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12 In the United States, the greatest decline in the number of students in the STEM education
pipeline occurs at the university level, where students, who were initially interested in
STEM fields, drop-out or move on to other interests. It has been reported that “of the 23
most commonly cited reasons for switching out of STEM, all but 7 had something to do
with the pedagogical experience.” Thus, understanding the characteristics of the peda-
gogical experience that impact students’ interest in STEM is of great importance to the
academic community. This work tests the hypothesis that there exists a correlation
between the semantic structure of lecture content and students’ affective states. Knowl-
edge gained from testing this hypothesis will inform educators of the specific semantic
structure of lecture content that enhance students’ affective states and interest in course
content, toward the goal of increasing STEM retention rates and overall positive experi-
ences in STEM majors. A case study involving a series of science and engineering based
digital content is used to create a semantic network and demonstrate the implications of
the methodology. The results reveal that affective states such as engagement and bore-
dom are consistently strongly correlated to the semantic network metrics outlined in the
paper, while the affective state of confusion is weakly correlated with the same semantic
network metrics. The results reveal semantic network relationships that are generalizable
across the different textually derived information sources explored. These semantic net-
work relationships can be explored by researchers trying to optimize their message struc-
ture in order to have its intended effect. [DOI: 10.1115/1.4032398]
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14 1 Introduction

15 Currently, there exists a knowledge gap in terms of how posi-
16 tive or negative affective experiences during classroom instruc-
17 tion, impact students’ interest in STEM-related majors and
18 careers. In the United States, the greatest decline in the number of
19 students in the STEM education pipeline occurs at the university
20 level, where students, that were initially interested in STEM
21 fields, drop-out or move on to other interests [1]. Notably, “of the
22 23 most commonly cited reasons for switching out of STEM, all
23 but 7 had something to do with the pedagogical experience” [2].
24 A significant challenge facing today’s educators is creating lecture
25 content that enhances students’ attention and interest during lec-
26 tures. Lecture content should be structured in a manner that offers
27 enhanced learning experiences for students, while also enhancing
28 students’ positive emotional states. In this work, the terms emo-
29 tion and affective are used interchangeably to encompass any in-
30 ternal state that influences cognitive and behavioral processes.
31 Several studies have demonstrated the close relationship between
32 emotions expressed by students in a classroom and their course
33 performance [3,4]. Quantifying students’ emotional states, such as
34 boredom, frustration, and engagement, in relation to the lecture
35 material being presented, will enable researchers to discover
36 novel, previously unknown correlations that exist between lecture
37 content and students’ affective states. Instructors’ teaching meth-
38 ods/styles and pedagogical tools could then be modeled and com-
39 pared in terms of their ability to minimize negative emotional

40states and maximize positive emotional states during classroom
41instruction.
42This work tests the hypothesis that there exists a correlation
43between the semantic structure of lecture content and students’
44affective states. While nonverbal communication such as body
45language, intonation, and facial expressions are relevant dimen-
46sions of expressing emotion, the analysis of the structure of a mes-
47sage attempts to quantify the verbal dimension of communication.
48This work is limited to the context of information dissemination
49in an educational learning context. In order to analyze these pat-
50terns, the authors employ semantic network measures to charac-
51terize the lecture content that is being transmitted. In addition, a
52self-reported attitudinal survey is employed to quantify emotional
53state intensities. Based on this information, correlation and regres-
54sion analyses are conducted to identify interesting patterns and
55relate emotional states based to semantic network measures.
56Quantifying the relationship between the content of a message
57and the emotional states expressed by recipients of that message
58will inform both students and educators in STEM of the impor-
59tance of communication in enhancing learning and decision mak-
60ing; concepts that are of great importance in engineering
61education and STEM. In the engineering design community,
62researchers have explored the impact that designs have on elicit-
63ing certain human emotions [5,6]. For example, Kansei engineer-
64ing seeks to enhance products and services by translating
65customers’ emotions and feelings about a product’s design into
66tangible design parameters [7,8]. In the context of learning that
67this work explores, the product is analogous to the knowledge
68gained by the recipient and the customer is analogous to the recip-
69ient of that knowledge (i.e., in this case, a student).
70This paper is organized as follows. In the current section, the
71authors provide an introduction and motivation into the
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72 knowledge gap that exists. Section 2 contains a literature review
73 of fields relevant to this research. Section 2 includes a brief review
74 of the emotional states present in the learning process and their
75 role as a key communication channel, the association between
76 emotional states and learning outcomes, and methods to assess
77 individuals’ mental states. The methodology is presented in Sec.
78 3. In Sec. 4, the authors introduce a case study, followed by Sec. 5
79 that provides a detailed explanation of the main results obtained.
80 Section 6 discusses future research directions and concludes the
81 paper.

82 2 Literature Review

83 2.1 Emotional States and Learning Outcomes. There are
84 four main types of evidence about emotions: language, self-
85 reports, behavior, and physiology. However, behavior and physi-
86 ology evidence concern the consequences of emotional states,
87 instead of its origin. For this reason, some studies of emotional
88 states have been focused mostly on language and self-report evi-
89 dence [9]. It has been proven that emotions are relevant to the
90 learning process [10]. Some of them such as engagement and in-
91 terest will positively impact and enhance learning. Furthermore,
92 according to Gal and Ginsburg [11], noncognitive factors such as
93 negative attitude, beliefs, feelings, interest, and motivations could
94 influence individuals’ ability to develop understanding. Craig
95 et al. [12] found that there is a significant correlation between
96 emotional states such as boredom, confusion, flow (mental state in
97 which a person is fully immersed and involved in an activity), and
98 learning gains. Table 1 summarizes the second order emotional
99 states and their impact on learning gains.

100 2.2 Text Data Mining and Semantic Exploration in Engi-
101 neering Design. Data mining of textual data is an emerging area
102 of research in the design community. For example, Dong proposes
103 a latent semantic approach to studying design team communica-
104 tion in an effort to understand how designers construct knowledge
105 pertaining to a design artifact [19]. Dong et al. propose a latent
106 semantic approach that measures the quality of the design per-
107 formance using textual descriptions of related design concepts and
108 events [20]. An ontology-based design system is proposed by Li
109 et al. in order to increase the efficiency of information extraction
110 and retrieval in engineering design [21]. Ghani et al. employ an
111 attribute value pair approach to mine product features from
112 unstructured textual data [22]. Liang and Tan employ text mining
113 techniques to analyze product patents in search of product innova-
114 tions [23]. Kang et al. propose a text mining-driven methodology
115 to search for similarities in End of Life products and components
116 through a process called product resynthesis [24]. In bio-inspired
117 design, Glier et al. employ automated text classification techni-
118 ques to improve the keyword corpus search results [25]. Fu et al.
119 propose a distance measure, based on latent semantic analysis
120 (LSA) and Bayesian-based models for discovering the structural
121 form of products [26]. Stone and Choi propose machine learning
122 classification models to extract customer preferences from online
123 user generated content [27]. Ren and Papalambros propose a
124 method of eliciting design preferences using crowd implicit feed-
125 back [28]. A text mining approach for identifying key product
126 attributes and their importance levels has been proposed by Rai
127 [29]. Tuarob and Tucker propose a latent Dirichlet allocation

128(LDA) based methodology for mining social network data in an
129effort to predict emerging product trends [30]. Tucker et al. have
130proposed text mining models for quantifying students’ sentiments
131in massively open online courses (MOOCs) [31].
132While existing text-mining driven techniques have been pro-
133posed to solve a wide range of engineering related problems, a
134fundamental understanding of the correlations that exist between
135the semantic structure of textual content and individuals’ affective
136states remains an open research area. This work aims to advance
137the scientific body of knowledge centered on textual data, as it
138pertains to content formulation, delivery, and reception. While the
139authors have employed both spatial-based methods such as LSA
140and probabilistic-based methods such as LDA to solve a wide
141range of engineering design problems [24,30,32], the proposed
142semantic network approach to quantifying word associations is
143better suited for this research because: (i) semantic associations
144between words can be easily visualized from the semantic net-
145work, which will help instructors understand how to optimize
146their content structure in order to increase desired emotional states
147exhibited by students and (ii) spatial-based methods such as LSA
148may violate metric axioms such as (i) symmetry and (ii) triangle
149inequality [33], which are important characteristics in trying to
150understand how messages impact receivers’ emotional states.

1513 Methodology

1523.1 Methodology Overview. This work tests the hypothesis
153that there exists a correlation between the semantic structure of
154lecture content and students’ affective states. Figure 1 presents a
155three-phase approach to testing this hypothesis that includes: (i)
156developing a semantic network of the information (i.e., lecture
157content) being disseminated, (ii) quantifying emotional states of
158the receivers (i.e., students), as a response to the information
159being transmitted, and (iii) identifying interesting patterns
160between the semantic network and the receivers’ emotional states.
161The main aim of the first phase is to characterize a message (i.e.,
162lecture content) using a set of semantic network metrics. As a re-
163minder, the assumption made in this work is that a message can
164be automatically transformed into textual data (e.g., speech to
165text, typing to text, etc.). In this sense, nonverbal communication
166such as body language, facial expression, gestures, and voice into-
167nation, among others, are not considered in the scope of this meth-
168odology. A codification protocol could be included to account for
169nonverbal communication [34], and therefore, have a more com-
170prehensive framework to scope the multidimensionality nature of
171communication. The second phase quantifies students’ feedback
172in terms of the impact of the lecture content on their emotional
173states through a self-reported attitudinal survey. Finally, in the
174third phase, interesting patterns between the semantic network
175characteristics of a message and students’ emotional states are
176explored and quantified. In this work, it is assumed that in order
177for communication to be effective, the encoding and decoding
178processes are aligned in the same language and using a familiar
179communication channel.
180In this work, the emotional state intensities are in part, a func-
181tion of different semantic network measures of the message itself.
182Thus, the intensity of emotional state i can be expressed as

Ei ¼ f ðO;U;VÞ (1)

183184where O is a set of network metrics characterizing the entire
185semantic network, U is a set of cluster-related semantic network
186metrics, V is a set of vertex-related semantic network metrics.
187The detailed definition of each of these metrics is presented in
188the subsequent sections. AQ3

1893.2 Creating a Semantic Network of Information

1903.2.1 Defining the Set of Words in a Semantic Net-
191work. Semantic networks are a representation of the semantic
192relationship between concepts of language at different levels that

Table 1 Emotional states and their impact on learning gains

Emotional state Learning gains impact References

Engagement/interest Positive [13] and [14]
Frustration Negative [12] and [15]
Boredom Negative [16]
Confusion Positive [12], [15], and [17]
Delight Positive [18]
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193 include word, phrases, sentences, paragraphs, and other language
194 units [35]. Typically, semantic networks are used to represent
195 knowledge graphically based on the patterns of interconnected
196 nodes (words) and arcs (relationship between words). In order to
197 generate the semantic network, the set of words to be used in the
198 textual analysis needs to be defined.
199 The first step in phase 1 is to characterize the content of a lec-
200 ture in terms of the words that it is comprised of. This represents
201 the main input needed to create the adjacency matrix. The adja-
202 cency matrix is a matrix representation of a graph that is used to
203 create the semantic network graph of a given lecture. Given the
204 transcripts or textual representation of a lecture, the set W is a set
205 of N sequentially ordered words represented by

W : fw1;w2;w3;…;wNg
206207 Additionally, C is defined as a set containing M common words
208 that could be omitted from the textual analysis as

C : fc1; c2; c3;…; cMg
209210 For example, the set of words C could be the 250, 500, or 1000
211 most used words in a given language. This set is used as a way of
212 classifying those words that are commonly used in a given lan-
213 guage, as these words (e.g., the, and, etc.) will not add much value
214 to the understanding of the message or topic. Common connectors
215 (words) such as prepositions, conjunctions, pronouns, and com-
216 mon verbs can be omitted from the message, depending on the
217 application of the textual analysis [36]. Finally, a set T is gener-
218 ated that contains the “topic” words. T is defined as the set of L
219 words that are meaningful for defining the topic under considera-
220 tion. Therefore, T is a subset of W that contains the elements ofW,
221 except those elements also included in C.
222 Then:

T : ft1; t2; t3;…; tLg

where T �W.
223The number of elements in these sets, also referred to as the
224size or order, is given by |W|, |C|, and |T|, respectively. For exam-
225ple, let us assume that we have the following sentence from a lec-
226ture: “A fundamental attribute of the engineering design process
227is information exchange.” Then, using the guide for set generation
228provided, the resultant sets are
229W:{a, fundamental, attribute, of, the, engineering, design, pro-
230cess, is, information, exchange}
231Let us also assume that the words a, of, the, and is are some ele-
232ments of the set C.
233C:{a, of, the, is,…}
234Thus, the set of topic words is defined as
235T:{fundamental, attribute, engineering, design, process, infor-
236mation, exchange}
237By removing the set C from the textual data, textual noise is
238reduced. Therefore, a cleaner set of words, T, is obtained for its
239use in generating the adjacency matrix.

2403.2.2 Generating the Adjacency Matrix. The sets described
241above are used to generate a co-occurrence matrix among words,
242also called adjacency matrix in network analysis [37]. This matrix
243contains the frequency in which two words appear sequentially in
244a given transcript or textual data. Their sequential appearance will
245give a quantifiable indication of the relationship between two
246words. In this study, two words are said to be close or related if
247each of them appear in the set T within a given window size of Z
248elements, where Z should be selected such that Z< |T| for nontri-
249vial cases. It must be noted that the larger the value of Z, the more
250non-null values in the adjacency matrix. Therefore, the semantic
251network becomes denser. Consequently, as Z approaches T, the
252number of null values in the adjacency matrix approaches zero.
253The concept of density is explained in Sec. 3.2.3.1.
254In order to generate the adjacency matrix, a new set of words
255(T*) must be defined. This new set is an unordered subset of T
256(T* � T) including only unique elements of T, i.e.,

t�1 6¼ t�2 6¼ t�3 6¼… 6¼ t�k . Therefore, T
* can be written as

Fig. 1 Methodology for quantifying the correlation between the semantic structure of lecture
content and students’ affective states
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T� : ft�1; t�2; t�3; …; t�kg

257258 The adjacency matrix A is represented as

A ¼

t1� t2� t3� … tk�
t1�
t2�
t3�
�

tk�

� x12 x13
x21 � x23
x31 x32 �

… x1k
… x2k
… x3k

� � �

xk1 xk2 xk3

� �

… �

2
66664

3
77775

259260 where xij represents the frequency or number of times in which
261 both words i and j appear in a windows size Z. For undirected
262 graphs, a triangular symmetric matrix is obtained, i.e., xij¼ xji.
263 Therefore, the number of cells that must be calculated to complete
264 the adjacency matrix is: |T*|*(|T*|� 1)/2. Similar approaches to
265 generating an adjacency matrix for semantic networks, based on
266 windows for assessing word co-occurrence of words, have been
267 previously validated in the literature [36].
268 The adjacency matrix constructed provides a matrix representa-
269 tion of the lecture’s semantic network. Therefore, the set of words
270 (nodes) and their relationships (edges) are the input for creating
271 the semantic network graph.

272 3.2.3 Network Analysis and Metrics. In this section, the main
273 network measures that characterize the message are defined. Let
274 us define a semantic graph G: (T*, E), where T* is a set of nodes
275 (i.e., unrepeated topic words) and E is a set of edges representing
276 the relationship between two consecutive nodes. In this case, E
277 contains unordered pairs of words extracted from the adjacency
278 matrix A, specifically from non-null cells.
279 In order to characterize the semantic network of a message, var-
280 ious network metrics are defined that comprise of the feature set
281 of the semantic network itself, consistent with the literature
282 [38–40]:

(1) overall network-related metrics,
(2) cluster-related metrics
(3) vertex-related metrics.

283 Network metrics such as density and geodesic distance can be
284 calculated for the overall network or its clusters. On the other
285 hand, the most used vertex-related metrics that can be calculated
286 are the degree centrality, betweenness centrality, and eigenvector
287 centrality [40].

288 3.2.3.1 Density. The density of a network represents the pro-
289 portion of existing edges out of the potential edges within the net-
290 work. This metric can be calculated for the entire network or parts
291 of it, also called subnetworks or clusters. The maximum number
292 of edges in an undirected semantic network is given by
293 |T*|*(|T*|� 1)/2. The density of the network can be defined as

Density ¼ 2jEj
jT�j jT�j � 1ð Þ (2)

294295 Networks with density equal to one are called complete net-
296 works. In practice, complete semantic networks are not common,
297 i.e., there is little semantically meaningful knowledge in a graph if
298 every word is connected to every other word. This metric becomes
299 relevant to understanding how connected the words of the mes-
300 sage are in the network or clusters.

301 3.2.3.2 Geodesic distance. The geodesic distance is defined
302 as the shortest path or route between two nodes. In nonweighted
303 edge networks such as the case presented in this work, the geo-
304 desic distance between two nodes is the minimum number of
305 edges connecting them. This metric indicates how reachable a par-
306 ticular node is for the other nodes. Typically, this metric is used to
307 evaluate the cohesion of a network. In order to characterize net-
308 works or clusters, the maximum and average geodesic distances

309are used. In semantic networks, the geodesic distance indicates
310the level of reachability between the words of the network or clus-
311ter. This becomes especially useful in evaluating how well or
312“close” the clusters (subtopics) or ideas of a message are devel-
313oped. More specifically, large geodesic distances will indicate that
314the words or subtopics are far apart or not closely related.

3153.2.3.3 Degree centrality. While the density and geodesic dis-
316tance metrics are related to the whole network or cluster, the
317degree centrality is a vertex-related network metric. In an undir-
318ected network, it measures the number of direct connections of a
319particular node to other nodes in the network. Consequently, the
320degree centrality can be used as an indicator of the importance of
321a node. In directed graphs, this metric is separated into two; inde-
322gree and outdegree centrality which represent the number of
323edges toward or from a node, respectively. In this work, semantic
324networks are treated as undirected, and hence, these last two met-
325rics are not considered. The degree centrality of a node v is usu-
326ally written as Cd(v)¼ deg(v). In semantic networks, this metric is
327used to identify the main topic words of a message. For example,
328words that have five direct connections to other words are said to
329have a degree centrality of five. Consequently, those words with
330comparatively larger degree centrality can be interpreted as the
331main topic words, as they are central for the topic or textual data.

3323.2.3.4 Betweenness centrality. The betweenness centrality
333quantifies the number of times that a node serves as a bridge along
334the shortest path between other pairs of words within the network.
335The betweenness centrality of a node v is expressed as

Cb vð Þ ¼
X

s 6¼v 6¼t2V

rst vð Þ
rst

(3)

336337where rst is the total number of shortest paths between word s
338and word t, and rst(v) is the number of those shortest paths that
339pass through word v. In semantic networks, this metric is relevant
340in identifying words that bridge subtopics. Consequently, the
341words with a comparatively high betweenness centrality are the
342connecting words among the other words of a message.

3433.2.3.5 Eigenvector centrality. Another relevant centrality
344measure of a node is the eigenvector centrality [41]. This metric is
345typically used to quantify the influence of a given node in a net-
346work. Thus, the words with comparatively high eigenvector cen-
347trality are said to be accessible by other well connected nodes and
348have a larger influence on the message’s network. Those nodes
349with a high eigenvector centrality are well connected to other
350nodes, which are also well connected. The eigenvector is mathe-
351matically defined as the principal eigenvector of the adjacency
352matrix A. Hence, the defining equation of an eigenvector is
353Av¼ kv, where k is the eigenvalue and v is the eigenvector.
354As outlined in Fig. 1, the above metrics can be considered the
355candidate features of the semantic network. By exploring correla-
356tions with emotional states, the relevant semantic network features
357will be discovered.

3583.3 Quantifying Students’ Affective States. This work pos-
359tulates that students’ affective state intensities are, in part, a func-
360tion of the message’s semantic network structure. In order to
361capture these emotional states, techniques such as observation or
362self-reported attitudinal surveys can be used. According to Kort
363et al., expert communicators (i.e., instructors) are proficient at rec-
364ognizing and addressing the emotional states of the receivers of
365information (i.e., students) [15]. Based on observation, communi-
366cators can take actions to positively impact the learning experi-
367ence. However, some barriers including the experience of the
368instructor, size of the audience, and cultural barriers can impact
369the detectability of students’ emotional states through visual ob-
370servation alone. In order to overcome the described limitations,
371self-emotional attitudinal surveys can be used to quantify
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372 receiver’s emotional states, and hence provide feedback to dis-
373 seminators of learning content so that they can update their course
374 material in such a way that students’ positive emotional states are
375 improved. The main objective of such self-reported instruments is
376 to capture data directly from the recipient of that information and
377 minimize observer’s bias. However, studies have criticized its use
378 due to risk of reporter’s bias [16]. Fernandez-Ballesteros presents
379 a series of tips to avoid inaccurate information from self-reported
380 questionnaires [42]. Anonymity, which has been suggested in the
381 literature as a method of minimizing bias in self-reports, has been
382 employed by the authors of this work.
383 The set of emotional states included in the survey depends on
384 the nature of the information exchange that is being considered.
385 For example, in the classroom setting, evidence has shown that
386 second-order emotions such as engagement, interest, delight,
387 boredom, frustration, and confusion are more relevant to the learn-
388 ing experience. In order to quantify the emotional state intensities,
389 a Likert scale is recommended. In the study presented in Sec. 4, a
390 survey, including the six emotional states mentioned, is filled out
391 by the receiver right after the message is transmitted.

392 3.4 Quantifying Interesting Patterns of a Semantic Net-
393 work. In order to explore the relationship between the semantic
394 structure of lecture content and students’ corresponding affective
395 states, correlation and regression analyses are investigated. The
396 network parameters will be derived from the three main network
397 metric groups; overall graph metrics, clustering metrics, and
398 vertex-related metrics. The first group includes metrics related to
399 the whole network such as number of vertices (words), number of
400 edges, geodesic distance, density, and modularity. The second
401 group includes metrics that are related to the cluster. These clus-
402 ters can be obtained by employing traditional data mining cluster-
403 ing algorithms [43]. The clustering-related metrics included in
404 this group are similar to those in the overall graph-related metrics
405 group but applied to clusters (subnetworks). For the vertex-
406 related, the most used and representative metrics are included;
407 degree centrality, betweenness centrality, closeness centrality, and
408 eigenvector centrality [40]. From all the metrics stated, relevant
409 parameters are extracted based on descriptive statistics. Those
410 include minimum, mean, maximum, and standard deviation. A
411 summary of the specific parameters proposed is presented in
412 Table 2.

413 3.4.1 Correlation Analysis. The validation step of this meth-
414 odology evaluates whether there exists a relationship between two
415 or more parameters through correlation analysis. Typically, this
416 analysis includes the use of the correlation coefficient (r), also
417 known as the Pearson product-moment correlation coefficient.
418 This coefficient measures the linear relationship between two vari-
419 ables. The values of r range from �1 to þ1. A correlation coeffi-
420 cient of �1 represents a perfectly negative relationship between
421 the two variables. On the other hand, a correlation coefficient of
422 þ1 represents a perfectly positive relationship between the two
423 variables. A correlation value of 0 indicates that there is no rela-
424 tionship between the variables. Intermediate values can be inter-
425 preted using the Salkind scale [44]. The correlation coefficient for
426 a sample can be calculated as follows:

r ¼
Xn

i¼1
Xi � �Xð Þ Yi � �Yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Xi � �Xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Yi � �Yð Þ2

q (4)

427428 where n : samplesize, Xi : value of ith observation from
429 sample X; i : 1 to n,

�X : average value of all observations from sample X,
Yi : value of ith observation from sample Y; i : 1 to n, and
�Y : average value of all observations from sample Y.

430 Paired samples X and Y are represented by semantic network
431 metrics and emotional state intensities, respectively. Therefore,

432the correlation analysis is focused on calculating whether the mes-
433sages’ semantic network metrics are linearly correlated to stu-
434dents’ emotional states. This analysis serves as the initial baseline
435to identify whether interesting patterns can be found to explain
436the variability of emotional state intensities based on the mes-
437sage’s semantic network metrics. It should be noted that even
438though this analysis explores linear relationships, other nonlinear
439analyses can also be conducted. However, there is no previous
440work stating that a nonlinear analysis is better in this case. Future
441work will explore more complicated relationships.

4423.4.2 Regression Analysis. Regression analysis involves the
443identification of the relationship between a dependent variable
444and a set of independent variables. In this case, the message’s
445(i.e., lecture content) semantic network metrics are the independ-
446ent variables and the receiver’s (i.e., student) emotional states are
447the dependent variables. First, the significant semantic network
448metrics are identified; thus, the set of relevant parameters is
449reduced. Second, regression models could be used to estimate
450what would be the value of the different emotional states, based
451on the message’s semantic network structure. Finally, the signs of
452the significant parameters can be interpreted for each one of the
453semantic network metrics. Therefore, insights can be gained about
454the positive or negative impact of those metrics on the receiver’s
455emotional states. This can guide the design of messages based on
456the evidence gained from the regression analysis.
457Linear regression is proposed in this work, as a first step
458approximation of the relationships between the semantic structure
459of messages and individuals’ emotional states. More complex,
460nonlinear relationships could exists, which would be inferred,
461based on the performance of the linear regression models. In the
462linear regression model, the model assumes that the dependent
463variable is a linear combination of the independent variables. For
464example, intensity of the emotional state i can be expressed as a
465function of P semantic network parameters

Ei ¼ b0 þ b1x1 þ b2x2 þ � � � þ bPxP þ ei (5)

466467where b0 is the intercept or constant, bi is the slope or contribution
468of the semantic network parameter xi, and ei is the error term.

4694 Application

4704.1 Participants and Lecture Selection. Participants from
471diverse fields volunteered to attend a lecture composed of five
472short video-lectures (lessons). The experiments conducted
473included the participation of 22 students from different fields such
474as engineering, psychology, finance, accounting, biology, and
475education. Out of the 22 participants, 18 of them were pursuing
476bachelor degrees and 4 of them pursuing graduate degrees. Their
477ages range from 18 to 35, with a mean age of 22. The experiment
478included 3 females and 19 males. Participants were randomly par-
479titioned into separate groups. Each of the groups was asked to
480attend a video-lecture of about 30min. In order to reduce external
481sources of bias, the experiment took place in a regular classroom
482of standard size where noise and disturbing factors were mini-
483mized. In Fig. 2, an illustration of the participants’ learning envi-
484ronment is shown.
485Ten video-lectures were selected from YouTube assuring vari-
486ety of topics and complexity of content. Two lists of five videos
487each were generated. The 22 participants were randomly parti-
488tioned into two groups of 11. Each one of these groups watched a
489list of five videos. Therefore, a total of 110 data points pertaining
490to source (i.e., lecture content) and receiver (i.e., student) are col-
491lected. The 110 data points generated is sufficient for our study,
492given an anticipated effect size (f2) of 1 (assuming r2¼ 0.5), statis-
493tical power of 0.9, the 37 network parameters tested for inclusion
494in the regression, and a p-value of 0.05. Under these parameters,
495the minimum number of data points suggested is 65 [45]. The
496authors acknowledge that correlations may exist based on the 110
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497 data points generated, given that only 22 participants were used.
498 However, it is possible for an individual to express mutually
499 exclusive emotions, given their emotional regulation strategies of
500 reappraisal and suppression [46]. Future work will explore a larger
501 participant sample size and its impact on subsequent regression
502 models. For the subsequent analysis, the lists of video-lectures
503 were named List A and List B. The source of videos was retrieved
504 from the “Big Think” channel. The selected videos have a dura-
505 tion between 5 to 7min. The main reason for selecting videos
506 from “Big think” sources is to ensure that speech tools are con-
507 trolled, as this channel provides a relatively standardized speech-
508 delivery format. Videos from a range of topics were selected to
509 evoke different stimuli from the participants, and therefore differ-
510 ent emotional states as a response. While other mechanisms for

511delivering the lecture could have been used, e-learning technolo-
512gies, including videos, have been found to be increasingly used
513for knowledge dissemination [47]. In addition, the textual repre-
514sentation of each video (captions) was extracted directly from the
515YouTube platform. The list of videos is presented in Table 3.
516Participants were asked to fill-out the background form at the
517beginning of the experimental session. Additionally, during each
518experimental session, at the end of each short video, a self-
519reported emotional state survey was given to the participants. A
520Likert scale (1: Strongly disagree to 5: Strongly agree) was used
521to report the intensity of the emotional states faced during the lec-
522ture by completing the following statement: I felt [engaged,
523bored, etc.] during the video-lecture.
524In summary, from the communication diagram presented in
525Fig. 1, it can be said that the source is the lecturer and the
526receivers are the individual participants from different fields. The
527message is encoded verbally, transmitted through a video-
528recorded channel, the participants decode the message based
529mostly on the information presented, previous understanding, and
530academic knowledge of the topic. Finally, the feedback is cap-
531tured through a self-reported questionnaire based on participants’
532emotional states as a response to the lecture.

5335 Results

5345.1 Semantic Networks of Content Knowledge. In order to
535analyze the lecture’s semantic networks, a window size of ten was
536used. This is consistent with what has been recommended in the
537literature and used in the literature across a wide range of domains
538[36,48,49]. Danowski used a radius-based windows size and
539tested radius sizes of up to twenty words on either side of a word.
540In terms of computing resources, a radius of 3 (7 words is the
541equivalent to our method) was recommended if the objective is to
542only identify word clusters [36]. The Clauset–Newman–Moore
543algorithm was employed in this work [37]. This clustering algo-
544rithm is helpful for inferring large community structure and
545extract meaningful communities from the network based on the
546optimization of its modularity. A list of common connectors was
547used to reduce the size of the textual data and at the same time,
548avoid including irrelevant nodes in the network analysis. Similar
549approaches have been used in the literature [20,36]. This list of
550excluded words (prepositions, conjunctions, pronouns, numbers,
551apostrophes, and common verbs taken from WORDij, a more
552recent version of WORDLINK [36]) represented an average of
55362% of the textual data used (minimum of 57% and maximum of
55468%). It is important to note that these lists of excluded words can
555be employed, depending on the context and purpose of the seman-
556tic network evaluation.
557As stated previously, one of the main advantages of generating
558semantic networks is to visualize how different ideas are shaped.
559For example, in Fig. 3, the semantic network for one of the lec-
560tures is shown, including a filter visualization for only those edges
561whose value is greater than or equal to two (i.e., the pair of words
562appear together at least twice within the given windows size).
563From this semantic network, it can be seen that the main topic of
564the speech was related to teachers and sciences (relatively large
565nodes and number of connections compared to the other words).
566Additionally, some subtopics can be visualized from the clusters
567that are represented by different colors in Fig. 3. For example, in
568the cluster colored light-blue in Fig. 3, AQ4most of the words are
569related to emotions and levels of comfort. It can be said that if the
570intention of the instructor was to include this subtopic, he/she was
571able to properly structure it. There may be instances where words
572may seem grammatically similar (e.g., kid and kids in Fig. 3) but
573semantically different (e.g., an instructor in a lecture using the
574word “kid” to mean “joking,” while another lecture may use the
575term “kids” to represent children). Manually clustering these two
576words together may introduce errors in the semantic structure of

Table 2 Overall clustering and vertex-related parameters

Overall graph metrics

Graphnum_vertex Number of vertices (words) in the whole network
Graphnum_edges Number of edges in the whole network
Graphmax_geodesic Maximum geodesic distance of the whole network
Graphavg_geodesic Average geodesic distance of the network
Graphdensity Density of the whole network
Graphmodularity Modularity of the whole network
Vertex metrics
Degreemean Mean degree centrality of the network
Degreestdev Standard deviation of the degree centrality of the

network
Degreemax Maximum degree centrality value of the network
Betweennessmean Mean betweenness centrality of the network
Betweennessstdev Standard deviation of the betweenness centrality of

the network
Betweennessmax Maximum betweenness centrality value of the

network
Eigenvectormean Mean eigenvector centrality of the network
Eigenvectorstdev Standard deviation of the eigenvector centrality of

the network
Eigenvectormax Maximum eigenvector centrality value of the

network
Clusteringmean Mean clustering coefficient of the network
Clusteringstdev Standard deviation of the clustering coefficient of

the network

Cluster metrics
Verticesmean Mean number of vertices of the clusters
Verticesstdev Standard deviation of the number of vertices of the

clusters
Verticesmax Maximum number of vertices in a clusters
Verticesmin Minimum number of vertices in a clusters
Edgesmean Mean number of edges of the clusters
Edgesstdev Standard deviation of the number of edges of the

clusters
Edgesmax Maximum number of edges in a clusters
Edgesmin Minimum number of edges in a clusters
Max_geodesicmean Mean of the maximum geodesic distance of the

clusters
Max_geodesicstdev Standard dev. of the maximum geodesic distance of

the clusters
Max_geodesicmax Maximum of the maximum geodesic distance of the

clusters
Max_geodesicmin Minimum of the maximum geodesic distance of the

clusters
Avg_geodesicmean Mean of the mean geodesic distance of the clusters
Avg_geodesicstdev Standard dev. of the mean geodesic distance of the

clusters
Avg_geodesicmax Maximum of the mean geodesic distance of the

clusters
Avg_geodesicmin Minimum of the mean geodesic distance of the

clusters
Densitymean Mean density of the clusters
Densitystdev Standard deviation of the densities of the clusters
Densitymax Maximum density of a cluster
Densitymin Minimum density of a cluster
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577 the network. Instead, semantic relationships are discovered quan-
578 titatively, based on the proposed methodology.
579 The semantic network graph can be complemented by its met-
580 rics. The size of the network (number of words) is 181, and the
581 number of edges is 1853. This network has a density of 0.0513,
582 indicating that about 5% of the maximum potential edges exist in
583 the whole network. The maximum geodesic distance is 6, mean-
584 ing that at most, five other words separate each pair of words in
585 the network. For example, the words communication (dark green
586 left side node) and problem (orange right side node) have a geo-
587 desic distance of 5, as they are separated by 5 nodes in their short-
588 est path (i.e., communication ! important ! science ! teachers
589 ! better ! course ! problem). The average geodesic distance is
590 2.676, which is fairly low, given the size of the network. This met-
591 ric can be thought of as a measure of reachability or connectivity
592 of the topics of the network. The results reveal that the semantic
593 network is composed of 6 clusters that contain between 11 to 54
594 words each, and between 44 to 432 edges. The maximum geodesic
595 distance for these groups of clusters ranges between 4 and 5,
596 while its average ranges from 1.719 to 2.445. Finally, these clus-
597 ters have densities that range from 0.146 to 0.400 each.
598 Vertex-related metrics are also interesting to analyze and com-
599 plement the semantic network graph. For example, the words sci-
600 ence, teachers, students, questions, and training have a degree
601 centrality of 57, 54, 39, 33, and 32, respectively. This indicates
602 that this set of words represents the central topic of the lecture, as
603 these values are relatively large, compared to the other words in
604 the network. In addition to the previous set of words, others such
605 as universe and kids have a large betweenness centrality, indicat-
606 ing that this set of words serves to bridge different ideas between
607 the topic and subtopics.
608 Through the semantic network graph, the encoder is able to vis-
609 ualize whether the message was structured as intended in terms of

610the main topic, subtopics, and how they are related. Therefore, the
611visual information extracted from the semantic network graph can
612be used to calibrate the structured design of the message as
613intended by the encoder. Moreover, visual text analytics are useful
614for knowledge building, analytical reasoning, and explorative
615analysis [50].
616In addition to the information extracted through the visualization
617of the message, the subsequent sections in this study assess the cor-
618relation between semantic network metrics and emotional states
619intensities. AQ5From this analysis, some insights can be obtained about
620the network metrics impacting the participants’ emotional
621responses. For instance, if the parameter graphmax_geodesic is nega-
622tively impacting the set of positive emotional states that impact
623students’ learning, the communicator might try to incorporate a
624new word or tie to the semantic network in such a way that the
625maximum distance between words (maximum geodesic distance)
626is reduced. More insights about these practical implications are
627given in Secs. 5.2 and 5.3.

6285.2 Mining Interesting Correlations Between Network
629Metrics and Emotional States. When considering the correlation
630analysis for the 110 data points (22 participants reporting emo-
631tions for five video-lectures each), a subset of relationships are
632found between the semantic network metrics and students’ emo-
633tional states. According to the Salkind scale [44] (6[0.0 to 0.2]:
634weak or no relationship; 6[0.2 to 0.4]: weak relationship; 6[0.4
635to 0.6]: moderate relationship; 6[0.6 to 0.8]: strong relationship;
6366[0.8 to 1.0] very strong relationship), engagement, boredom,
637and interest, are the three emotional states that are more corre-
638lated, in general, to the semantic network metrics. However,
639approximately half of these correlations are not significant at the
6400.05 level. Table 4 presents the Pearson coefficient for those net-
641work metrics that were at least moderately correlated to any emo-
642tional state in our study.
643These relatively low correlation values could be argued to be
644the result of the high variability of responses within the same lec-
645ture. The average within lecture standard deviation of the
646responses was 0.755, ranging from 0.422 to 1.270. In addition,
647within the same lecture and same emotional state, a wide range of
648answers might be obtained. For instance, for lecture 2 in list A,
649the values reported for frustration ranged from 1 to 5. Therefore,
650one might be interested in understanding the correlations for the
651average emotional state intensities and the semantic network met-
652rics, similar to how researchers explore correlations between aver-
653age student ratings and instructor effectiveness [51]. This analysis
654is presented in the following paragraphs. It must be recalled, how-
655ever, that one limitation of this approach is that the measures of
656within lecture variability are lost, as individual observations are
657averaged by video-lecture. In contrast, a better understanding of

Table 3 List of videos for the classroom experiment

List Author Title

A M. Kaku Will mankind destroy itself?
L. Smolin Physics envy and economic theory
E. Kandel Creativity, your brain, and the aha! moment
L. Krauss Should science teachers be paid

more than humanities teachers
M. Kaku The dark side of technology

B M. Kaku Escape to a parallel universe
S. �Zi�zek Don’t act. Just think
R. Mckee Bad writers have nothing to say
K. Dutton Are you a psychopath? Take the test
M. Kaku What if Einstein is wrong?

Fig. 2 Participants’ layout in the classroom
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658 how the semantic network metrics are related to students’ emo-
659 tional states as a whole is obtained.
660 According to the correlation analysis for the average emotional
661 state intensities per lecture (n¼ 10), various interesting relation-
662 ships between network metrics and emotional states are found
663 (significant at the 0.05 level). A detailed correlation analysis
664 indicated that the overall graph metrics that are more related to
665 the emotional states are graphdensity, graphmax_geodesic, and
666 graphavg_geodesic. For example, the graphmax_geodesic is very
667 strongly positively correlated to boredom (r¼ 0.813) and frustra-
668 tion (r¼ 0.831), very strongly negatively correlated to engage-
669 ment (r¼�0.855), strongly negatively correlated to interest

670(r¼�0.766) and delight (r¼�0.676), and moderately positively
671correlated to confusion (r¼ 0.411). One of the interpretations that
672can be given in this example is that for those lectures whose
673semantic networks are not well connected, participants’ negative
674emotional states tend to increase while positive emotional states
675decrease. In this sense, metrics such as density and geodesic dis-
676tance play a major role in impacting individuals’ emotional states
677and therefore could have a significant impact on their achievement
678outcomes.
679For the clustering metrics, there are various network metrics
680that are related to the emotional states. Some metrics such as
681verticesmean, verticesmin, edgesmean, edgesmin, max_geodesicstdev,

Fig. 3 Semantic network of lecture A4 using windows size ten

Table 4 Pearson coefficient for moderately correlated semantic network metrics

ENG BOR INT FRU DEL CON

Degreemean 0.377a �0.450a 0.365a �0.174 0.321a �0.187b

Betweennessmax �0.399a 0.470a �0.411a 0.239b �0.415a 0.243b

Eigenvectorstdev �0.326a 0.404a �0.315a 0.147 �0.265a �0.013
Eigenvectormax �0.324a 0.428a �0.290a 0.086 �0.264a 0.058
Verticesmean 0.410a �0.446a 0.380a �0.139 0.306a �0.180
Verticesmin 0.458a �0.448a 0.393a �0.181 0.237b �0.217b

Edgesmin 0.456a �0.450a 0.428a �0.264a 0.300a �0.184
Max_geodesicstdev �0.406a 0.368a �0.343a 0.220b �0.182 0.203b

Avg_geodesicstdev �0.423a 0.362a �0.355a 0.223b �0.138 0.235b

Avg_geodesicmin 0.414a �0.372a 0.340a �0.185 0.169 �0.188b

Graphmax_geodesic �0.535a 0.515a �0.534a 0.379a �0.371a 0.168

aCorrelation is significant at the 0.01 level (2-tailed).
bCorrelation is significant at the 0.05 level (2-tailed).
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682 avg_geodesicstdev, and avg_geodesicmax present at least a moder-
683 ate relationship to at least five out of the six emotional states
684 under analysis. For example, verticesmean, verticesmin, edgesmean,
685 edgesmin are positively correlated to engagement (r¼ 0.567,
686 r¼ 0.657, r¼ 0.533, and r¼ 0.685, respectively), interest
687 (r¼ 0.479, r¼ 0.542, r¼ 0.492, and r¼ 0.579, respectively), and
688 delight (r¼ 0.620, r¼ 0.479, r¼ 0.622, and r¼ 0.554, respec-
689 tively), and negatively correlated to boredom (r¼�0.632,
690 r¼�0.637, r¼�0.613, and r¼�0.673, respectively), frustration
691 (r¼�0.456, r¼�0.561, r¼�0.427, and r¼�0.619, respec-
692 tively), and confusion (r¼�0.309, r¼�0.407, r¼�0.341, and
693 r¼�0.384, respectively). As can be seen from the correlations,
694 emotional states such as engagement and boredom are consis-
695 tently strongly correlated to the network metrics described. On the
696 other hand, confusion is typically weakly correlated to these four
697 network metrics. From the analysis, it could be argued that the
698 size of the clusters in a network (i.e., mean and minimum number
699 of vertexes and edges per cluster) is positively correlated to posi-
700 tive emotional states and negatively correlated to negative emo-
701 tional states. On the other hand, other network metrics such as
702 max_geodesicstdev, avg_geodesicstdev, and avg_geodesicmax are
703 positively correlated to negative emotional states and negatively
704 correlated to positive emotional states. In this case, these three
705 metrics are positively correlated to boredom (r¼ 0.523, r¼ 0.510,
706 and r¼ 0.509, respectively), frustration (r¼ 0.541, r¼ 0.576, and
707 r¼ 0.438, respectively), and confusion (r¼ 0.404, r¼ 0.458, and
708 r¼ 0.492, respectively), and negatively correlated to engagement
709 (r¼�0.587, r¼�0.602, and r¼�0.517, respectively), interest
710 (r¼�0.493, r¼�0.542, and r¼�0.554, respectively), and
711 delight (r¼�0.337, r¼�0.264, and r¼�0.345,
712 respectively). From this set of correlation analyses, it can be said
713 that max_geodesicstdev, avg_geodesicstdev, and avg_geodesicmax
714 are at least moderately correlated to boredom and engagement.
715 However, they are only weakly correlated to delight. The practical
716 interpretation of these patterns is similar to the interpretation for
717 the overall graph metrics.
718 The clustering metrics that were found to be at most
719 weakly correlated to the emotional states include verticesstdev,
720 edgesstdev, edgesmax, max_geodesicmin, max_geodesicmax, and
721 avg_geodesicmean. Finally, the vertex metrics that were found to
722 be at least moderately correlated to at least five emotional states
723 are betweennessstdev betweennessmax, and eigenvectorstdev. Out of
724 this group, betweennessmax is strongly negatively correlated to
725 engagement (r¼�0.648), interest (r¼�0.638), and delight
726 (r¼�0.745), strongly positively correlated to boredom
727 (r¼ 0.750), and moderately positively correlated to frustration
728 (r¼ 0.454) and confusion (r¼ 0.547). The betweenness centrality
729 metrics were typically positively correlated to positive emotional
730 states, while eigenvector centrality metrics were typically posi-
731 tively correlated to negative emotional states. The emotional state
732 that is least correlated to these metrics is frustration. These results
733 could be interpreted in terms of how topic words are used to con-
734 nect the topic to make the information flow in a coherent manner.
735 Betweenness metrics can be seen as words that help to connect
736 the ideas of a topic. Usually, these words are also the main words
737 in a topic and serve as a central idea to explore different subtopics,
738 represented in this case by the clusters of the network. Therefore,
739 lectures that have a weak structure in terms of their betweenness
740 centrality could have a negative impact on participants’ emotional
741 states.

742Additionally, there are other vertex-related metrics that presented
743some interesting relationships. For example, degreemean was
744strongly negatively correlated to boredom (r¼�0.645), and moder-
745ately positively correlated to the positive emotional states; engage-
746ment (r¼ 0.531), interest (r¼ 0.522), and delight (r¼ 0.563).
747Some other metrics such as degreestdev and clusteringmean do not
748appear to be significantly correlated to the different emotional
749states.

7505.3 Network Metrics to Estimate Emotional State Inten-
751sities. Regression analysis was conducted to identify significant
752independent variables in order to estimate emotional states. The
753analysis was conducted using IBM SPSS Statistics 22. Each emo-
754tional state was separately used as the dependent variable. Conse-
755quently, six regression models were created. An interesting
756pattern found through regression was that the best model for all
757emotional states included the same eight variables when using the
758backward method with criterion of probability of F-to-
759remove� 0.100 (vertex-related: degreestdev and degreemax; cluster-
760related: verticesmean, verticesstdev, edgesmin, and graphnum_vertex; and
761overall network-related: graphmax_geodesic and graphmodularity).
762Interestingly, five out of the eight metrics were not found to be rele-
763vant in the correlation analysis (at least moderately correlated to any
764emotional state). For instance, in Table 5, the ANOVA is presented
765for the emotional state ENG. This model provides a good fit for the
766data (p< 0.05), had an r¼ 0.670, and was able to explain 45% of
767the variability of ENG mean (Table 6). It is important to recall that
768not all variables included are statistically significant, as some p-
769values are greater than the 0.05 level, as shown in Table 6. However,
770these variables were selected by the models to predict each one of
771the emotional states (backward method). Other regression methods
772such as the stepwise can be used to provide more conclusive results,
773as the generated models only include statistically significant varia-
774bles. When using the stepwise method, at most three variables are
775found to be statistically significant per model at the 0.05 level and
776entry and removal probabilities-of-F of 0.05 and 0.10, respectively
777(ENG: r¼ 0.663, graphmax_geodesic, verticesstdev, and graphnum_edges;
778INT: r¼ 0.668, graphmax_geodesic, degreemean, and graphnum_edges;
779DEL: r¼ 0.507, graphmax_geodesic, and degreemax; BOR: r¼ 0.660,
780graphmax_geodesic, degreemean, and graphnum_edges; FRU: r¼ 0.429,
781graphmax_geodesic and max_geodesicmean; and CON: r¼ 0.407,
782graphnum_edges and edgesmin). The results and discussions to be pre-
783sented are based on the models generated from the backward
784method. These models are interesting to be compared, given that the
785same variables are used. In future works, however, each emotional
786state could be modeled using a more conclusive model using only
787the corresponding statistically significant variables.
788The sign (þ or �) of contribution of each one of the variables
789included in the models could explain the relationship between
790those variables and emotional state intensities. This becomes rele-
791vant as a mechanism to explore how different lectures can impact
792students’ affect in a classroom setting. In most cases, the sign of
793the variables are consistent with what was already explained in
794the correlation analysis. For instance, there are three variables
795that negatively impact students’ engagement: degreemax,
796graphnum_vertex, and graphmax_geodesic. The last two metrics can be
797seen as proxies of “complexity” in the structure of the message. In
798this sense, graphnum_vertex (number of unique topic words)
799serves as an approximation of the size of the message while
800graphmax_geodesic (maximum distance between two words) could
801represent how far apart two words or concepts are within the mes-
802sage. Interestingly, the sign contribution of graphmax_geodesic is
803statistically significant in five of the six models, even when testing
804the stepwise regression method. In addition, there are variables
805that positively impact students’ engagement: degreestdev,
806verticesmean, verticesstdev, edgesmean, and graphmodularity. Interest-
807ing insights can be obtained from interpreting these variables. The
808first variable, degreestdev, indicates that the words used in the mes-
809sage should be heterogeneous in terms of their use, and hence, a
810larger standard deviation of degree centrality will positively

Table 5 ANOVA for engagement

Model Sum of squares df Mean square F Sig

Regression 48.839 8 6.105 10.289 0.000
Residual 59.925 101 0.593
Total 108.764 109
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811 impact students’ engagement. In the lecture context, this indicates
812 that the key words should be used more frequently and have more
813 connections than other words. The three cluster-related variables
814 that positively impact students’ engagement also provide some
815 useful insights. For instance, verticesmean and edgesmin are proxies
816 of the size of the clusters. The positive contribution indicates that
817 larger clusters (subtopics) are better at influencing the emotional
818 state of engagement. However, verticesstdev indicates that these
819 clusters should be of heterogeneous sizes, i.e., the subtopics
820 should not have the same importance (number of words) within
821 the lecture. Finally, the sign of the contribution of graphmodularity
822 indicates that a stronger division of a network into its clusters is
823 better at impacting students’ engagement state. These discovered
824 insights are inputs for designers of lectures seeking to increase
825 students’ positive emotional states. A similar analysis can be
826 made for the remaining emotional state regression models.
827 A summary of the Pearson correlation coefficient (r) and the
828 sign of contribution of each variable included in the regression
829 models are shown in Table 7. As can be seen from Table 7, the
830 emotional states that can be better explained by the regression
831 models are INT (r¼ 0.669), BOR (r¼ 0.676), and ENG
832 (r¼ 0.670). In contrast, FRU was the least explained emotional
833 state (r¼ 0.454). The sign of contributions for all the variables,
834 except for graphmodularity, is consistent among the positive emo-
835 tional states, i.e., the variable had either a positive or negative
836 contribution consistently for ENG, INT, and DEL. For the set of
837 negative emotional states (BOR, FRU, and CON), four
838 variables are found to be consistent in terms of their contribution
839 (verticesmean, edgesmin, graphnum_vertex, and graphmax_geodesic). The
840 others present some degree of inconsistency. Moreover, if we ana-
841 lyze the signs of the most explained positive (INT) and negative
842 (BOR) emotional states, we can also infer a practical degree of
843 consistency in the contribution of the variables. All the variables,
844 except for verticesstdev, have different signs of contribution for
845 these two emotional states. In Table 7, the consistent semantic
846 network metrics within the positive or negative sets of emotional
847 states are colored in gray. All the Pearson correlation coefficients
848 are significant at the 0.05 level.
849 Some inconsistencies were also found when assessing the con-
850 tribution of some of the network metrics on the negative and posi-
851 tive emotional states. One might expect that those network
852 metrics that positively contribute to the positive emotional states
853 should have the opposite impact on negative emotional states.
854 These inconsistencies make the practical interpretation of the
855 impact of these network metrics challenging. Nevertheless, the
856 consistent semantic network metrics provide insights for design-
857 ing superior messages. For instance, edgesmin was found to be
858 consistent among the positive and negative emotional states. This
859 indicates that a well-designed message should ensure that the min-
860 imum number of edges in a cluster should not be low. This design
861 feature seeks to increase the size of the smaller cluster, based on
862 its number of edges. From a course instructor’s perspective, a low
863 edgesmin value might indicate that at least one of the clusters or

864subtopics was not properly developed in terms of its size
865(measured in terms of its edges), and hence, not enough value can
866be extracted by the audience from that cluster. Similarly, the
867verticesmean also provides some insights about the size of the clus-
868ters. In this case, larger clusters (on average) positively impact
869students’ emotional states. This finding is tied to the previous one
870in the sense that the average size of the subtopics should at least
871reach a certain level, in this case, measured by the number of
872words composing a topic or cluster. It must be noted however that
873more research is needed in order to determine the minimum and
874maximum thresholds to design each subtopic, given a general
875message or communication being transmitted.
876Interest, engagement, and boredom were the emotional states
877that were most explained by the regression models. An interesting
878finding of the analysis was that all six emotional states analyzed
879had the same eight significant predictors. Additionally, the contri-
880bution of seven out of eight semantic network metrics is consist-
881ent for the positive emotional states. In contrast, half were
882consistent for the negative emotional states. When considering the
883overall consistency (different impact on the positive and negative
884emotion states), verticesmean, edgesmin, graphnum_vertex, and graph-

885max_geodesic are consistent, and hence, their practical implications
886are more easily interpreted when designing course content. For
887instance, graphmax_geodesic has a negative impact on positive emo-
888tional states and a positive impact on negative emotional states.
889This informs the source (i.e., course instructor) that a smaller
890graphmax_geodesic is desirable. Therefore, some strategies to make
891this semantic network parameter smaller could be, for instance,
892incorporating a new link between words in the shortest path
893(shortest distance) between the two most separated
894words. From the example presented in Fig. 3, for lecture A4, the
895graphmax_geodesic is six. One of the paths with distance six is the
896path between the words communication and problem (communica-
897tion ! important ! science ! teachers ! better ! course !
898problem); hence, the message can be improved by making this
899path and other paths with distance six shorter, for instance, by
900directly connecting communication with problem, or
901through other words in such a way that the distance between
902communication and problem is less than six, which is the current
903graphmax_geodesic of the semantic network.

9046 Conclusion and Future Work

905In this work, the authors test the hypothesis that there exists a
906correlation between the semantic structure of lecture content and
907students’ affective states. According to our results, when consider-
908ing the set of 110 data points, some network metrics are moder-
909ately correlated to a subset of the emotional states analyzed. The
910overall graph metric graphmax_geodesic was found to be moderately
911correlated with students’ emotional states. Additionally, this vari-
912able was statistically significant for all emotional states except for
913confusion, when selecting a regression model using the stepwise
914method. Cluster-related metrics, including verticesmean,
915verticesmin, edgesmin, max_geodesicstdev, avg_geodesicstdev, and

Table 6 Regression model for engagement

Unstandardized
coefficients Standardized

Model B Std. error B t Sig.

(Constant) 2.255 4.964 0.454 0.651
Degreestdev 0.245 0.190 0.243 1.294 0.199
Degreemax �0.036 0.022 �0.289 �1.659 0.100
Verticesmean 8.494 6.828 0.155 1.244 0.216
Verticesstdev 3.727 7.193 0.051 0.518 0.606
Edgesmin 0.006 0.008 0.117 0.796 0.428
Graphnum_vertex �0.009 0.003 �0.260 �2.658 0.009
Graphmax_geodesic �0.615 0.134 �0.463 �4.597 0.000
Graphmodularity 3.684 1.264 0.256 2.914 0.004

Table 7 Pearson correlation coefficients and the sign of contri-
bution of each variable included in the regression models

ENG INT DEL BOR FRU CON

r 0.670 0.669 0.547 0.676 0.454 0.506
Degreestdev þ þ þ � þ �a

Degreemax � �a �a þa � þa

Verticesmean þ þa þa � � �a

Verticesstdev þ þ þ þ þ �a

Edgesmin þ þ þ � � �
Graphnum_vertex �a �a � þ þa þa

Graphmax_geodesic �a �a �a þa þa þ
Graphmodularity þa þa � �a þ �a

aContribution sign is significant at the 0.05 level.
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916 avg_geodesicmin, were at least moderately correlated with any of
917 the six emotional states. The vertex-related metrics found to
918 be more relevant in explaining emotional states include
919 degreemean, betweennessmax, eigenvectorstdev, and eigenvectormax.
920 It might be noted that, in practice, achieving a strong correlation
921 is difficult as the emotions are based on each student’s individual
922 feedback, and hence, are likely to differ from one to another (high
923 within lecture variability in the emotional states intensities). In
924 addition, following the principles of the Arrow’s theorem [52]), it
925 may not be possible to satisfy all individuals (students in the case
926 of a classroom setting) by a single product or service design.
927 Therefore, future efforts should be made to design lectures that
928 maximize the demand, or in other words, the number of students
929 that experience positive emotional states during the lecture.
930 Although the methodology presented can be used to evaluate
931 other types of semantic networks, the set of significant semantic
932 network metrics might change. In this study, we report the results
933 based on the regression model using a backward method, and
934 hence, not all the variables used are statistically significant. An
935 interesting discovery was that the same set of semantic network
936 variables was relevant in providing insights about each emotional
937 state. However, for more conclusive interpretations, other regres-
938 sion methods such as the stepwise method could have been used
939 to select only the set of variables that are statistically significant
940 for each emotional state. It should be recalled that the results pre-
941 sented in this study are intended to provide insights about how the
942 semantic network structure can affect the emotional states related
943 to the learning process for a very specific lecture characteristics.
944 Therefore, in other contexts (e.g., MOOCs), different results
945 might be obtained. Although 110 data points were used for the
946 regression analysis, which is over the required sample size accord-
947 ing to the Cohen’s f2 score [45], we acknowledge that some of
948 these data points might be correlated as only 22 participants were
949 included in the experiments. In the future, more participants will
950 be included to support more powerful insights from the analyses.
951 We also acknowledge that the semantic network features of a
952 message can explain only one part of the communication
953 processes. In future work, mechanisms to codify informal verbal/
954 textual communication (e.g., jargons), impact of specific topics or
955 strong words on emotional states (e.g., profanity, abuse, etc.), non-
956 verbal communication features, such as body language, intona-
957 tion, facial gestures, presenters’ style, and others, could be used to
958 improve our ability to design messages incorporating the multidi-
959 mensionality nature of communication. Knowledge gained from
960 exploring the relationships between the semantic structure of lec-
961 ture content and students’ emotional states will inform educators
962 of the specific semantic structure of lecture content that enhance
963 students’ affective states and interest in course content, toward the
964 goal of increasing STEM retention rates and overall positive expe-
965 riences in STEM majors.
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