algorithms have faster training speeds than SVM 

(e.g., Logistic Regression, Decision trees) [60], the SVM 

algorithm is used as a benchmark since the results of this work 

indicate that out of the top performing algorithms, the SVM 

reached the greatest accuracy and required the least 

computational resources (see Fig. 8). For this analysis, a (i) 4 
Core i5 2.3 GHz IntelTM computer with 6 GB of RAM and 

MicrosoftTM Windows 10, a (ii) 4 Core i5 3.5 GHz IntelTM 

computer with 8 GB of RAM and MicrosoftTM Windows 10, 

and a (iii) 12 Core i7 3.4 GHz IntelTM computer with 62.8 GB 

of RAM and Ubuntu 16.04 LTS was used.  

Figure 11 shows the time required to train the model using 

an SVM algorithm, given the number of cores used and the 

clock speed of the cores in GHz. A second order polynomial 

model with training time as the dependent variable, and the 

number of cores and clock speed as the independent variables, 

was fitted to the data. Table VII shows the summary statistics 

of the linear regression model. The results indicate that the 
regression equation was significant (F4,15=57.35, p-

value<0.001), with an R2 of 0.939. The results reveal that with 

4 cores running at a speed of 3.5 GHz, the adaptive-

individual-task model was trained in 8.67 seconds, which 

given the conditions of the gamified applications used in this 

work, is insufficient to provide real-time prediction. However, 

the regression analysis indicates that with 6 cores running at a 

speed of 3.6 GHz (e.g., Intel Core i7-7820X, www.intel.com) 

the adaptive-individual-task model can be trained in less than 

a second, enough to provide real-time predictions if data is 

collected every 6 seconds as in the case study.  
 

Table VIII 
SUMMARY OF LINEAR REGRESSION MODEL FOR TRAINING TIME 

 

Estimates t-value 

Intercept -224.59 -3.93** 
Number of Cores -3.39 -9.23*** 

(Number of Cores)2 0.20 7.39*** 

Clock Speed 184.69 4.45*** 

(Clock Speed)2 -32.97 -4.57*** 
Note: p-value<0.001***; p-value<0.01** 

VII. CONCLUSIONS AND FUTURE WORKS 

Even though researchers are working towards personalized 

adaptive gamified applications, current methods are not 

capable of predicting an individual’s performance prior to 

completing a gamified task.  This information could be helpful 

in adapting the game features and task difficulty of gamified 

applications. Furthermore, current methods are not capable of 

dynamically capturing an individual’s data as he/she interacts 

with a gamified application. This could limit the degree of 
personalization and adaptation that current methods can 

provide. Therefore, due to existing limitations, this work 

presented an adaptive-individual-task machine learning model 

that uses task information and individuals’ facial keypoint 

data to predict their performance on a gamified task. In this 

work, individuals’ facial keypoint data is captured before 

completing the task with a sensor that does not affect their 

immersion or ability to interact with an application. 

Furthermore, the training data used to generate the machine 

learning model is updated every time new data of an 

individual is acquired; hereby, making the model adaptive in 

 
Fig. 11. SVM model training time. 
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nature. A case study involving 68 participants interacting with 

a set of gamified applications in a virtual environment was 

presented. 

The result of this work provides valuable information about 

the relationships between individuals’ facial keypoint data, as 
well as their performance and the complexity of gamified 

tasks. The results indicate that the adaptive-individual-task 

machine learning model was capable of predicting an 

individual’s performance, with accuracies up to 0.768. While 

previous studies have focused on developing machine learning 

models to predict individuals’ affective state [44], “student 

type” [33], or time spent in performing a vertical menu 

selection task [31], the performance of the adaptive-

individual-task model outperformed or closely matches the 

performance of these existing models. For example, Barata et 

al. [33] were only able to predict the “student type” with an 

accuracy of 0.47, even after collecting students’ data for a 
five-week period.  

Moreover, the results reveal that the performance of the 

adaptive-individual-task model improves as it is re-trained 

when more data of an individual is acquired. These results 

reveal that the model is learning the unique individuals’ 

characteristics and improving its accuracy. Furthermore, the 

findings presented in this work are in line with previous 

studies that suggested that the task complexity is of great 

importance when predicting the performance of individuals.  

  This work provides quantitative evidence of the feasibility 

and performance of the adaptive-individual-task machine 
learning models that implement task and facial keypoint data. 

However, there are several areas for future improvements. For 

example, the task complexity metric used in this work only 

consider task characteristics and do not take into account 

individual’s psychological state or their differences.  

Furthermore, even though a low-cost sensor capable of 

capturing data in real-time without affecting participants’ 

immersion was implemented in the case study, as in previous 

works [39], [64], the effect of the applications’ tasks on the 

sensitivity of the sensor was not explored. Nonetheless, the 

method proposed in this work is not constrained to the sensors 

implemented in the case study. Current advancements in facial 
recognition algorithms are allowing researchers to capture 

facial keypoint data with the use of more widely available 

sensors (i.e., RGB sensors or webcams) and still maintain high 

levels of accuracy [71]. Likewise, researchers are currently 

working on methods to capture body movement and 

biometrics data with RGB sensors that do not affect an 

individual’s interaction with an application [72], [73]. This 

type of data should be considered as input for the adaptive-

individual-task model in future works, as the results of 

previous studies indicate that this could improve the model’s 

accuracy [39]. Similarly, individuals’ in-game behavioral data 
(e.g., number of coins collected) should be explored since it 

might provide a better understanding of individuals’ attitude 

towards the gamified application.  

Finally, future works should focus on implementing this 

method with other gamified applications in different 

environments and tasks (e.g., educational with cognitive 

tasks), and using this knowledge to tailor the game features 

and task. This could be an area for future research that will 

help to test the generalizability of the model and its potential 

capability to transfer the learning gained from this application 

to other types of applications. Nevertheless, this work presents 

initial groundwork towards implementing adaptive-

individuals-task machine learning models that take advantage 

of task information and individuals’ facial keypoint data to 
predict their performance in gamified tasks. 
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