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Abstract—The hypothesis of this paper is that topics, expressed1

through large-scale social media networks, approximate electric-2

ity utilization events (e.g., using high power consumption devices3

such as a dryer) with high accuracy. Traditionally, researchers4

have proposed the use of smart meters to model device-specific5

electricity utilization patterns. However, these techniques suffer6

from scalability and cost challenges. To mitigate these challenges,7

we propose a social media network-driven model that utilizes8

large-scale textual and geospatial data to approximate electric-9

ity utilization patterns, without the need for physical hardware10

systems (e.g., such as smart meters), hereby providing a readily11

scalable source of data. The methodology is validated by consid-12

ering the problem of electricity use disaggregation, where energy13

consumption rates from a nine-month period in San Diego, cou-14

pled with 1.8 million tweets from the same location and time span,15

are utilized to automatically determine activities that require16

large or small amounts of electricity to accomplish. The system17

determines 200 topics on which to detect electricity-related events18

and finds 38 of these to be valid descriptors of energy utilization.19

In addition, a comparison with electricity consumption patterns20

published by domain experts in the energy sector shows that21

our methodology both reproduces the topics reported by experts,22

while discovering additional topics. Finally, the generalizability23

of our model is compared with a weather-based model, provided24

by the U.S. Department of Energy.25

Index Terms—Event detection, Granger causality, predictive26

models, social network services, unsupervised learning.27
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I. INTRODUCTION 28

SOCIAL media network models have the potential to serve 29

as dynamic, ubiquitous sensing systems that serve as an 30

approximation of physical sensors with the added benefits of: 31

1) being scalable; 2) publicly available; and 3) having lower 32

setup and maintenance cost, compared to certain physical sen- 33

sors (e.g., smart meters or smart plugs). Each day, social 34

media services such as Twitter, Facebook, and Google, pro- 35

cess anywhere between 12 terabytes (1012) [1] to 20 petabytes 36

(1015) [2] of data, making them suitable for large-scale data 37

mining and knowledge discovery. The ability of individuals 38

within a social media network to: 1) detect a phenomenon; 39

2) observe and interpret a phenomenon; and 3) report the 40

impact of the phenomenon back to the social media network 41

in a timely and efficient manner, highlights the potential for 42

social media networks to be perceived as large-scale sensor 43

networks. However, as with many large-scale sensor systems, 44

the fundamental challenge is separating signal from noise. 45

The conventional wisdom has been that in order to accurately 46

understand a complex phenomenon (e.g., energy utilization 47

patterns), complex sensors are required (e.g., smart meters) 48

to sense, collect data, and make inferences in real time. This 49

paper aims to challenge these conventional paradigms of social 50

media networks and physical sensor systems by demonstrating 51

the viability of social media networks to be used as dynamic, 52

ubiquitous sensing systems that provide comparable level of 53

information and knowledge, to physical sensor systems setup 54

to achieve similar objectives. 55

In this paper, we propose a system that automatically 56

generates and tests relationships between topics on social 57

media network and electricity usage pattern. These topics are 58

then used to predict future electricity use or test Granger causal 59

links between the topics and the usage. This Granger causal- 60

ity is used to validate these links. We consider a case study 61

where our methods are applied to energy use disaggregation 62

using social media network data. That is, can our system dis- 63

cover interesting relations in social media networks that trend 64

with electricity consumption rates? We then compare the top- 65

ics that our system detects to be valid against actual topics 66

chosen by an expert in the energy domain or against keywords 67

mined directly from the dataset. We find that, in addition to 68

other topics, our system replicates the topics chosen by an 69

expert. Furthermore, a direct comparison to keyword analysis 70

results in up to a 16.7% improvement in detected correlations 71
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(as described in Section V-B). Finally, a comparison with a72

weather-based simulation of homes in cities is considered.73

In this paper, we provide an implementation, quantitative74

evaluation, and analysis of this mapping. In Section II, previ-75

ous work on social media network analysis, topic modeling,76

and electricity use disaggregation is discussed. In Section III,77

a formal implementation of this mapping system is provided.78

In Section IV, a case study is presented where y = electric-79

ity consumption rates, and X is statistically derived social80

media network data. In Section V, this method of hypothe-81

sis generation is compared against expert-based and machine82

learning-based hypothesis generation. In Section VI, we test83

our model’s capability to predict future electricity usage. In84

Section VII, we conclude.85

II. PREVIOUS WORK86

A. Mining Social Media Networks87

Social media networks are emerging as the next frontier88

for novel information discovery. Previous work has shown89

applications toward measuring weather patterns [3], diag-90

nosing illness [4], tracking earthquakes [5], providing user91

recommendations [6], exploring plans of action in crises [7],92

detecting security risks [8], and describing obesity patterns [9].93

Part of social media network’s advantage is the relatively94

openness and ease of collection of data, which, unlike tra-95

ditional websites, are created by a larger population of users96

whose demographics are more representative of the general97

population [10].98

One way that social media network data can be represented99

is as a set of sensors, where each user is a noisy sensor [4], [5].100

That is, instead of reporting numerical data like traditional101

sensors do, social media network users report textual data102

which must be preprocessed before statistical methods can be103

applied. Simple keyword analysis—a mainstay of modern text104

analysis—can be problematic when applied to big datasets. For105

example, Google Flu Trends’ system of applying text analy-106

sis to search queries has been shown to over estimate ground107

truth influenza rates [11], [12]. In this paper, we employ topic108

modeling to avoid the worst case scenario of an exhaustive109

search of keyword-phenomena relations.110

B. Topic Modeling111

Topic modeling is a way to algorithmically derive topics112

from unstructured documents of text. Modern work has been113

focused on latent Dirichlet allocation (LDA) and its deriva-114

tives [13]–[15]. LDA works by determining clusters of words115

in a document to determine “topics” through a Bayesian pro-116

cess. These topics can be represented by the words that,117

statistically, best describe the cluster. It has been shown that118

LDA can be used to detect topics in datasets such as Wikipedia119

articles [16], [17], scientific literature [18], spam classifica-120

tion [19], news analysis [20], and tweeting behavior [9], [21].121

In this paper, we demonstrate that the set of topics gen-122

erated by topic modeling algorithms are indeed statistically123

valid approximations of events. We further show that by min-124

ing these event-phenomena patterns, researchers can discover125

events strongly related to phenomena of interest.126

Fig. 1. High-level description of our system to transform a social media
network stream into hypotheses about a real world event.

C. Knowledge Management in Energy Systems 127

Smart grids use communication to facilitate context aware- 128

ness and cooperation across much wider areas than previous 129

power grid system [22]. Among the initiatives to introduce 130

smart grids are the advance metering infrastructure [23], [24] 131

for metering in the distribution system, demand pricing, IEC 132

61 850 substation automation [25], the wide area manage- 133

ment system [25], [26] for wide-area PMU measurement, and 134

the North American synchrophasor initiative [27] that uses 135

wide-area utility communication. Smart grid operations rely 136

on periodic collection of data through sensors followed by 137

processing the data. 138

The technology provided by a smart grid is valuable for 139

reducing or predicting large spikes in electricity utilization. 140

For example, by coordinating households to not perform high 141

power usage activities concurrently. However, the smart grid 142

has not yet been widely implemented. This paper has focused 143

on methods to study nonsmart grid data to study either high- 144

level usage patterns, such as total energy consumption in a city, 145

low-level usage patterns to measure device level energy con- 146

sumption, or placement of systems based on simulation [28]. 147

It would be difficult to generalize high-level measurements to 148

work at a finer grain because real-time electric consumption 149

sensors are typically deployed on a station or node level. Thus 150

analysis is limited to events that impact a large area, such as 151

the temperature or time of day [29]–[35]. Low-level, device- 152

based measurements have been proposed as a method to 153

disaggregate high-level power consumption patterns [36]–[38]. 154

These sensor networks have the advantage of providing device- 155

level information and bypassing the need to rely on a power 156

company for data. However, these are expensive to implement 157

and require installation of hardware in the study participant’s 158

house, limiting the amount of data that can be collected. 159

To demonstrate the practicality of our system in real life 160

applications, we consider applying our system of automated 161

event detection to provide a novel system of energy usage 162

disaggregation which can take high-level, publicly available 163

power consumption records and generate valid hypotheses 164

about behaviors that affect this consumption. For a graphi- 165

cal description of our methods (see Fig. 1). First, we clean 166
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textual social media network streams. Then we use LDA on167

the cleaned text to detect topics. These topics are then used as168

the basis for hypotheses about a real-world event. These topics169

are then tested for statistical significance. Validated hypotheses170

are then reported.171

III. SOCIAL MEDIA NETWORK ELECTRICITY172

UTILIZATION METHODOLOGY173

In this section, we propose using large-scale social media174

network data as method of tracking a subset of events that175

are relevant to the social media network users, X. That is,176

exposure to a particular event xi ∈ X may induce a user to post177

a message m at time j, mj on a social media network. Here, we178

assume mj to be text-based. That is, it can be represented with179

a word vector vj, derived from the raw message mj. While it is180

easy for a user to map xi → mj (for example, “I need to do my181

laundry”), it may be hard to reverse this mapping, at least in182

a machine processable manner. Since our goal is to generate183

these xi to test against phenomena, in this case: electricity184

usage, we must approach this mapping in an indirect fashion.185

Thus, we develop topic models from these word vectors where186

we assume a topic o is an approximation to event xi for some i.187

Later, we provide an empirically tested and validated analysis188

of this assumption (see Section V). This allows us to map189

mj → vj → o → xi, effectively reversing the mapping of190

xi → mj in an unsupervised manner. Thus, we are able to191

formulate and validate statements of the form “xi is related to192

phenomenon y” without prior knowledge about xi.193

A. Cleaning Raw Social Media Network Data194

Social media network data are commonly described as195

extremely noisy [3], [5], [39], requiring intensive cleaning of196

the social media network stream as a necessary first step. We197

do this by converting a string of characters into a list of n-198

grams—pairs of up to n contiguous words (see Algorithm 1).199

The n-grams are determined by tokenizing the string on all200

nonalphabetical characters. Since capitalization can be erratic201

in social media networks, the n-grams are then converted to202

lowercase. As the objective of this step is to derive topics203

instead of keywords, we stem each of these words using porter204

stemming [40]. This maps words with similar stems but with205

different suffixes to the same keyword. For example, “accept,”206

“accepting,” and “acceptance” are all mapped to the same207

keyword, accept.208

This list of n-grams is expected to follow a long-tail distribu-209

tion [41], resulting in the likelihood that some are too common210

or too rare to be valuable in the analysis. Common words such211

as “the,” “is,” and “and” give little or no information about212

the text and could overshadow other, more descriptive, words213

that do not occur as frequently [13], [17], [42]. Thus common214

words, as defined by Lewis et al.’s [42] stop list, are removed215

from the list of n-grams. On the other hand, if a word is too216

rare, it may not occur enough for any inferences about it to217

be generalizable. Since the distribution of n-grams has a long-218

tail, most words will be too rare. Thus there is the potential219

of these very-rare n-grams to lower our ability to generate220

inferences about any n-grams [4], [17], [41]. This problem221

Fig. 2. Implementation of our theoretical model (see Fig. 1) for our case
study.

is addressed by removing any n-grams that occur less than c 222

times [4], [17], [20], [41], [42]. However, previous work tends 223

to be somewhat vague on how to determine c, often incorpo- 224

rating expert knowledge to determine c. Here, we determine 225

c algorithmically. 226

To determine c, first begin with the distribution of n-gram 227

counts. That is, fm is the number of n-grams that occur exactly 228

m times each in the dataset. We then iteratively test each value 229

for c > 0 until we find the minimum value for c such that 230

fc
∑∞

m=c+1 fm
< δmin (1) 231

where δmin is a user defined stopping threshold. Thus, we 232

define rare words as words that occur less than δ times 233

and remove them—a necessary step for preprocessing for 234

LDA [17]. 235

Note that we specifically do not remove keywords related 236

to URLs as they may provide additional information about the 237

user’s activity. For example, tweets containing a link copied 238

from a Web browser are likely to include “http” which may be 239

less common on mobile users. Alternatively, links with “4sq” 240

(reduced to “sq” when numerics are removed) are sent through 241

four square’s—a popular location check-in service—mobile 242

application, informing us that the user is more likely visiting 243

a location outside of his or her house. 244

B. Pairing Real World and Social Media Network Data 245

Social media network data can be updated on a millisecond 246

level; however, it is rare for real-world events to be reported 247

at such a temporal resolution. Additionally, it is unlikely that 248

a single social media network message contains significant, 249

relevant information about the real-world event we want to 250

study, or if it does, they are exceedingly rare. We address this 251

discrepancy by normalizing the social media network data to 252

the real-world data’s time scale. That is, we define a document 253
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Algorithm 1: Preprocessing Steps for Social Media
Network Data

Data: Time tagged Messages M
Result: A set of aggregated and processed messages D
dq = document of keywords at time q;
countword = frequency of “word” in all documents;
W = set of all known stemmed words;
for mj ∈ M do

Break mj into substrings on non-alphabetical
characters ^[a− zA− Z];
j = hour mj was posted;
for non-empty Substring S in mj do

convert S to lowercase;
stem S using porter stemmer;
add S to W;
push S onto dj;
countS ++;

end
end
for word S in W do

if countS < δmin then
Remove S from each dq;
Remove S from W;

end
end

dj to be the aggregation of all processed social media network254

messages vj (as derived from mj) that occur in during the255

timespan between the qth real-world event xq and the next256

event, xq+1. More formally257

dj =
{
vj|time

(
xq

) ≤ time
(
mj

)
< time

(
xq+1

)}
(2)258

where vj is the n-gram representation of message mj and259

time(e) is the time when e occurs. For example, if one is look-260

ing at temperature data that is reported on an hourly basis,261

a document would be all posts that occur within that hour.262

Algorithm 1 outlines how these messages are processed into263

word vectors, and subsequently aggregated into a document. It264

would be unreasonable to assume that a user posts a message265

exactly when the event happens. Instead, it is likely that the266

user posts about an event sometime before, during, or after the267

time that the event occurs. This issue is partially addressed268

when the data is aggregated, because all message after an269

event, but before the next, will be combined, regardless of270

lag between event and message.271

Additionally, data can be paired based on geospatial infor-272

mation, such as which zip code the message occurred in. This273

is dependent on the dataset describing the phenomena y and the274

social media network messages mj ∈M both containing com-275

parable location data. Caution should be advised if arbitrary276

spatial units are defined: the “modifiable areal unit problem”277

can bias results from geospatial aggregation and remains an278

open problem [43], [44].279

C. Generating Topic Models280

A given set of documents defined by the aggregation281

described above can be used to generate topics through282

Algorithm 2: LDA Algorithm in the Context of the
Proposed Social Media Network Model

Data: set of Documents D, topics O
Result: a |W| × |O| matrix
for Document d ∈ D do

for Word w ∈ d do
wtopic = Random topic ∈ {0, . . . , |O|};

end
end
for Step in {1, . . . , stop point} do

for Document d ∈ D do
for word w ∈ d do

for topic o ∈ {0, . . . , |O|} do

P(o|d) = |w ∈ d where wtopic = o|
|w ∈ d| ;

P(w|o) = |w ∈ D where wtopic = o|
|w ∈ D| ;

end
Assign wtopic based on P(w|o)× P(o|d).

end
end

end

LDA. We use Gibbs sampling [17], [18] implemented by 283

JGibbLDA [17] to perform this analysis. LDA determines the 284

probability of a document being about a topic given that it 285

contains a set of n-grams [13], [17], [18]. To do this, LDA 286

first generates clusters of words based on co-occurrence in 287

the documents. That is, the probability of a word w occurring 288

given that a document is in topic ow. To represent these topics 289

in a human readable form (for example, in Tables I and II), 290

we present the set of words that have the highest probability 291

of occurring within the topic. In other words, the topics can 292

be expressed as a |W| × |O| matrix, where W is the vocab- 293

ulary found in Section III-A and O are the topics generated 294

by the LDA model such that o ∈ O. Each entry in this matrix 295

corresponds to the probability of that word belonging to that 296

topic. LDA works according to Algorithm 2. Note that the 297

stop point is selected as 2000, the default of JGibbLDA as 298

proposed by Heinrich [45]. This algorithm uses as input each 299

of the aggregated Documents from Algorithm 1 to generate O 300

topics. 301

The probabilities contained in this matrix can be reversed 302

using Bayes’ theorem to determine the probability that a doc- 303

ument is in topic o given that it contains a set of keywords. 304

Since each document has a related time component, we can 305

say that the probability of a document being in o varies over 306

time. By considering the likelihood of all topics over all docu- 307

ments, we can observe the changing interests of the population 308

of users over time. Each of these topics are the basis of a ques- 309

tion: “Question: Is the ith event xi (as inferred from topic o) 310

related to real world phenomena y?” 311

D. Determining Event-Phenomena Causality 312

In Section III-C, we outlined the method to generated 313

topics—which we later show in Section IV-C to be statistically 314
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Algorithm 3: Mapping Topics to Effects
Data: Documents D and Topics O from Algorithms 1

and 2
Result: Granger Causal Topics
for document d ∈ D do

for topic o ∈ O do
TSo,d = rate of o in d

end
end
for o ∈ O do

Significance = Granger(TSo,PowerUsage);
if Significance then

Print o;
end

end

valid approximations of events—from social media network315

and determined the frequency of each topic at a given time.316

Next, we explore the patterns of each of these events over317

time. That is, combining all frequencies of an event over time318

results in a time series to be compared to the real world phe-319

nomena. Some topics, such as Christmas, hating Mondays, or320

having lunch will display cyclical patterns while other events,321

such as ones about a hurricane or a concert, may be one-time,322

anomalous events.323

The event’s time series can be compared to the document324

time series related to the real-world phenomena through cross-325

correlation (see Algorithm 3). That is, by matching events326

frequencies and real world phenomena by their time, can we327

find any relations between the two variables? This is defined328

by the Pearson’s rank correlation where each point is a pairing329

of event frequencies and real world phenomena. The system330

does not filter by positive or negative correlation: a strong331

negative relationship between an event and a real world event332

can be just as interesting as a positive one. While these cor-333

relations may be strong, they do not necessarily imply a334

causal link.335

While we do consider a correlative analysis between auto-336

matically detected events and electricity consumption, there337

is also an interest in determining which—if any—of the338

behaviors have a causal relationship on the electricity rates.339

Detecting strong causality through an uncontrolled, obser-340

vational study without an external model of the system is341

impossible. Hence, we focus on detecting Granger causal-342

ity [46], [47], a less stringent form of causal testing. Simply343

put, “correlation does not imply causality” because there may344

be a third phenomena that influences both, or if there is a345

causal relation between the two phenomenas, it is impossible346

to tell which one causes the other without external information.347

Granger causality addresses the second issue by employing348

lagged data. This aids in establishing a causal relationship by349

testing not only the synchronous variables, but measuring if350

the lagged data aids in the explanatory power of the model.351

That is, can information about phenomena y at time t (yt) be352

inferred by a behavior x at time t− t′, for some positive value353

of t′? If it can, then we at least know which direction causality354

Algorithm 4: Computational Complexity of This
Methodology

input : Social Media Posts
output: Predictions
Social Media Posts arrive: O(1);
Preprocessing: O(m) where m = number of posts;
topics ← Generate Topics (LDA): O(Nm2) (see alg 2);
CausalTopics ← Granger(topics) O(Len(topics)) ;

is flowing. To control for auto-correlative effects, the standard 355

model compares an auto-correlation model of the predicted 356

phenomena y 357

yt = β0 + β1yt−1 + β2yt−2 + . . .+ β(lagmax)
y(t−lagmax)

(3) 358

where lagmax is the maximum lag considered in the model, 359

determined by maximum likelihood estimation. We then add 360

the lagged components from an event’s trend xi to the formula 361

yt = β0 + β1yt−1 + β2yt−2 + . . .+ β(lagmax)
y(t−lagmax)

362

+ β(2+lagmax)
xi,t−1 + . . .+ β(2∗lagmax)

xi,(t−lagmax)
. (4) 363

The predictive power of these two models is compared by 364

performing a t-test on the errors between the two models. If 365

we find that (4) performs better than (3), then it is because 366

knowledge about this second event informs us about the future 367

state of the target phenomena. While this is still not a test for 368

true causality, Granger [46] have argued that it is a step in that 369

direction. Note that Granger causality does not control for a 370

third phenomena, which influences both the ith x in question, 371

xi, and y, other than guaranteeing that it occurs at some point 372

before y. Indeed, in our case, we assume that a behavior influ- 373

ences both xi—tweeting about the risk factor—and y—later 374

power consumption due to the behavior. This method of dual 375

time series analysis has two benefits: it quantifies how long of 376

a lag is meaningful, and determines which sampled topics are 377

significant. 378

This Granger causal test allows us to quantify the causal 379

relationship between a phenomenon (a change in power usage) 380

and an event (as represented by one or more social media 381

topics). This causality measurement is the primary method of 382

establishing causality implemented in this methodology. Social 383

media posts can be processed into topics ahead of time, and 384

these topics can be detected within new posts in linear time. 385

This also allows these causal relationships to be updated in 386

an online fashion. If the performance of the predictive nature 387

of these causal relationships degrades, a new sample can be 388

drawn and recalculated (see Algorithm 4). This allows us to 389

adapt and use new data instead of relying solely on old data. 390

E. Validating Event-Phenomena Relationships 391

At this point, we have generated relationships of the form: 392

“Topic o is related to a real world phenomena y with corre- 393

lation ro.” However, if the coefficient of determination, r2
o, is 394

small, then any trends detected may not be statistically signifi- 395

cant. Thus, we calculate the p-value for each regression. Since 396

the system may test hundreds or thousands of regressions, 397
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Algorithm 5: Topics to Predictions
Data: Significant Time Series S, PowerUsage Data
Result: Measurement of Predictive value of Social Media

Network data
Let PowerUsageh = PowerUsage data lagged by h
hours;
Sa,b = ath significant Time Series lagged by b hours;
Build model f (Sa,b, PowerUsageb) = PowerUsage;
Evaluate f on data from subsequent time period;

the traditionally chosen cut off α = 0.05 must be corrected.398

That is, if 100 tests are conducted on randomly generated399

data, it is likely that five will be reported as false posi-400

tives. Bonferroni correction [48] was chosen because it does401

not depend on normal distribution or independence assump-402

tions. Bonferroni correction defines the corrected cut off as403

α′ = α/n, where n is the total number of hypotheses tested.404

This method of correction is more conservative than others,405

giving more assurance that any hypotheses that do pass the406

test are valid.407

By implementing our system, events can be inferred from408

social media network data which can inform researchers about409

real world phenomena, as we will show in Sections IV–V.410

Finally, we evaluate the predictive value of this methodology411

as outlined in Algorithm 5 in Section VI.412

IV. CASE STUDY413

In this section, we demonstrate the feasibility of our system414

on Twitter data, in order to determine whether topics can415

help explain a real world energy utilization (see Fig. 1).416

Specifically, we consider electricity consumption from single-417

family households in San Diego County from March 3, 2011418

to December 31, 2011 and 1.8 million tweets from the same419

timespan that originated from San Diego County. That is,420

M ={Tweets in San Diego between March 3, 2011 and421

December 31, 2011} and y = electricity consumption rates422

in kilowatts.423

A. Description of Datasets424

Electricity consumption data was provided by the San Diego425

County Gas and Electric Company which supplies power to426

residents of the San Diego County in southern California. Data427

was provided on a daily basis for the year 2011 and repre-428

sents a typical, single-family, residence.1 Power usage data429

was discarded before the initial collection of Twitter data on430

March 3. Since power usage has both a daily cycle and longer-431

term dynamics (see Fig. 3), we consider both hourly and daily432

aggregation of the data.433

Twitter data was collected between March 3, 2011 and434

December 31, 2011 through the Twitter API by searching for435

all tweets with high-resolution geospatial data. Additionally,436

tweets are filtered to be located within San Diego County as437

1http://www.sdge.com/sites/default/files/documents/Coastal_Single_
Family_Jan_1_2011_to_Jan_1_2012.xml

Fig. 3. Mean daily and hourly rates of power consumption for San Diego
residents. Dashed lines in hourly graph indicate one standard deviation.

defined by the 2011 TIGER shape file2 to match the spa- 438

tial boundaries of the power data. A total of 1 813 689 tweets 439

matched this criteria. The raw jsons returned by the Twitter 440

API were then processed through The Open Twitter Parser3
441

and stored in an MySQL database for further processing. 442

B. n-Gram Selection 443

Next, the Twitter data was cleaned through tokenization, 444

stemming, case-normalization and stop word removing, as 445

described in Section III-A. In this case study, we only consider 446

unigrams (n-grams where n = 1) for analysis. Only unigrams 447

are considered for several reasons. A higher dimensionality 448

would cause the number of correlations to be calculated to 449

explode. Furthermore, most implementations of LDA only 450

consider unigrams, as topics must be latent relationships 451

between these unigrams. Finally, given that the dataset of 452

length constrained social media posts is studied, it is fairly 453

common for users to discard words, which would severely 454

limit the usefulness of n-grams for n > 2. A total of 794 917 455

unigrams were detected. We set δmin to one percent and deter- 456

mine that the optimal cut c to be 102, removing any unigrams 457

that occurred less than 102 times in the dataset (see Fig. 6), AQ1458

thus we define δmin and use this to calculate c, which allows 459

our approach to scale to datasize. This automated selection 460

of c generates comparable results to other papers [16]–[18] 461

that use domain knowledge to choose their cut off, while still 462

allowing for more or less frequencies depending on datasize. 463

This also helps if new samples need to be drawn and tested. 464

C. Knowledge Discovery of Statistically Relevant 465

Social Media Topics 466

We now aim to show that these topics are statistically related 467

to the real world events that they describe, as our assumptions 468

in Section III require. As a null hypothesis, we consider that 469

individuals are free to discuss any topic at any time. That 470

is, the probability of a topic being discussed, P(o) does not 471

depend on the time. Instead, if our original assumption is cor- 472

rect, then P(o‖xi) > P(o) for some o ∈ O and xi ∈ X. Hence, a 473

2http://www.census.gov/geo/www/tiger/tgrshp2011/tgrshp2011.html
3https://github.com/ToddBodnar/Twitter-Parser

http://www.sdge.com/sites/default/files/documents/Coastal_Single_Family_Jan_1_2011_to_Jan_1_2012.xml
http://www.sdge.com/sites/default/files/documents/Coastal_Single_Family_Jan_1_2011_to_Jan_1_2012.xml
http://www.census.gov/geo/www/tiger/tgrshp2011/tgrshp2011.html
https://github.com/ToddBodnar/Twitter-Parser
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TABLE I
WORDS THAT BEST DESCRIBE THE 20 DAILY TOPICS FROM TWITTER THAT OUR SYSTEM DETERMINED TO BE ABOUT POWER USAGE AND THE

CORRELATION BETWEEN THE TOPIC AND POWER USAGE. NOTE THAT THE TOPICS HAVE BEEN SORTED BY CORRELATION COEFFICIENT

Fig. 4. Temporal patterns for three select topics in black. Chart titles indicate
the three most representative words for each topic. Red lines indicate days
that are Sundays, Christmas day, and days when it rained, respectively.

topic is being induced by a real world event. To verify this,474

we would need ground truth data for xi, which is not necessar-475

ily possible to obtain for all possible events i. However, some476

topics lend themselves to easy validation.477

Here, we consider three topics that appear to represent478

Sundays, Christmas, and rain (see Fig. 4). Sundays were cho-479

sen as the first topic for analysis because it was expected480

to follow clearly defined temporal patterns. Additionally,481

Sundays are more discrete than Christmas (i.e., are Christmas482

Eve and Christmas separate events?) or rain (i.e., how much483

precipitation is necessary for it to be considered raining?). 484

Christmas was chosen as a topic because it is representative 485

of events that occur only once in our dataset, but with a well 486

defined event time. Indeed, Christmas may be the biggest topic 487

detected, with 25.8% of the Twitter data being about Christmas 488

on Christmas, December 25, and 17.5% on Christmas Eve, 489

December 24. Finally, we considered rain because it lacks the 490

periodicity of the other two topics. Note that the rate of pre- 491

cipitation does not have a strong relationship to spikes in the 492

rain topic, so we discretized weather into days without rain 493

and days with rain, as defined by weather underground.4 494

We can thus calculate the relevant probabilities (see Table I). 495

This means that 80 topics whose correlations are too low 496

are not present in this table. For example, with the topic 497

sunday: P(osunday) = 0.00350 (as determined by LDA) and 498

P(osunday|xsunday) = (osunday&xsunday/xsunday) = 0.0182. For 499

completeness, we can use Bayes theorem to determine the 500

probability that it is Sunday given that the topic is about 501

Sunday 502

P
(
xsunday|osunday

) = P
(
osunday|xsunday

)
p
(
xsunday

)

P
(
osunday

) 503

= 0.0182 ∗ 0.15

0.00350
= 0.728. (5) 504

Since we know what days we sampled from, we know that 505

P(xsunday) = (xsunday/xall) = 0.14, which is close to the gen- 506

eral occurrences of Sundays, (one out of seven days each week 507

≈0.1429). We find that p(Event|Topic) is significantly higher 508

than the baseline P(Event), giving evidence toward these auto- 509

matically generated topics, o ∈ O having some relation to real 510

world events xi ∈ X. 511

4http://www.wunderground.com/history/airport/KSAN/2011/1/1/Custom
History.html?dayend=31&monthend=12&yearend=2011&req_city=NA&req_
state=NA&req_statename=NA

http://www.wunderground.com/history/airport/KSAN/2011/1/1/CustomHistory.html?dayend=31&monthend=12&yearend=2011&req_city=NA&req_state=NA&req_statename=NA
http://www.wunderground.com/history/airport/KSAN/2011/1/1/CustomHistory.html?dayend=31&monthend=12&yearend=2011&req_city=NA&req_state=NA&req_statename=NA
http://www.wunderground.com/history/airport/KSAN/2011/1/1/CustomHistory.html?dayend=31&monthend=12&yearend=2011&req_city=NA&req_state=NA&req_statename=NA
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TABLE II
WORDS THAT AREAQ2 MOST ASSOCIATED WITH THE 38 HOURLY TOPICS FROM TWITTER THAT

DESCRIBE EVENTS THAT ARE FOUND TO GRANGER CAUSE CHANGES IN POWER USAGE

Additionally, some events will show cyclical, daily patterns512

(see Fig. 5). If the target phenomena also shows similar pat-513

terns, these hourly events may further help to describe the514

phenomena.515

D. Event-Electricity Usage Relationships Detected516

These automatically determined topics were found to cor-517

relate with daily power consumption rates with −0.519 <518

ri < 0.448 (see Table I). The topic that correlated most neg-519

atively with power consumption included unigrams such as520

“job,” “getalljob,” and “tweetmyjob.” This leads to the first521

steps of a domain expert investigating that people use less522

energy at their residence on days when they are at work than523

days when they are not working. The topic that correlated most524

positively with power consumption included Levins stemmed525

unigrams such as “christma,” “holiday,” and “home,” hinting526

that people consume more electricity around Christmas time.527

Similarly, the topics that were determined to Granger cause528

changes in hourly electricity consumption correlated with the529

current electricity consumption between −0.432 < ri < 0.639530

(see Table II). As with daily rates, the topic that Granger531

caused the most decrease in power included unigrams such532

as tweetmyjob and “sonyjob.”533

E. Validation Steps 534

With Bonferroni correction for multiple tests, we deter- 535

mined the corrected value for α = 0.05 to be α′ = 536

α/100 = 0.0005. Twenty correlations are found to be sig- 537

nificant at this rate (see Table II). While we cannot make 538

any explicit claims about the topics this citation [13] deter- 539

mined to have significant relations to power usage, it has 540

been argued [9], [13], [17], [18] that the most common words 541

in a topic are representative of the inherit meaning of the 542

topic. Here, we present the most significant words for each 543

topic, with select words bolded for easier interpretation. With 544

this interpretation in mind, it appears that the three most 545

negatively correlated topics include activity such as hav- 546

ing a job, posting on Foursquare or Instagram (i.e., things 547

done outside the residence) and job searches. The top three 548

positively correlated topics include topics about Christmas, 549

storms, and surprisingly, a topic consisting of several 550

vulgarities. 551

We found a total of 20 statistically significant correlations 552

between events (as inferred by detected topics) and power 553

consumption. Earlier, we presented the 20 topics that had 554

statistically significant correlations with power consumption 555

(see Table II). However, it is also important to consider topics 556

that are rated with a low coefficient of determination to see if 557
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TABLE III
PROBABILITY OF A TOPIC INDEPENDENT AND DEPENDENT ON A

POTENTIALLY RELATED EVENT

Fig. 5. Mean hourly rate of three select topics. Chart titles indicate three
representative words for each topic.

they are actually not likely to related to residential electricity558

consumption. The least related topic’s three most represen-559

tative words are “asiathegreat,” “manufactur” and “deal.” It560

would appear that these topics are about manufacturing–561

perhaps in China–which does not have a direct effect on562

residential electricity consumption. The second least related563

topic’s three most representative words are “louisseandon,”564

“ya,” and “blo.” The third least related contains “justinbieb,”565

“lt,” and “sagesummit.” These two topics would seem to be566

related to news about entertainers Louis Sean Don and Justin567

Bieber, which are likely related to entertainment news rather568

than electricity consumption.569

V. EXPERIMENTS AND RESULTS570

One may ask “what is the value of this system over tra-571

ditional keyword mining or just using expert knowledge?”572

While our system allows knowledge discovery with limited573

need for expert knowledge, if it does not perform well, then574

it is not useful. To justify our system’s existence, we compare575

the results of our system to topics common in the power con-576

sumption literature. Additionally, we perform keyword mining577

to detect words, instead of topics, that are related to electricity578

consumption.579

TABLE IV
TOPICS GENERATED THROUGH A REVIEW OF THE LITERATURE,

RANKED BY OCCURRENCE IN “NEW & USA” PAPERS

Fig. 6. Distribution of unigrams detected shows a long-tail distribution. The
gray line represents the automatically determined cut, w.

A. Comparison to Domain Experts 580

To approximate that knowledge of an expert on power con- 581

sumption modeling, we perform a literature review. We sample 582

Google Scholar for 100 papers that appear relevant to our 583

question. We discard 85 papers which are either inaccessible 584

(e.g., out of print papers from the ’70s), irrelevant to our topic 585

(e.g., a paper on building the Nigerian power grid) or do not 586

explicitly state activities to model (e.g., a paper on synchro- 587

nizing houses on a smart grid which filter out the customers 588

activities). While we could read the papers for other ideas 589

of important topics, we avoid to because: 1) we risk biasing 590

the set of topics due to selective reading; 2) if a topic is not 591

explicitly modeled or measured, we can assume that the expert 592

does not consider it important; and 3) this literature review is 593

not designed to collect all relevant topics, just ones that are 594

common amongst experts. 595

Additionally, we separate papers that are more than 10 596

years old or do not focus on American populations. While 597

these papers may contain expert knowledge, our Twitter and 598

power datasets are based on recent, American usage, which 599

may be different from older usage patterns or those of citi- 600

zens of other countries. In total, we find 12 topics from recent 601

and local papers [30], [31], [33], [34], [49]–[51] and an addi- 602

tional eight topics from other papers [32], [35], [52]–[57] (see 603

Table IV). Topics were explicitly presented from the papers 604
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by either tables or equations. If we only consider the topics605

that occur more than once in the set of recent and local papers606

(“temperature,” “income,” “electricity price,” “air conditioner,”607

and “heater”), then we can informally detect two clusters608

of topics: 1) “climate control” and 2) “economic factors.”609

Both of these two topics were also discovered to be signifi-610

cant measures of electric consumption through our automated611

system.612

Our system found 20 topics that are related to electricity613

consumption. Our literature review also found 20 topics that614

are related to electricity consumption. It would seem, however,615

that these two methods of knowledge discovery discovered616

topics that were different from each other. The literature review617

found topics such as temperature or dishwasher usage as inter-618

esting topics (see Table IV) while the topic modeling found619

topics such as having a hangover on the weekend or going620

to the mall as interesting topics (see Table I). This can be621

explained by the methods used to collect data. The litera-622

ture focuses on things that are easy to measure by traditional623

sensors. However, we use humans as “organic” sensors. This624

results in different types of data collected: it is easy to have625

a person report that they are going out on the weekend, but626

relatively hard to design a sensor to measure this. On the other627

hand, a sensor to measure temperature is trivial to acquire, but628

it is unlikely for a person to accurately report the temperature629

on a regular basis. By focusing on the human element, we630

have been able to detect important factors of electricity con-631

sumption that were previously overlooked due to limitations632

in traditional sensors and domain knowledge.633

Often times, the elements which can easily be studied by634

these experts and events which are present on social media635

do not have many commonalities. Discovering these latent636

events, processed by human sensors, is one major advantage637

of this paper over traditional sensors. For example, humans638

might aid in discovering a third variable at work (such as a639

football game), which leads to an increase in power consump-640

tion, while a more guided approach will tend to be informed641

instead by a television. This demonstrates that not only can642

we reproduce previous results, but we can also generate novel643

hypotheses, as told by human sensors.644

B. Comparison to Keyword Analysis645

We also consider algorithmically generating keywords646

instead of topics. First the text is cleaned through stemming647

and stop word removal, equivalent to the methods imple-648

mented in our system (see Section III-A). Instead of using649

topic modeling to filter out irrelevant keywords, we are lim-650

ited to just selecting keywords based on their frequency in651

the dataset. The n = 1, 2, . . . , 5000 most commonly occur-652

ring keywords are selected. The keywords are then tested for653

relations through cross correlation with the electricity con-654

sumption data, the same way that topics were tested for655

relations in Sections III-D and III-E. We try different values of656

n because if we try too few keywords, important keywords will657

be lost, but if we try too many keywords, then, once Bonferroni658

correction is applied, there will not be enough statistical power659

to detect significant keywords.660

(a)

(b)

Fig. 7. Strongest positive or negative keyword given a set number of key-
words tested. Dashed lines indicate the strongest positive or negative topic
detected. Data was aggregated by (a) day or (b) hour.

Additionally, we could define words that occur very fre- 661

quently in our dataset as de-facto stop words and remove 662

them in addition to the predefined stop word list. However, 663

we do not do this as the tests in this section are independent 664

of each other (besides the Bonferroni correction), compared to 665

the frequency-based methods of our proposed event inference 666

system, so the gain in statistical power is limited in com- 667

parison of the risk of removing strongly predictive keywords. 668

Finally, we consider the strongest positive and negative rates 669

of correlation detected for each value of n (see Fig. 7). All 670

minimum and maximum correlations displayed are significant 671

at the 0.05 level, even when Bonferroni correction is applied. 672

Testing keywords instead of topics resulted in some cor- 673

relations when dealing with daily aggregation. However, our 674

keyword test allows for a number of tests equivalent to the size 675

of the corpus, which is hard to directly compare against test- 676

ing 100 topics. When we only consider the top 100 keywords, 677

we find keywords with the strongest positive correlation to be 678

“don” with r = 0.384 and the keywords with the strongest 679

negative correlation to be sq with r = −0.476. Our system 680

finds events where the strongest positive correlation is 0.448 681

and the strongest negative correlation of −0.519, a 16.7% and 682

9.03% improvement, respectively. While keyword-based mod- 683

els do provide some information for daily prediction, hourly 684

prediction does not seem well suited for keyword analysis with 685

correlations ranging between −0.074 and 0.004, limiting the 686

usefulness of previous methods for fine-grained prediction. 687

Comparatively, our system which finds topics that match 688

power usage with correlations between −0.432 and 0.639 689

resulting in an increase of explained variance of up to 41%. 690

VI. PREDICTING FUTURE ELECTRICAL CONSUMPTION 691

Up to this point we have only considered individual top- 692

ics to predict the phenomena. Here, we consider multivariable 693

regression based on lagged predictive variables to predict 694

hourly power usage (see Algorithm 5). As a baseline, 695

we consider a 12-variable auto-correlation model where 696

the maximum lag of 12 was determined through maxi- 697

mum likelihood estimation. We then compare this model to 698
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TABLE V
CORRELATION COEFFICIENTS FOR MODELS USING AUTO-CORRELATION,

TOPICS, OR A SUBSET OF ATTRIBUTES

TABLE VI
ROOT MEAN SQUARE ERRORS FOR MODELS USING

AUTO-CORRELATION, TOPICS, OR A SUBSET OF ATTRIBUTES

three models: a multivariable regression on the detected topics,699

a multivariable regression on the 38 topics that were found to700

have a Granger causal relationship to electricity consumption701

and the auto-correlation model, and the second model with a702

subset of the attributes used. Which attributes are retained in703

the third model are selected through removing attributes with704

the smallest coefficients and refitting the model until AIC noAQ3 705

longer improves.706

We now determine the accuracy of each model by deter-707

mining the correlation coefficient for either through traditional708

statistical methods, fivefold cross validation, or a 80%/20%709

test-train split. The 80%/20% test-train split is performed on710

data that is ordered by time where the fivefold cross valida-711

tion is performed on randomly ordered data. We find that at712

least one of our models out perform the base-line in all three713

evaluation methods. Importantly, the 80%/20% test-train split714

represents the most realistic case of predicting future elec-715

tricity usage, and our model provides an additional 4.28%716

explanation of electricity usage. These results can be seen in717

Tables V and VI.718

A. Comparison With U.S. DOE Model719

The U.S. Department of Energy provides Commercial and720

Residential hourly load profiles for typical meteorological721

year (TMY3) locations around the United States. These sim-722

ulated values are derived from a combination of weather723

data from the National Solar Radiation Database,5 regional724

climate-specific information (cold/very cold, hot-dry/mixed-725

dry, hot-humid, marine, and mixed-humid), and load profile726

type (high, base, and low) which define physical building727

characteristics such as home size, layout, insulation type, heat-728

ing fuel source, and occupants. These simulations take into729

account very detailed electricity demands, (e.g., heat output730

by showers and dishwasher temperature point) and provide731

an hourly demand of an average household in each of hun-732

dreds of sites around the United States. Incorporating all of733

this information, this model presents a year-agnostic estima-734

tion of the hourly electricity usage of households across the735

country. That is, the model does not differentiate between736

1 A.M., January 1, 2011, and 1 A.M. January 1, 2012. Rather, it737

assumes each hour is the same. The DOE has made this model738

5https://mapsbeta.nrel.gov/nsrdb-viewer

Fig. 8. Periodicity of SDGE provided energy data, compared to TMY3
simulated data.

publicly available for researchers seeking to predict energy 739

demands across U.S. Cities.6 740

To test the efficacy of the TMY3 models in simulating 741

the real world energy use of the San Diego area, we com- 742

pared the TMY hourly use with the SDGE-provided data 743

from Section IV. The TMY3 data is considered the base- 744

line model, with the SDGE data representing the ground truth. 745

Since the TMY3 data is year agnostic, variations in energy use 746

due to severe weather events (as opposed to seasonality), and 747

date-specific periodicity (weekends and weekdays) will not be 748

included. These differences can be seen in Fig. 8. While the 749

SDGE data is lower in magnitude than the TMY3 load pro- 750

files, the general trends of the data are reflected best by the 751

base model, which carries an hourly correlation coefficient of 752

0.7544 and an RMSE of 130 when used as input for a linear 753

regression of the SDGE data. 754

Next, TMY3 data is used to predict monthly SDGE elec- 755

tricity usage. The monthly usage data is provided by SDGE, 756

aggregated across customers in each zip code.7 This data is 757

shown in Fig. 9. Note that since the TMY3 is year agnostic, 758

the data will repeat on an annual cycle. Once again, the mag- 759

nitude of each of the load models is higher than the aggregate 760

data provided. When analyzed against the real monthly data 761

for San Diego homes, no single model consistently correlates 762

better than the others, with the high model performing best 763

6http://en.openei.org/datasets/dataset/commercial-and-residential-hourly-
load-profiles-for-all-tmy3-locations-in-the-united-states

7https://energydata.sdge.com/

https://mapsbeta.nrel.gov/nsrdb-viewer
http://en.openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
http://en.openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
https://energydata.sdge.com/
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TABLE VII
ρ AND RMSE FOR EACH TMY MODEL

Fig. 9. TMY3 data, aggregated by month, compared with SDGE monthly
data.

Fig. 10. Topic rates for three sample topics. Note the recurrence of the topic
rate, as the topics were analyzed for 1 year only.

in 2012, base in 2013, and low in 2014. These same mod-764

els possess the lowest RMSE on a yearly basis, as seen in765

Table VII.766

Finally, we demonstrate that our proposed social media767

model outperforms the TMY3 model, given the same ground768

truth (SDGE data), by using the topic models and frequencies769

from Sections IV–VI. As with the TMY3 data, we assumed770

that each topic frequency is repeated for that same hour and771

date on all subsequent years. Similar to Fig. 4, these cumu-772

lative topic rates by month can be seen in Fig. 10. Next,773

these topics were aggregated on a monthly basis, the signifi-774

cance of each topic was tested, and the Bonferroni correction775

applied, leaving 13 topics whose p < 0.05/100. Finally, we776

used these frequencies as input in a regression model for 777

March–December of each year. This model yielded an RMSE 778

of 43.6 when applied to this time period, which outperforms 779

the linear regression performance of the best TMY3 data in 780

Table VII, whose best models RMSE was 80.1, an 83%. 781

VII. CONCLUSION 782

In this paper, we proposed a theoretical backing to our 783

design (see Section III), which assumed a link between: 784

1) events and text; 2) text and word vectors; 3) word vec- 785

tors and topics; 4) topics and events; and 5) events and 786

real-world phenomena. We now provide evidence of these 787

relations. Previous work [9], [39] has verified that events 788

cause users to post on social media networks. Similarly, the 789

conversion of text into word vectors has previously been dis- 790

cussed [4], [17], [20], [41], [42]. The most likely words are 791

cohesive within each topic and have large between-topic vari- 792

ation (see Table I). Thus it is likely that topics can be generated 793

from social media network text using LDA [14], [15]. We 794

choose three topics that contain words related to Sundays, 795

Christmas, and storms. By studying the temporal patterns of 796

each topic, we find a relationship between the storm topic and 797

the days with “rain” events in San Diego, the Sunday topic to 798

be most often discussed on Sundays, and the Christmas topic 799

to trend during December (see Fig. 4). Finally, we show a 800

relationship between our discovered events and energy con- 801

sumption through statistical analysis (see Table II). Hence, we 802

conclude that there is evidence for our assumptions on links, 803

at least when applied to our case study. 804

We presented a novel form of semi-supervised knowl- 805

edge discovery that infers events from topics generated from 806

social media network data. These events are then used to 807

form hypotheses about real-world phenomena which are then 808

validated. To provide support for our case, we perform a 809

case study where Twitter data is used to predict electricity 810

consumption rates. The results are then compared to top- 811

ics generated by domain experts and keyword analysis. We 812

find that our system detects events tangential to what the 813

literature is currently focused on and that our system outper- 814

forms an equivalent keyword analysis by up to 16.7%. When 815

combined with time-series modeling, we are able to predict 816

electricity consumption with correlations of up to 0.9788 and 817

a mean absolute error of 19.84 watts—less than the energy 818

consumption of a single light bulb. Finally, we compared the 819

performance of this model to the models generated by the DOE 820

for the San Diego area, and found it to be more accurate. 821

Future work may consider a more robust comparison of this 822

model against other existing models, since several such mod- 823

els exist. Additionally, this model might be employed for a 824

more directed event detection, as described in the introduc- 825

tion. The textual analysis in this paper could be augmented 826

by considering synonyms and related concepts through word 827

embedding which groups similar words together automatically. 828

Additionally, other data modalities might also be considered, 829

such as images, videos, and social media metadata. Since 830

there is a spatial component of this data, future work may 831

also analyze similar data for a different part of the country, to 832
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determine if the trends we have identified hold true elsewhere.833

Finally, it may prove fruitful to analyze a similar methodology834

for other utilities such as water.835
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Using Large-Scale Social Media Networks
as a Scalable Sensing System for Modeling

Real-Time Energy Utilization Patterns
Todd Bodnar, Member, IEEE, Matthew L. Dering, Conrad Tucker, Member, IEEE,

and Kenneth M. Hopkinson, Senior Member, IEEE

Abstract—The hypothesis of this paper is that topics, expressed1

through large-scale social media networks, approximate electric-2

ity utilization events (e.g., using high power consumption devices3

such as a dryer) with high accuracy. Traditionally, researchers4

have proposed the use of smart meters to model device-specific5

electricity utilization patterns. However, these techniques suffer6

from scalability and cost challenges. To mitigate these challenges,7

we propose a social media network-driven model that utilizes8

large-scale textual and geospatial data to approximate electric-9

ity utilization patterns, without the need for physical hardware10

systems (e.g., such as smart meters), hereby providing a readily11

scalable source of data. The methodology is validated by consid-12

ering the problem of electricity use disaggregation, where energy13

consumption rates from a nine-month period in San Diego, cou-14

pled with 1.8 million tweets from the same location and time span,15

are utilized to automatically determine activities that require16

large or small amounts of electricity to accomplish. The system17

determines 200 topics on which to detect electricity-related events18

and finds 38 of these to be valid descriptors of energy utilization.19

In addition, a comparison with electricity consumption patterns20

published by domain experts in the energy sector shows that21

our methodology both reproduces the topics reported by experts,22

while discovering additional topics. Finally, the generalizability23

of our model is compared with a weather-based model, provided24

by the U.S. Department of Energy.25

Index Terms—Event detection, Granger causality, predictive26

models, social network services, unsupervised learning.27
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I. INTRODUCTION 28

SOCIAL media network models have the potential to serve 29

as dynamic, ubiquitous sensing systems that serve as an 30

approximation of physical sensors with the added benefits of: 31

1) being scalable; 2) publicly available; and 3) having lower 32

setup and maintenance cost, compared to certain physical sen- 33

sors (e.g., smart meters or smart plugs). Each day, social 34

media services such as Twitter, Facebook, and Google, pro- 35

cess anywhere between 12 terabytes (1012) [1] to 20 petabytes 36

(1015) [2] of data, making them suitable for large-scale data 37

mining and knowledge discovery. The ability of individuals 38

within a social media network to: 1) detect a phenomenon; 39

2) observe and interpret a phenomenon; and 3) report the 40

impact of the phenomenon back to the social media network 41

in a timely and efficient manner, highlights the potential for 42

social media networks to be perceived as large-scale sensor 43

networks. However, as with many large-scale sensor systems, 44

the fundamental challenge is separating signal from noise. 45

The conventional wisdom has been that in order to accurately 46

understand a complex phenomenon (e.g., energy utilization 47

patterns), complex sensors are required (e.g., smart meters) 48

to sense, collect data, and make inferences in real time. This 49

paper aims to challenge these conventional paradigms of social 50

media networks and physical sensor systems by demonstrating 51

the viability of social media networks to be used as dynamic, 52

ubiquitous sensing systems that provide comparable level of 53

information and knowledge, to physical sensor systems setup 54

to achieve similar objectives. 55

In this paper, we propose a system that automatically 56

generates and tests relationships between topics on social 57

media network and electricity usage pattern. These topics are 58

then used to predict future electricity use or test Granger causal 59

links between the topics and the usage. This Granger causal- 60

ity is used to validate these links. We consider a case study 61

where our methods are applied to energy use disaggregation 62

using social media network data. That is, can our system dis- 63

cover interesting relations in social media networks that trend 64

with electricity consumption rates? We then compare the top- 65

ics that our system detects to be valid against actual topics 66

chosen by an expert in the energy domain or against keywords 67

mined directly from the dataset. We find that, in addition to 68

other topics, our system replicates the topics chosen by an 69

expert. Furthermore, a direct comparison to keyword analysis 70

results in up to a 16.7% improvement in detected correlations 71

2168-2216 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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(as described in Section V-B). Finally, a comparison with a72

weather-based simulation of homes in cities is considered.73

In this paper, we provide an implementation, quantitative74

evaluation, and analysis of this mapping. In Section II, previ-75

ous work on social media network analysis, topic modeling,76

and electricity use disaggregation is discussed. In Section III,77

a formal implementation of this mapping system is provided.78

In Section IV, a case study is presented where y = electric-79

ity consumption rates, and X is statistically derived social80

media network data. In Section V, this method of hypothe-81

sis generation is compared against expert-based and machine82

learning-based hypothesis generation. In Section VI, we test83

our model’s capability to predict future electricity usage. In84

Section VII, we conclude.85

II. PREVIOUS WORK86

A. Mining Social Media Networks87

Social media networks are emerging as the next frontier88

for novel information discovery. Previous work has shown89

applications toward measuring weather patterns [3], diag-90

nosing illness [4], tracking earthquakes [5], providing user91

recommendations [6], exploring plans of action in crises [7],92

detecting security risks [8], and describing obesity patterns [9].93

Part of social media network’s advantage is the relatively94

openness and ease of collection of data, which, unlike tra-95

ditional websites, are created by a larger population of users96

whose demographics are more representative of the general97

population [10].98

One way that social media network data can be represented99

is as a set of sensors, where each user is a noisy sensor [4], [5].100

That is, instead of reporting numerical data like traditional101

sensors do, social media network users report textual data102

which must be preprocessed before statistical methods can be103

applied. Simple keyword analysis—a mainstay of modern text104

analysis—can be problematic when applied to big datasets. For105

example, Google Flu Trends’ system of applying text analy-106

sis to search queries has been shown to over estimate ground107

truth influenza rates [11], [12]. In this paper, we employ topic108

modeling to avoid the worst case scenario of an exhaustive109

search of keyword-phenomena relations.110

B. Topic Modeling111

Topic modeling is a way to algorithmically derive topics112

from unstructured documents of text. Modern work has been113

focused on latent Dirichlet allocation (LDA) and its deriva-114

tives [13]–[15]. LDA works by determining clusters of words115

in a document to determine “topics” through a Bayesian pro-116

cess. These topics can be represented by the words that,117

statistically, best describe the cluster. It has been shown that118

LDA can be used to detect topics in datasets such as Wikipedia119

articles [16], [17], scientific literature [18], spam classifica-120

tion [19], news analysis [20], and tweeting behavior [9], [21].121

In this paper, we demonstrate that the set of topics gen-122

erated by topic modeling algorithms are indeed statistically123

valid approximations of events. We further show that by min-124

ing these event-phenomena patterns, researchers can discover125

events strongly related to phenomena of interest.126

Fig. 1. High-level description of our system to transform a social media
network stream into hypotheses about a real world event.

C. Knowledge Management in Energy Systems 127

Smart grids use communication to facilitate context aware- 128

ness and cooperation across much wider areas than previous 129

power grid system [22]. Among the initiatives to introduce 130

smart grids are the advance metering infrastructure [23], [24] 131

for metering in the distribution system, demand pricing, IEC 132

61 850 substation automation [25], the wide area manage- 133

ment system [25], [26] for wide-area PMU measurement, and 134

the North American synchrophasor initiative [27] that uses 135

wide-area utility communication. Smart grid operations rely 136

on periodic collection of data through sensors followed by 137

processing the data. 138

The technology provided by a smart grid is valuable for 139

reducing or predicting large spikes in electricity utilization. 140

For example, by coordinating households to not perform high 141

power usage activities concurrently. However, the smart grid 142

has not yet been widely implemented. This paper has focused 143

on methods to study nonsmart grid data to study either high- 144

level usage patterns, such as total energy consumption in a city, 145

low-level usage patterns to measure device level energy con- 146

sumption, or placement of systems based on simulation [28]. 147

It would be difficult to generalize high-level measurements to 148

work at a finer grain because real-time electric consumption 149

sensors are typically deployed on a station or node level. Thus 150

analysis is limited to events that impact a large area, such as 151

the temperature or time of day [29]–[35]. Low-level, device- 152

based measurements have been proposed as a method to 153

disaggregate high-level power consumption patterns [36]–[38]. 154

These sensor networks have the advantage of providing device- 155

level information and bypassing the need to rely on a power 156

company for data. However, these are expensive to implement 157

and require installation of hardware in the study participant’s 158

house, limiting the amount of data that can be collected. 159

To demonstrate the practicality of our system in real life 160

applications, we consider applying our system of automated 161

event detection to provide a novel system of energy usage 162

disaggregation which can take high-level, publicly available 163

power consumption records and generate valid hypotheses 164

about behaviors that affect this consumption. For a graphi- 165

cal description of our methods (see Fig. 1). First, we clean 166
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textual social media network streams. Then we use LDA on167

the cleaned text to detect topics. These topics are then used as168

the basis for hypotheses about a real-world event. These topics169

are then tested for statistical significance. Validated hypotheses170

are then reported.171

III. SOCIAL MEDIA NETWORK ELECTRICITY172

UTILIZATION METHODOLOGY173

In this section, we propose using large-scale social media174

network data as method of tracking a subset of events that175

are relevant to the social media network users, X. That is,176

exposure to a particular event xi ∈ X may induce a user to post177

a message m at time j, mj on a social media network. Here, we178

assume mj to be text-based. That is, it can be represented with179

a word vector vj, derived from the raw message mj. While it is180

easy for a user to map xi → mj (for example, “I need to do my181

laundry”), it may be hard to reverse this mapping, at least in182

a machine processable manner. Since our goal is to generate183

these xi to test against phenomena, in this case: electricity184

usage, we must approach this mapping in an indirect fashion.185

Thus, we develop topic models from these word vectors where186

we assume a topic o is an approximation to event xi for some i.187

Later, we provide an empirically tested and validated analysis188

of this assumption (see Section V). This allows us to map189

mj → vj → o → xi, effectively reversing the mapping of190

xi → mj in an unsupervised manner. Thus, we are able to191

formulate and validate statements of the form “xi is related to192

phenomenon y” without prior knowledge about xi.193

A. Cleaning Raw Social Media Network Data194

Social media network data are commonly described as195

extremely noisy [3], [5], [39], requiring intensive cleaning of196

the social media network stream as a necessary first step. We197

do this by converting a string of characters into a list of n-198

grams—pairs of up to n contiguous words (see Algorithm 1).199

The n-grams are determined by tokenizing the string on all200

nonalphabetical characters. Since capitalization can be erratic201

in social media networks, the n-grams are then converted to202

lowercase. As the objective of this step is to derive topics203

instead of keywords, we stem each of these words using porter204

stemming [40]. This maps words with similar stems but with205

different suffixes to the same keyword. For example, “accept,”206

“accepting,” and “acceptance” are all mapped to the same207

keyword, accept.208

This list of n-grams is expected to follow a long-tail distribu-209

tion [41], resulting in the likelihood that some are too common210

or too rare to be valuable in the analysis. Common words such211

as “the,” “is,” and “and” give little or no information about212

the text and could overshadow other, more descriptive, words213

that do not occur as frequently [13], [17], [42]. Thus common214

words, as defined by Lewis et al.’s [42] stop list, are removed215

from the list of n-grams. On the other hand, if a word is too216

rare, it may not occur enough for any inferences about it to217

be generalizable. Since the distribution of n-grams has a long-218

tail, most words will be too rare. Thus there is the potential219

of these very-rare n-grams to lower our ability to generate220

inferences about any n-grams [4], [17], [41]. This problem221

Fig. 2. Implementation of our theoretical model (see Fig. 1) for our case
study.

is addressed by removing any n-grams that occur less than c 222

times [4], [17], [20], [41], [42]. However, previous work tends 223

to be somewhat vague on how to determine c, often incorpo- 224

rating expert knowledge to determine c. Here, we determine 225

c algorithmically. 226

To determine c, first begin with the distribution of n-gram 227

counts. That is, fm is the number of n-grams that occur exactly 228

m times each in the dataset. We then iteratively test each value 229

for c > 0 until we find the minimum value for c such that 230

fc
∑∞

m=c+1 fm
< δmin (1) 231

where δmin is a user defined stopping threshold. Thus, we 232

define rare words as words that occur less than δ times 233

and remove them—a necessary step for preprocessing for 234

LDA [17]. 235

Note that we specifically do not remove keywords related 236

to URLs as they may provide additional information about the 237

user’s activity. For example, tweets containing a link copied 238

from a Web browser are likely to include “http” which may be 239

less common on mobile users. Alternatively, links with “4sq” 240

(reduced to “sq” when numerics are removed) are sent through 241

four square’s—a popular location check-in service—mobile 242

application, informing us that the user is more likely visiting 243

a location outside of his or her house. 244

B. Pairing Real World and Social Media Network Data 245

Social media network data can be updated on a millisecond 246

level; however, it is rare for real-world events to be reported 247

at such a temporal resolution. Additionally, it is unlikely that 248

a single social media network message contains significant, 249

relevant information about the real-world event we want to 250

study, or if it does, they are exceedingly rare. We address this 251

discrepancy by normalizing the social media network data to 252

the real-world data’s time scale. That is, we define a document 253
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Algorithm 1: Preprocessing Steps for Social Media
Network Data

Data: Time tagged Messages M
Result: A set of aggregated and processed messages D
dq = document of keywords at time q;
countword = frequency of “word” in all documents;
W = set of all known stemmed words;
for mj ∈ M do

Break mj into substrings on non-alphabetical
characters ^[a− zA− Z];
j = hour mj was posted;
for non-empty Substring S in mj do

convert S to lowercase;
stem S using porter stemmer;
add S to W;
push S onto dj;
countS ++;

end
end
for word S in W do

if countS < δmin then
Remove S from each dq;
Remove S from W;

end
end

dj to be the aggregation of all processed social media network254

messages vj (as derived from mj) that occur in during the255

timespan between the qth real-world event xq and the next256

event, xq+1. More formally257

dj =
{
vj|time

(
xq

) ≤ time
(
mj

)
< time

(
xq+1

)}
(2)258

where vj is the n-gram representation of message mj and259

time(e) is the time when e occurs. For example, if one is look-260

ing at temperature data that is reported on an hourly basis,261

a document would be all posts that occur within that hour.262

Algorithm 1 outlines how these messages are processed into263

word vectors, and subsequently aggregated into a document. It264

would be unreasonable to assume that a user posts a message265

exactly when the event happens. Instead, it is likely that the266

user posts about an event sometime before, during, or after the267

time that the event occurs. This issue is partially addressed268

when the data is aggregated, because all message after an269

event, but before the next, will be combined, regardless of270

lag between event and message.271

Additionally, data can be paired based on geospatial infor-272

mation, such as which zip code the message occurred in. This273

is dependent on the dataset describing the phenomena y and the274

social media network messages mj ∈M both containing com-275

parable location data. Caution should be advised if arbitrary276

spatial units are defined: the “modifiable areal unit problem”277

can bias results from geospatial aggregation and remains an278

open problem [43], [44].279

C. Generating Topic Models280

A given set of documents defined by the aggregation281

described above can be used to generate topics through282

Algorithm 2: LDA Algorithm in the Context of the
Proposed Social Media Network Model

Data: set of Documents D, topics O
Result: a |W| × |O| matrix
for Document d ∈ D do

for Word w ∈ d do
wtopic = Random topic ∈ {0, . . . , |O|};

end
end
for Step in {1, . . . , stop point} do

for Document d ∈ D do
for word w ∈ d do

for topic o ∈ {0, . . . , |O|} do

P(o|d) = |w ∈ d where wtopic = o|
|w ∈ d| ;

P(w|o) = |w ∈ D where wtopic = o|
|w ∈ D| ;

end
Assign wtopic based on P(w|o)× P(o|d).

end
end

end

LDA. We use Gibbs sampling [17], [18] implemented by 283

JGibbLDA [17] to perform this analysis. LDA determines the 284

probability of a document being about a topic given that it 285

contains a set of n-grams [13], [17], [18]. To do this, LDA 286

first generates clusters of words based on co-occurrence in 287

the documents. That is, the probability of a word w occurring 288

given that a document is in topic ow. To represent these topics 289

in a human readable form (for example, in Tables I and II), 290

we present the set of words that have the highest probability 291

of occurring within the topic. In other words, the topics can 292

be expressed as a |W| × |O| matrix, where W is the vocab- 293

ulary found in Section III-A and O are the topics generated 294

by the LDA model such that o ∈ O. Each entry in this matrix 295

corresponds to the probability of that word belonging to that 296

topic. LDA works according to Algorithm 2. Note that the 297

stop point is selected as 2000, the default of JGibbLDA as 298

proposed by Heinrich [45]. This algorithm uses as input each 299

of the aggregated Documents from Algorithm 1 to generate O 300

topics. 301

The probabilities contained in this matrix can be reversed 302

using Bayes’ theorem to determine the probability that a doc- 303

ument is in topic o given that it contains a set of keywords. 304

Since each document has a related time component, we can 305

say that the probability of a document being in o varies over 306

time. By considering the likelihood of all topics over all docu- 307

ments, we can observe the changing interests of the population 308

of users over time. Each of these topics are the basis of a ques- 309

tion: “Question: Is the ith event xi (as inferred from topic o) 310

related to real world phenomena y?” 311

D. Determining Event-Phenomena Causality 312

In Section III-C, we outlined the method to generated 313

topics—which we later show in Section IV-C to be statistically 314
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Algorithm 3: Mapping Topics to Effects
Data: Documents D and Topics O from Algorithms 1

and 2
Result: Granger Causal Topics
for document d ∈ D do

for topic o ∈ O do
TSo,d = rate of o in d

end
end
for o ∈ O do

Significance = Granger(TSo,PowerUsage);
if Significance then

Print o;
end

end

valid approximations of events—from social media network315

and determined the frequency of each topic at a given time.316

Next, we explore the patterns of each of these events over317

time. That is, combining all frequencies of an event over time318

results in a time series to be compared to the real world phe-319

nomena. Some topics, such as Christmas, hating Mondays, or320

having lunch will display cyclical patterns while other events,321

such as ones about a hurricane or a concert, may be one-time,322

anomalous events.323

The event’s time series can be compared to the document324

time series related to the real-world phenomena through cross-325

correlation (see Algorithm 3). That is, by matching events326

frequencies and real world phenomena by their time, can we327

find any relations between the two variables? This is defined328

by the Pearson’s rank correlation where each point is a pairing329

of event frequencies and real world phenomena. The system330

does not filter by positive or negative correlation: a strong331

negative relationship between an event and a real world event332

can be just as interesting as a positive one. While these cor-333

relations may be strong, they do not necessarily imply a334

causal link.335

While we do consider a correlative analysis between auto-336

matically detected events and electricity consumption, there337

is also an interest in determining which—if any—of the338

behaviors have a causal relationship on the electricity rates.339

Detecting strong causality through an uncontrolled, obser-340

vational study without an external model of the system is341

impossible. Hence, we focus on detecting Granger causal-342

ity [46], [47], a less stringent form of causal testing. Simply343

put, “correlation does not imply causality” because there may344

be a third phenomena that influences both, or if there is a345

causal relation between the two phenomenas, it is impossible346

to tell which one causes the other without external information.347

Granger causality addresses the second issue by employing348

lagged data. This aids in establishing a causal relationship by349

testing not only the synchronous variables, but measuring if350

the lagged data aids in the explanatory power of the model.351

That is, can information about phenomena y at time t (yt) be352

inferred by a behavior x at time t− t′, for some positive value353

of t′? If it can, then we at least know which direction causality354

Algorithm 4: Computational Complexity of This
Methodology

input : Social Media Posts
output: Predictions
Social Media Posts arrive: O(1);
Preprocessing: O(m) where m = number of posts;
topics ← Generate Topics (LDA): O(Nm2) (see alg 2);
CausalTopics ← Granger(topics) O(Len(topics)) ;

is flowing. To control for auto-correlative effects, the standard 355

model compares an auto-correlation model of the predicted 356

phenomena y 357

yt = β0 + β1yt−1 + β2yt−2 + . . .+ β(lagmax)
y(t−lagmax)

(3) 358

where lagmax is the maximum lag considered in the model, 359

determined by maximum likelihood estimation. We then add 360

the lagged components from an event’s trend xi to the formula 361

yt = β0 + β1yt−1 + β2yt−2 + . . .+ β(lagmax)
y(t−lagmax)

362

+ β(2+lagmax)
xi,t−1 + . . .+ β(2∗lagmax)

xi,(t−lagmax)
. (4) 363

The predictive power of these two models is compared by 364

performing a t-test on the errors between the two models. If 365

we find that (4) performs better than (3), then it is because 366

knowledge about this second event informs us about the future 367

state of the target phenomena. While this is still not a test for 368

true causality, Granger [46] have argued that it is a step in that 369

direction. Note that Granger causality does not control for a 370

third phenomena, which influences both the ith x in question, 371

xi, and y, other than guaranteeing that it occurs at some point 372

before y. Indeed, in our case, we assume that a behavior influ- 373

ences both xi—tweeting about the risk factor—and y—later 374

power consumption due to the behavior. This method of dual 375

time series analysis has two benefits: it quantifies how long of 376

a lag is meaningful, and determines which sampled topics are 377

significant. 378

This Granger causal test allows us to quantify the causal 379

relationship between a phenomenon (a change in power usage) 380

and an event (as represented by one or more social media 381

topics). This causality measurement is the primary method of 382

establishing causality implemented in this methodology. Social 383

media posts can be processed into topics ahead of time, and 384

these topics can be detected within new posts in linear time. 385

This also allows these causal relationships to be updated in 386

an online fashion. If the performance of the predictive nature 387

of these causal relationships degrades, a new sample can be 388

drawn and recalculated (see Algorithm 4). This allows us to 389

adapt and use new data instead of relying solely on old data. 390

E. Validating Event-Phenomena Relationships 391

At this point, we have generated relationships of the form: 392

“Topic o is related to a real world phenomena y with corre- 393

lation ro.” However, if the coefficient of determination, r2
o, is 394

small, then any trends detected may not be statistically signifi- 395

cant. Thus, we calculate the p-value for each regression. Since 396

the system may test hundreds or thousands of regressions, 397
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Algorithm 5: Topics to Predictions
Data: Significant Time Series S, PowerUsage Data
Result: Measurement of Predictive value of Social Media

Network data
Let PowerUsageh = PowerUsage data lagged by h
hours;
Sa,b = ath significant Time Series lagged by b hours;
Build model f (Sa,b, PowerUsageb) = PowerUsage;
Evaluate f on data from subsequent time period;

the traditionally chosen cut off α = 0.05 must be corrected.398

That is, if 100 tests are conducted on randomly generated399

data, it is likely that five will be reported as false posi-400

tives. Bonferroni correction [48] was chosen because it does401

not depend on normal distribution or independence assump-402

tions. Bonferroni correction defines the corrected cut off as403

α′ = α/n, where n is the total number of hypotheses tested.404

This method of correction is more conservative than others,405

giving more assurance that any hypotheses that do pass the406

test are valid.407

By implementing our system, events can be inferred from408

social media network data which can inform researchers about409

real world phenomena, as we will show in Sections IV–V.410

Finally, we evaluate the predictive value of this methodology411

as outlined in Algorithm 5 in Section VI.412

IV. CASE STUDY413

In this section, we demonstrate the feasibility of our system414

on Twitter data, in order to determine whether topics can415

help explain a real world energy utilization (see Fig. 1).416

Specifically, we consider electricity consumption from single-417

family households in San Diego County from March 3, 2011418

to December 31, 2011 and 1.8 million tweets from the same419

timespan that originated from San Diego County. That is,420

M ={Tweets in San Diego between March 3, 2011 and421

December 31, 2011} and y = electricity consumption rates422

in kilowatts.423

A. Description of Datasets424

Electricity consumption data was provided by the San Diego425

County Gas and Electric Company which supplies power to426

residents of the San Diego County in southern California. Data427

was provided on a daily basis for the year 2011 and repre-428

sents a typical, single-family, residence.1 Power usage data429

was discarded before the initial collection of Twitter data on430

March 3. Since power usage has both a daily cycle and longer-431

term dynamics (see Fig. 3), we consider both hourly and daily432

aggregation of the data.433

Twitter data was collected between March 3, 2011 and434

December 31, 2011 through the Twitter API by searching for435

all tweets with high-resolution geospatial data. Additionally,436

tweets are filtered to be located within San Diego County as437

1http://www.sdge.com/sites/default/files/documents/Coastal_Single_
Family_Jan_1_2011_to_Jan_1_2012.xml

Fig. 3. Mean daily and hourly rates of power consumption for San Diego
residents. Dashed lines in hourly graph indicate one standard deviation.

defined by the 2011 TIGER shape file2 to match the spa- 438

tial boundaries of the power data. A total of 1 813 689 tweets 439

matched this criteria. The raw jsons returned by the Twitter 440

API were then processed through The Open Twitter Parser3
441

and stored in an MySQL database for further processing. 442

B. n-Gram Selection 443

Next, the Twitter data was cleaned through tokenization, 444

stemming, case-normalization and stop word removing, as 445

described in Section III-A. In this case study, we only consider 446

unigrams (n-grams where n = 1) for analysis. Only unigrams 447

are considered for several reasons. A higher dimensionality 448

would cause the number of correlations to be calculated to 449

explode. Furthermore, most implementations of LDA only 450

consider unigrams, as topics must be latent relationships 451

between these unigrams. Finally, given that the dataset of 452

length constrained social media posts is studied, it is fairly 453

common for users to discard words, which would severely 454

limit the usefulness of n-grams for n > 2. A total of 794 917 455

unigrams were detected. We set δmin to one percent and deter- 456

mine that the optimal cut c to be 102, removing any unigrams 457

that occurred less than 102 times in the dataset (see Fig. 6), AQ1458

thus we define δmin and use this to calculate c, which allows 459

our approach to scale to datasize. This automated selection 460

of c generates comparable results to other papers [16]–[18] 461

that use domain knowledge to choose their cut off, while still 462

allowing for more or less frequencies depending on datasize. 463

This also helps if new samples need to be drawn and tested. 464

C. Knowledge Discovery of Statistically Relevant 465

Social Media Topics 466

We now aim to show that these topics are statistically related 467

to the real world events that they describe, as our assumptions 468

in Section III require. As a null hypothesis, we consider that 469

individuals are free to discuss any topic at any time. That 470

is, the probability of a topic being discussed, P(o) does not 471

depend on the time. Instead, if our original assumption is cor- 472

rect, then P(o‖xi) > P(o) for some o ∈ O and xi ∈ X. Hence, a 473

2http://www.census.gov/geo/www/tiger/tgrshp2011/tgrshp2011.html
3https://github.com/ToddBodnar/Twitter-Parser

http://www.sdge.com/sites/default/files/documents/Coastal_Single_Family_Jan_1_2011_to_Jan_1_2012.xml
http://www.sdge.com/sites/default/files/documents/Coastal_Single_Family_Jan_1_2011_to_Jan_1_2012.xml
http://www.census.gov/geo/www/tiger/tgrshp2011/tgrshp2011.html
https://github.com/ToddBodnar/Twitter-Parser
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TABLE I
WORDS THAT BEST DESCRIBE THE 20 DAILY TOPICS FROM TWITTER THAT OUR SYSTEM DETERMINED TO BE ABOUT POWER USAGE AND THE

CORRELATION BETWEEN THE TOPIC AND POWER USAGE. NOTE THAT THE TOPICS HAVE BEEN SORTED BY CORRELATION COEFFICIENT

Fig. 4. Temporal patterns for three select topics in black. Chart titles indicate
the three most representative words for each topic. Red lines indicate days
that are Sundays, Christmas day, and days when it rained, respectively.

topic is being induced by a real world event. To verify this,474

we would need ground truth data for xi, which is not necessar-475

ily possible to obtain for all possible events i. However, some476

topics lend themselves to easy validation.477

Here, we consider three topics that appear to represent478

Sundays, Christmas, and rain (see Fig. 4). Sundays were cho-479

sen as the first topic for analysis because it was expected480

to follow clearly defined temporal patterns. Additionally,481

Sundays are more discrete than Christmas (i.e., are Christmas482

Eve and Christmas separate events?) or rain (i.e., how much483

precipitation is necessary for it to be considered raining?). 484

Christmas was chosen as a topic because it is representative 485

of events that occur only once in our dataset, but with a well 486

defined event time. Indeed, Christmas may be the biggest topic 487

detected, with 25.8% of the Twitter data being about Christmas 488

on Christmas, December 25, and 17.5% on Christmas Eve, 489

December 24. Finally, we considered rain because it lacks the 490

periodicity of the other two topics. Note that the rate of pre- 491

cipitation does not have a strong relationship to spikes in the 492

rain topic, so we discretized weather into days without rain 493

and days with rain, as defined by weather underground.4 494

We can thus calculate the relevant probabilities (see Table I). 495

This means that 80 topics whose correlations are too low 496

are not present in this table. For example, with the topic 497

sunday: P(osunday) = 0.00350 (as determined by LDA) and 498

P(osunday|xsunday) = (osunday&xsunday/xsunday) = 0.0182. For 499

completeness, we can use Bayes theorem to determine the 500

probability that it is Sunday given that the topic is about 501

Sunday 502

P
(
xsunday|osunday

) = P
(
osunday|xsunday

)
p
(
xsunday

)

P
(
osunday

) 503

= 0.0182 ∗ 0.15

0.00350
= 0.728. (5) 504

Since we know what days we sampled from, we know that 505

P(xsunday) = (xsunday/xall) = 0.14, which is close to the gen- 506

eral occurrences of Sundays, (one out of seven days each week 507

≈0.1429). We find that p(Event|Topic) is significantly higher 508

than the baseline P(Event), giving evidence toward these auto- 509

matically generated topics, o ∈ O having some relation to real 510

world events xi ∈ X. 511

4http://www.wunderground.com/history/airport/KSAN/2011/1/1/Custom
History.html?dayend=31&monthend=12&yearend=2011&req_city=NA&req_
state=NA&req_statename=NA

http://www.wunderground.com/history/airport/KSAN/2011/1/1/CustomHistory.html?dayend=31&monthend=12&yearend=2011&req_city=NA&req_state=NA&req_statename=NA
http://www.wunderground.com/history/airport/KSAN/2011/1/1/CustomHistory.html?dayend=31&monthend=12&yearend=2011&req_city=NA&req_state=NA&req_statename=NA
http://www.wunderground.com/history/airport/KSAN/2011/1/1/CustomHistory.html?dayend=31&monthend=12&yearend=2011&req_city=NA&req_state=NA&req_statename=NA
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TABLE II
WORDS THAT AREAQ2 MOST ASSOCIATED WITH THE 38 HOURLY TOPICS FROM TWITTER THAT

DESCRIBE EVENTS THAT ARE FOUND TO GRANGER CAUSE CHANGES IN POWER USAGE

Additionally, some events will show cyclical, daily patterns512

(see Fig. 5). If the target phenomena also shows similar pat-513

terns, these hourly events may further help to describe the514

phenomena.515

D. Event-Electricity Usage Relationships Detected516

These automatically determined topics were found to cor-517

relate with daily power consumption rates with −0.519 <518

ri < 0.448 (see Table I). The topic that correlated most neg-519

atively with power consumption included unigrams such as520

“job,” “getalljob,” and “tweetmyjob.” This leads to the first521

steps of a domain expert investigating that people use less522

energy at their residence on days when they are at work than523

days when they are not working. The topic that correlated most524

positively with power consumption included Levins stemmed525

unigrams such as “christma,” “holiday,” and “home,” hinting526

that people consume more electricity around Christmas time.527

Similarly, the topics that were determined to Granger cause528

changes in hourly electricity consumption correlated with the529

current electricity consumption between −0.432 < ri < 0.639530

(see Table II). As with daily rates, the topic that Granger531

caused the most decrease in power included unigrams such532

as tweetmyjob and “sonyjob.”533

E. Validation Steps 534

With Bonferroni correction for multiple tests, we deter- 535

mined the corrected value for α = 0.05 to be α′ = 536

α/100 = 0.0005. Twenty correlations are found to be sig- 537

nificant at this rate (see Table II). While we cannot make 538

any explicit claims about the topics this citation [13] deter- 539

mined to have significant relations to power usage, it has 540

been argued [9], [13], [17], [18] that the most common words 541

in a topic are representative of the inherit meaning of the 542

topic. Here, we present the most significant words for each 543

topic, with select words bolded for easier interpretation. With 544

this interpretation in mind, it appears that the three most 545

negatively correlated topics include activity such as hav- 546

ing a job, posting on Foursquare or Instagram (i.e., things 547

done outside the residence) and job searches. The top three 548

positively correlated topics include topics about Christmas, 549

storms, and surprisingly, a topic consisting of several 550

vulgarities. 551

We found a total of 20 statistically significant correlations 552

between events (as inferred by detected topics) and power 553

consumption. Earlier, we presented the 20 topics that had 554

statistically significant correlations with power consumption 555

(see Table II). However, it is also important to consider topics 556

that are rated with a low coefficient of determination to see if 557
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TABLE III
PROBABILITY OF A TOPIC INDEPENDENT AND DEPENDENT ON A

POTENTIALLY RELATED EVENT

Fig. 5. Mean hourly rate of three select topics. Chart titles indicate three
representative words for each topic.

they are actually not likely to related to residential electricity558

consumption. The least related topic’s three most represen-559

tative words are “asiathegreat,” “manufactur” and “deal.” It560

would appear that these topics are about manufacturing–561

perhaps in China–which does not have a direct effect on562

residential electricity consumption. The second least related563

topic’s three most representative words are “louisseandon,”564

“ya,” and “blo.” The third least related contains “justinbieb,”565

“lt,” and “sagesummit.” These two topics would seem to be566

related to news about entertainers Louis Sean Don and Justin567

Bieber, which are likely related to entertainment news rather568

than electricity consumption.569

V. EXPERIMENTS AND RESULTS570

One may ask “what is the value of this system over tra-571

ditional keyword mining or just using expert knowledge?”572

While our system allows knowledge discovery with limited573

need for expert knowledge, if it does not perform well, then574

it is not useful. To justify our system’s existence, we compare575

the results of our system to topics common in the power con-576

sumption literature. Additionally, we perform keyword mining577

to detect words, instead of topics, that are related to electricity578

consumption.579

TABLE IV
TOPICS GENERATED THROUGH A REVIEW OF THE LITERATURE,

RANKED BY OCCURRENCE IN “NEW & USA” PAPERS

Fig. 6. Distribution of unigrams detected shows a long-tail distribution. The
gray line represents the automatically determined cut, w.

A. Comparison to Domain Experts 580

To approximate that knowledge of an expert on power con- 581

sumption modeling, we perform a literature review. We sample 582

Google Scholar for 100 papers that appear relevant to our 583

question. We discard 85 papers which are either inaccessible 584

(e.g., out of print papers from the ’70s), irrelevant to our topic 585

(e.g., a paper on building the Nigerian power grid) or do not 586

explicitly state activities to model (e.g., a paper on synchro- 587

nizing houses on a smart grid which filter out the customers 588

activities). While we could read the papers for other ideas 589

of important topics, we avoid to because: 1) we risk biasing 590

the set of topics due to selective reading; 2) if a topic is not 591

explicitly modeled or measured, we can assume that the expert 592

does not consider it important; and 3) this literature review is 593

not designed to collect all relevant topics, just ones that are 594

common amongst experts. 595

Additionally, we separate papers that are more than 10 596

years old or do not focus on American populations. While 597

these papers may contain expert knowledge, our Twitter and 598

power datasets are based on recent, American usage, which 599

may be different from older usage patterns or those of citi- 600

zens of other countries. In total, we find 12 topics from recent 601

and local papers [30], [31], [33], [34], [49]–[51] and an addi- 602

tional eight topics from other papers [32], [35], [52]–[57] (see 603

Table IV). Topics were explicitly presented from the papers 604
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by either tables or equations. If we only consider the topics605

that occur more than once in the set of recent and local papers606

(“temperature,” “income,” “electricity price,” “air conditioner,”607

and “heater”), then we can informally detect two clusters608

of topics: 1) “climate control” and 2) “economic factors.”609

Both of these two topics were also discovered to be signifi-610

cant measures of electric consumption through our automated611

system.612

Our system found 20 topics that are related to electricity613

consumption. Our literature review also found 20 topics that614

are related to electricity consumption. It would seem, however,615

that these two methods of knowledge discovery discovered616

topics that were different from each other. The literature review617

found topics such as temperature or dishwasher usage as inter-618

esting topics (see Table IV) while the topic modeling found619

topics such as having a hangover on the weekend or going620

to the mall as interesting topics (see Table I). This can be621

explained by the methods used to collect data. The litera-622

ture focuses on things that are easy to measure by traditional623

sensors. However, we use humans as “organic” sensors. This624

results in different types of data collected: it is easy to have625

a person report that they are going out on the weekend, but626

relatively hard to design a sensor to measure this. On the other627

hand, a sensor to measure temperature is trivial to acquire, but628

it is unlikely for a person to accurately report the temperature629

on a regular basis. By focusing on the human element, we630

have been able to detect important factors of electricity con-631

sumption that were previously overlooked due to limitations632

in traditional sensors and domain knowledge.633

Often times, the elements which can easily be studied by634

these experts and events which are present on social media635

do not have many commonalities. Discovering these latent636

events, processed by human sensors, is one major advantage637

of this paper over traditional sensors. For example, humans638

might aid in discovering a third variable at work (such as a639

football game), which leads to an increase in power consump-640

tion, while a more guided approach will tend to be informed641

instead by a television. This demonstrates that not only can642

we reproduce previous results, but we can also generate novel643

hypotheses, as told by human sensors.644

B. Comparison to Keyword Analysis645

We also consider algorithmically generating keywords646

instead of topics. First the text is cleaned through stemming647

and stop word removal, equivalent to the methods imple-648

mented in our system (see Section III-A). Instead of using649

topic modeling to filter out irrelevant keywords, we are lim-650

ited to just selecting keywords based on their frequency in651

the dataset. The n = 1, 2, . . . , 5000 most commonly occur-652

ring keywords are selected. The keywords are then tested for653

relations through cross correlation with the electricity con-654

sumption data, the same way that topics were tested for655

relations in Sections III-D and III-E. We try different values of656

n because if we try too few keywords, important keywords will657

be lost, but if we try too many keywords, then, once Bonferroni658

correction is applied, there will not be enough statistical power659

to detect significant keywords.660

(a)

(b)

Fig. 7. Strongest positive or negative keyword given a set number of key-
words tested. Dashed lines indicate the strongest positive or negative topic
detected. Data was aggregated by (a) day or (b) hour.

Additionally, we could define words that occur very fre- 661

quently in our dataset as de-facto stop words and remove 662

them in addition to the predefined stop word list. However, 663

we do not do this as the tests in this section are independent 664

of each other (besides the Bonferroni correction), compared to 665

the frequency-based methods of our proposed event inference 666

system, so the gain in statistical power is limited in com- 667

parison of the risk of removing strongly predictive keywords. 668

Finally, we consider the strongest positive and negative rates 669

of correlation detected for each value of n (see Fig. 7). All 670

minimum and maximum correlations displayed are significant 671

at the 0.05 level, even when Bonferroni correction is applied. 672

Testing keywords instead of topics resulted in some cor- 673

relations when dealing with daily aggregation. However, our 674

keyword test allows for a number of tests equivalent to the size 675

of the corpus, which is hard to directly compare against test- 676

ing 100 topics. When we only consider the top 100 keywords, 677

we find keywords with the strongest positive correlation to be 678

“don” with r = 0.384 and the keywords with the strongest 679

negative correlation to be sq with r = −0.476. Our system 680

finds events where the strongest positive correlation is 0.448 681

and the strongest negative correlation of −0.519, a 16.7% and 682

9.03% improvement, respectively. While keyword-based mod- 683

els do provide some information for daily prediction, hourly 684

prediction does not seem well suited for keyword analysis with 685

correlations ranging between −0.074 and 0.004, limiting the 686

usefulness of previous methods for fine-grained prediction. 687

Comparatively, our system which finds topics that match 688

power usage with correlations between −0.432 and 0.639 689

resulting in an increase of explained variance of up to 41%. 690

VI. PREDICTING FUTURE ELECTRICAL CONSUMPTION 691

Up to this point we have only considered individual top- 692

ics to predict the phenomena. Here, we consider multivariable 693

regression based on lagged predictive variables to predict 694

hourly power usage (see Algorithm 5). As a baseline, 695

we consider a 12-variable auto-correlation model where 696

the maximum lag of 12 was determined through maxi- 697

mum likelihood estimation. We then compare this model to 698
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TABLE V
CORRELATION COEFFICIENTS FOR MODELS USING AUTO-CORRELATION,

TOPICS, OR A SUBSET OF ATTRIBUTES

TABLE VI
ROOT MEAN SQUARE ERRORS FOR MODELS USING

AUTO-CORRELATION, TOPICS, OR A SUBSET OF ATTRIBUTES

three models: a multivariable regression on the detected topics,699

a multivariable regression on the 38 topics that were found to700

have a Granger causal relationship to electricity consumption701

and the auto-correlation model, and the second model with a702

subset of the attributes used. Which attributes are retained in703

the third model are selected through removing attributes with704

the smallest coefficients and refitting the model until AIC noAQ3 705

longer improves.706

We now determine the accuracy of each model by deter-707

mining the correlation coefficient for either through traditional708

statistical methods, fivefold cross validation, or a 80%/20%709

test-train split. The 80%/20% test-train split is performed on710

data that is ordered by time where the fivefold cross valida-711

tion is performed on randomly ordered data. We find that at712

least one of our models out perform the base-line in all three713

evaluation methods. Importantly, the 80%/20% test-train split714

represents the most realistic case of predicting future elec-715

tricity usage, and our model provides an additional 4.28%716

explanation of electricity usage. These results can be seen in717

Tables V and VI.718

A. Comparison With U.S. DOE Model719

The U.S. Department of Energy provides Commercial and720

Residential hourly load profiles for typical meteorological721

year (TMY3) locations around the United States. These sim-722

ulated values are derived from a combination of weather723

data from the National Solar Radiation Database,5 regional724

climate-specific information (cold/very cold, hot-dry/mixed-725

dry, hot-humid, marine, and mixed-humid), and load profile726

type (high, base, and low) which define physical building727

characteristics such as home size, layout, insulation type, heat-728

ing fuel source, and occupants. These simulations take into729

account very detailed electricity demands, (e.g., heat output730

by showers and dishwasher temperature point) and provide731

an hourly demand of an average household in each of hun-732

dreds of sites around the United States. Incorporating all of733

this information, this model presents a year-agnostic estima-734

tion of the hourly electricity usage of households across the735

country. That is, the model does not differentiate between736

1 A.M., January 1, 2011, and 1 A.M. January 1, 2012. Rather, it737

assumes each hour is the same. The DOE has made this model738

5https://mapsbeta.nrel.gov/nsrdb-viewer

Fig. 8. Periodicity of SDGE provided energy data, compared to TMY3
simulated data.

publicly available for researchers seeking to predict energy 739

demands across U.S. Cities.6 740

To test the efficacy of the TMY3 models in simulating 741

the real world energy use of the San Diego area, we com- 742

pared the TMY hourly use with the SDGE-provided data 743

from Section IV. The TMY3 data is considered the base- 744

line model, with the SDGE data representing the ground truth. 745

Since the TMY3 data is year agnostic, variations in energy use 746

due to severe weather events (as opposed to seasonality), and 747

date-specific periodicity (weekends and weekdays) will not be 748

included. These differences can be seen in Fig. 8. While the 749

SDGE data is lower in magnitude than the TMY3 load pro- 750

files, the general trends of the data are reflected best by the 751

base model, which carries an hourly correlation coefficient of 752

0.7544 and an RMSE of 130 when used as input for a linear 753

regression of the SDGE data. 754

Next, TMY3 data is used to predict monthly SDGE elec- 755

tricity usage. The monthly usage data is provided by SDGE, 756

aggregated across customers in each zip code.7 This data is 757

shown in Fig. 9. Note that since the TMY3 is year agnostic, 758

the data will repeat on an annual cycle. Once again, the mag- 759

nitude of each of the load models is higher than the aggregate 760

data provided. When analyzed against the real monthly data 761

for San Diego homes, no single model consistently correlates 762

better than the others, with the high model performing best 763

6http://en.openei.org/datasets/dataset/commercial-and-residential-hourly-
load-profiles-for-all-tmy3-locations-in-the-united-states

7https://energydata.sdge.com/

https://mapsbeta.nrel.gov/nsrdb-viewer
http://en.openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
http://en.openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
https://energydata.sdge.com/
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TABLE VII
ρ AND RMSE FOR EACH TMY MODEL

Fig. 9. TMY3 data, aggregated by month, compared with SDGE monthly
data.

Fig. 10. Topic rates for three sample topics. Note the recurrence of the topic
rate, as the topics were analyzed for 1 year only.

in 2012, base in 2013, and low in 2014. These same mod-764

els possess the lowest RMSE on a yearly basis, as seen in765

Table VII.766

Finally, we demonstrate that our proposed social media767

model outperforms the TMY3 model, given the same ground768

truth (SDGE data), by using the topic models and frequencies769

from Sections IV–VI. As with the TMY3 data, we assumed770

that each topic frequency is repeated for that same hour and771

date on all subsequent years. Similar to Fig. 4, these cumu-772

lative topic rates by month can be seen in Fig. 10. Next,773

these topics were aggregated on a monthly basis, the signifi-774

cance of each topic was tested, and the Bonferroni correction775

applied, leaving 13 topics whose p < 0.05/100. Finally, we776

used these frequencies as input in a regression model for 777

March–December of each year. This model yielded an RMSE 778

of 43.6 when applied to this time period, which outperforms 779

the linear regression performance of the best TMY3 data in 780

Table VII, whose best models RMSE was 80.1, an 83%. 781

VII. CONCLUSION 782

In this paper, we proposed a theoretical backing to our 783

design (see Section III), which assumed a link between: 784

1) events and text; 2) text and word vectors; 3) word vec- 785

tors and topics; 4) topics and events; and 5) events and 786

real-world phenomena. We now provide evidence of these 787

relations. Previous work [9], [39] has verified that events 788

cause users to post on social media networks. Similarly, the 789

conversion of text into word vectors has previously been dis- 790

cussed [4], [17], [20], [41], [42]. The most likely words are 791

cohesive within each topic and have large between-topic vari- 792

ation (see Table I). Thus it is likely that topics can be generated 793

from social media network text using LDA [14], [15]. We 794

choose three topics that contain words related to Sundays, 795

Christmas, and storms. By studying the temporal patterns of 796

each topic, we find a relationship between the storm topic and 797

the days with “rain” events in San Diego, the Sunday topic to 798

be most often discussed on Sundays, and the Christmas topic 799

to trend during December (see Fig. 4). Finally, we show a 800

relationship between our discovered events and energy con- 801

sumption through statistical analysis (see Table II). Hence, we 802

conclude that there is evidence for our assumptions on links, 803

at least when applied to our case study. 804

We presented a novel form of semi-supervised knowl- 805

edge discovery that infers events from topics generated from 806

social media network data. These events are then used to 807

form hypotheses about real-world phenomena which are then 808

validated. To provide support for our case, we perform a 809

case study where Twitter data is used to predict electricity 810

consumption rates. The results are then compared to top- 811

ics generated by domain experts and keyword analysis. We 812

find that our system detects events tangential to what the 813

literature is currently focused on and that our system outper- 814

forms an equivalent keyword analysis by up to 16.7%. When 815

combined with time-series modeling, we are able to predict 816

electricity consumption with correlations of up to 0.9788 and 817

a mean absolute error of 19.84 watts—less than the energy 818

consumption of a single light bulb. Finally, we compared the 819

performance of this model to the models generated by the DOE 820

for the San Diego area, and found it to be more accurate. 821

Future work may consider a more robust comparison of this 822

model against other existing models, since several such mod- 823

els exist. Additionally, this model might be employed for a 824

more directed event detection, as described in the introduc- 825

tion. The textual analysis in this paper could be augmented 826

by considering synonyms and related concepts through word 827

embedding which groups similar words together automatically. 828

Additionally, other data modalities might also be considered, 829

such as images, videos, and social media metadata. Since 830

there is a spatial component of this data, future work may 831

also analyze similar data for a different part of the country, to 832
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determine if the trends we have identified hold true elsewhere.833

Finally, it may prove fruitful to analyze a similar methodology834

for other utilities such as water.835
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