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TABLE III
PROBABILITY OF A TOPIC INDEPENDENT AND DEPENDENT ON A

POTENTIALLY RELATED EVENT

Fig. 5. Mean hourly rate of three select topics. Chart titles indicate three
representative words for each topic.

they are actually not likely to related to residential electricity558

consumption. The least related topic’s three most represen-559

tative words are “asiathegreat,” “manufactur” and “deal.” It560

would appear that these topics are about manufacturing–561

perhaps in China–which does not have a direct effect on562

residential electricity consumption. The second least related563

topic’s three most representative words are “louisseandon,”564

“ya,” and “blo.” The third least related contains “justinbieb,”565

“lt,” and “sagesummit.” These two topics would seem to be566

related to news about entertainers Louis Sean Don and Justin567

Bieber, which are likely related to entertainment news rather568

than electricity consumption.569

V. EXPERIMENTS AND RESULTS570

One may ask “what is the value of this system over tra-571

ditional keyword mining or just using expert knowledge?”572

While our system allows knowledge discovery with limited573

need for expert knowledge, if it does not perform well, then574

it is not useful. To justify our system’s existence, we compare575

the results of our system to topics common in the power con-576

sumption literature. Additionally, we perform keyword mining577

to detect words, instead of topics, that are related to electricity578

consumption.579

TABLE IV
TOPICS GENERATED THROUGH A REVIEW OF THE LITERATURE,

RANKED BY OCCURRENCE IN “NEW & USA” PAPERS

Fig. 6. Distribution of unigrams detected shows a long-tail distribution. The
gray line represents the automatically determined cut, w.

A. Comparison to Domain Experts 580

To approximate that knowledge of an expert on power con- 581

sumption modeling, we perform a literature review. We sample 582

Google Scholar for 100 papers that appear relevant to our 583

question. We discard 85 papers which are either inaccessible 584

(e.g., out of print papers from the ’70s), irrelevant to our topic 585

(e.g., a paper on building the Nigerian power grid) or do not 586

explicitly state activities to model (e.g., a paper on synchro- 587

nizing houses on a smart grid which filter out the customers 588

activities). While we could read the papers for other ideas 589

of important topics, we avoid to because: 1) we risk biasing 590

the set of topics due to selective reading; 2) if a topic is not 591

explicitly modeled or measured, we can assume that the expert 592

does not consider it important; and 3) this literature review is 593

not designed to collect all relevant topics, just ones that are 594

common amongst experts. 595

Additionally, we separate papers that are more than 10 596

years old or do not focus on American populations. While 597

these papers may contain expert knowledge, our Twitter and 598

power datasets are based on recent, American usage, which 599

may be different from older usage patterns or those of citi- 600

zens of other countries. In total, we find 12 topics from recent 601

and local papers [30], [31], [33], [34], [49]–[51] and an addi- 602

tional eight topics from other papers [32], [35], [52]–[57] (see 603

Table IV). Topics were explicitly presented from the papers 604
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by either tables or equations. If we only consider the topics605

that occur more than once in the set of recent and local papers606

(“temperature,” “income,” “electricity price,” “air conditioner,”607

and “heater”), then we can informally detect two clusters608

of topics: 1) “climate control” and 2) “economic factors.”609

Both of these two topics were also discovered to be signifi-610

cant measures of electric consumption through our automated611

system.612

Our system found 20 topics that are related to electricity613

consumption. Our literature review also found 20 topics that614

are related to electricity consumption. It would seem, however,615

that these two methods of knowledge discovery discovered616

topics that were different from each other. The literature review617

found topics such as temperature or dishwasher usage as inter-618

esting topics (see Table IV) while the topic modeling found619

topics such as having a hangover on the weekend or going620

to the mall as interesting topics (see Table I). This can be621

explained by the methods used to collect data. The litera-622

ture focuses on things that are easy to measure by traditional623

sensors. However, we use humans as “organic” sensors. This624

results in different types of data collected: it is easy to have625

a person report that they are going out on the weekend, but626

relatively hard to design a sensor to measure this. On the other627

hand, a sensor to measure temperature is trivial to acquire, but628

it is unlikely for a person to accurately report the temperature629

on a regular basis. By focusing on the human element, we630

have been able to detect important factors of electricity con-631

sumption that were previously overlooked due to limitations632

in traditional sensors and domain knowledge.633

Often times, the elements which can easily be studied by634

these experts and events which are present on social media635

do not have many commonalities. Discovering these latent636

events, processed by human sensors, is one major advantage637

of this paper over traditional sensors. For example, humans638

might aid in discovering a third variable at work (such as a639

football game), which leads to an increase in power consump-640

tion, while a more guided approach will tend to be informed641

instead by a television. This demonstrates that not only can642

we reproduce previous results, but we can also generate novel643

hypotheses, as told by human sensors.644

B. Comparison to Keyword Analysis645

We also consider algorithmically generating keywords646

instead of topics. First the text is cleaned through stemming647

and stop word removal, equivalent to the methods imple-648

mented in our system (see Section III-A). Instead of using649

topic modeling to filter out irrelevant keywords, we are lim-650

ited to just selecting keywords based on their frequency in651

the dataset. The n = 1, 2, . . . , 5000 most commonly occur-652

ring keywords are selected. The keywords are then tested for653

relations through cross correlation with the electricity con-654

sumption data, the same way that topics were tested for655

relations in Sections III-D and III-E. We try different values of656

n because if we try too few keywords, important keywords will657

be lost, but if we try too many keywords, then, once Bonferroni658

correction is applied, there will not be enough statistical power659

to detect significant keywords.660

(a)

(b)

Fig. 7. Strongest positive or negative keyword given a set number of key-
words tested. Dashed lines indicate the strongest positive or negative topic
detected. Data was aggregated by (a) day or (b) hour.

Additionally, we could define words that occur very fre- 661

quently in our dataset as de-facto stop words and remove 662

them in addition to the predefined stop word list. However, 663

we do not do this as the tests in this section are independent 664

of each other (besides the Bonferroni correction), compared to 665

the frequency-based methods of our proposed event inference 666

system, so the gain in statistical power is limited in com- 667

parison of the risk of removing strongly predictive keywords. 668

Finally, we consider the strongest positive and negative rates 669

of correlation detected for each value of n (see Fig. 7). All 670

minimum and maximum correlations displayed are significant 671

at the 0.05 level, even when Bonferroni correction is applied. 672

Testing keywords instead of topics resulted in some cor- 673

relations when dealing with daily aggregation. However, our 674

keyword test allows for a number of tests equivalent to the size 675

of the corpus, which is hard to directly compare against test- 676

ing 100 topics. When we only consider the top 100 keywords, 677

we find keywords with the strongest positive correlation to be 678

“don” with r = 0.384 and the keywords with the strongest 679

negative correlation to be sq with r = −0.476. Our system 680

finds events where the strongest positive correlation is 0.448 681

and the strongest negative correlation of −0.519, a 16.7% and 682

9.03% improvement, respectively. While keyword-based mod- 683

els do provide some information for daily prediction, hourly 684

prediction does not seem well suited for keyword analysis with 685

correlations ranging between −0.074 and 0.004, limiting the 686

usefulness of previous methods for fine-grained prediction. 687

Comparatively, our system which finds topics that match 688

power usage with correlations between −0.432 and 0.639 689

resulting in an increase of explained variance of up to 41%. 690

VI. PREDICTING FUTURE ELECTRICAL CONSUMPTION 691

Up to this point we have only considered individual top- 692

ics to predict the phenomena. Here, we consider multivariable 693

regression based on lagged predictive variables to predict 694

hourly power usage (see Algorithm 5). As a baseline, 695

we consider a 12-variable auto-correlation model where 696

the maximum lag of 12 was determined through maxi- 697

mum likelihood estimation. We then compare this model to 698
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TABLE V
CORRELATION COEFFICIENTS FOR MODELS USING AUTO-CORRELATION,

TOPICS, OR A SUBSET OF ATTRIBUTES

TABLE VI
ROOT MEAN SQUARE ERRORS FOR MODELS USING

AUTO-CORRELATION, TOPICS, OR A SUBSET OF ATTRIBUTES

three models: a multivariable regression on the detected topics,699

a multivariable regression on the 38 topics that were found to700

have a Granger causal relationship to electricity consumption701

and the auto-correlation model, and the second model with a702

subset of the attributes used. Which attributes are retained in703

the third model are selected through removing attributes with704

the smallest coefficients and refitting the model until AIC noAQ3 705

longer improves.706

We now determine the accuracy of each model by deter-707

mining the correlation coefficient for either through traditional708

statistical methods, fivefold cross validation, or a 80%/20%709

test-train split. The 80%/20% test-train split is performed on710

data that is ordered by time where the fivefold cross valida-711

tion is performed on randomly ordered data. We find that at712

least one of our models out perform the base-line in all three713

evaluation methods. Importantly, the 80%/20% test-train split714

represents the most realistic case of predicting future elec-715

tricity usage, and our model provides an additional 4.28%716

explanation of electricity usage. These results can be seen in717

Tables V and VI.718

A. Comparison With U.S. DOE Model719

The U.S. Department of Energy provides Commercial and720

Residential hourly load profiles for typical meteorological721

year (TMY3) locations around the United States. These sim-722

ulated values are derived from a combination of weather723

data from the National Solar Radiation Database,5 regional724

climate-specific information (cold/very cold, hot-dry/mixed-725

dry, hot-humid, marine, and mixed-humid), and load profile726

type (high, base, and low) which define physical building727

characteristics such as home size, layout, insulation type, heat-728

ing fuel source, and occupants. These simulations take into729

account very detailed electricity demands, (e.g., heat output730

by showers and dishwasher temperature point) and provide731

an hourly demand of an average household in each of hun-732

dreds of sites around the United States. Incorporating all of733

this information, this model presents a year-agnostic estima-734

tion of the hourly electricity usage of households across the735

country. That is, the model does not differentiate between736

1 A.M., January 1, 2011, and 1 A.M. January 1, 2012. Rather, it737

assumes each hour is the same. The DOE has made this model738

5https://mapsbeta.nrel.gov/nsrdb-viewer

Fig. 8. Periodicity of SDGE provided energy data, compared to TMY3
simulated data.

publicly available for researchers seeking to predict energy 739

demands across U.S. Cities.6 740

To test the efficacy of the TMY3 models in simulating 741

the real world energy use of the San Diego area, we com- 742

pared the TMY hourly use with the SDGE-provided data 743

from Section IV. The TMY3 data is considered the base- 744

line model, with the SDGE data representing the ground truth. 745

Since the TMY3 data is year agnostic, variations in energy use 746

due to severe weather events (as opposed to seasonality), and 747

date-specific periodicity (weekends and weekdays) will not be 748

included. These differences can be seen in Fig. 8. While the 749

SDGE data is lower in magnitude than the TMY3 load pro- 750

files, the general trends of the data are reflected best by the 751

base model, which carries an hourly correlation coefficient of 752

0.7544 and an RMSE of 130 when used as input for a linear 753

regression of the SDGE data. 754

Next, TMY3 data is used to predict monthly SDGE elec- 755

tricity usage. The monthly usage data is provided by SDGE, 756

aggregated across customers in each zip code.7 This data is 757

shown in Fig. 9. Note that since the TMY3 is year agnostic, 758

the data will repeat on an annual cycle. Once again, the mag- 759

nitude of each of the load models is higher than the aggregate 760

data provided. When analyzed against the real monthly data 761

for San Diego homes, no single model consistently correlates 762

better than the others, with the high model performing best 763

6http://en.openei.org/datasets/dataset/commercial-and-residential-hourly-
load-profiles-for-all-tmy3-locations-in-the-united-states

7https://energydata.sdge.com/

https://mapsbeta.nrel.gov/nsrdb-viewer
http://en.openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
http://en.openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states
https://energydata.sdge.com/
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TABLE VII
ρ AND RMSE FOR EACH TMY MODEL

Fig. 9. TMY3 data, aggregated by month, compared with SDGE monthly
data.

Fig. 10. Topic rates for three sample topics. Note the recurrence of the topic
rate, as the topics were analyzed for 1 year only.

in 2012, base in 2013, and low in 2014. These same mod-764

els possess the lowest RMSE on a yearly basis, as seen in765

Table VII.766

Finally, we demonstrate that our proposed social media767

model outperforms the TMY3 model, given the same ground768

truth (SDGE data), by using the topic models and frequencies769

from Sections IV–VI. As with the TMY3 data, we assumed770

that each topic frequency is repeated for that same hour and771

date on all subsequent years. Similar to Fig. 4, these cumu-772

lative topic rates by month can be seen in Fig. 10. Next,773

these topics were aggregated on a monthly basis, the signifi-774

cance of each topic was tested, and the Bonferroni correction775

applied, leaving 13 topics whose p < 0.05/100. Finally, we776

used these frequencies as input in a regression model for 777

March–December of each year. This model yielded an RMSE 778

of 43.6 when applied to this time period, which outperforms 779

the linear regression performance of the best TMY3 data in 780

Table VII, whose best models RMSE was 80.1, an 83%. 781

VII. CONCLUSION 782

In this paper, we proposed a theoretical backing to our 783

design (see Section III), which assumed a link between: 784

1) events and text; 2) text and word vectors; 3) word vec- 785

tors and topics; 4) topics and events; and 5) events and 786

real-world phenomena. We now provide evidence of these 787

relations. Previous work [9], [39] has verified that events 788

cause users to post on social media networks. Similarly, the 789

conversion of text into word vectors has previously been dis- 790

cussed [4], [17], [20], [41], [42]. The most likely words are 791

cohesive within each topic and have large between-topic vari- 792

ation (see Table I). Thus it is likely that topics can be generated 793

from social media network text using LDA [14], [15]. We 794

choose three topics that contain words related to Sundays, 795

Christmas, and storms. By studying the temporal patterns of 796

each topic, we find a relationship between the storm topic and 797

the days with “rain” events in San Diego, the Sunday topic to 798

be most often discussed on Sundays, and the Christmas topic 799

to trend during December (see Fig. 4). Finally, we show a 800

relationship between our discovered events and energy con- 801

sumption through statistical analysis (see Table II). Hence, we 802

conclude that there is evidence for our assumptions on links, 803

at least when applied to our case study. 804

We presented a novel form of semi-supervised knowl- 805

edge discovery that infers events from topics generated from 806

social media network data. These events are then used to 807

form hypotheses about real-world phenomena which are then 808

validated. To provide support for our case, we perform a 809

case study where Twitter data is used to predict electricity 810

consumption rates. The results are then compared to top- 811

ics generated by domain experts and keyword analysis. We 812

find that our system detects events tangential to what the 813

literature is currently focused on and that our system outper- 814

forms an equivalent keyword analysis by up to 16.7%. When 815

combined with time-series modeling, we are able to predict 816

electricity consumption with correlations of up to 0.9788 and 817

a mean absolute error of 19.84 watts—less than the energy 818

consumption of a single light bulb. Finally, we compared the 819

performance of this model to the models generated by the DOE 820

for the San Diego area, and found it to be more accurate. 821

Future work may consider a more robust comparison of this 822

model against other existing models, since several such mod- 823

els exist. Additionally, this model might be employed for a 824

more directed event detection, as described in the introduc- 825

tion. The textual analysis in this paper could be augmented 826

by considering synonyms and related concepts through word 827

embedding which groups similar words together automatically. 828

Additionally, other data modalities might also be considered, 829

such as images, videos, and social media metadata. Since 830

there is a spatial component of this data, future work may 831

also analyze similar data for a different part of the country, to 832
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determine if the trends we have identified hold true elsewhere.833

Finally, it may prove fruitful to analyze a similar methodology834

for other utilities such as water.835
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